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A model of a liquid crystal composed of ordered "liquid columns" is considered. The character of the 
phase transition from the solid crystal to this mesophase (H,) and of the further transitions to the nematic 
liquid crystal and the isotropic liquid is considered. A simple molecular model with a 
crystal-H,-isotropic-liquid phase diagram is proposed. 

PACS numbers: 61.30.Cz, 64.70.E~ 

1. Very recently, Chandrasekhar et a1.l have studied the phase transition of complete solidification can be a 
the phase diagrams of hexaphenyl n-akonates. A char- second-order transition. 
acteristic feature of these compounds is the disk-like 
shape of the molecules. The thermodynamic, optical, 
and x-ray studies of the mc?sophase carried out in Ref. 
1 permit us to  propose the following structure for it; 
two-dimensional hexagonal ordering of the centers of 
mass of the molecules, but absence of translational or-  
der in the direction perpendicular to these layers. 
Schematically, such a structure can be represented in 
the form of "liquid" columns of disk-shaped molecules, 
packed in a hexagonal lattice (the ratio of the diameter 
of the "disk" to  i ts  thickness is -6-7). Since, in the 
sense of its elastic properties, such a mesophase is 
similar to the anisotropic "solid" mesophase of the H 
type (but, possibly, does not coincide with it), hence- 

In the three alkonates studied in Ref. 1 the nematic 
phase was absent; in principle, however, the situation 
with a nematic phase should also be investigated. In the 
Appendix we consider a simple molecular model with a 
crystal- HI -isotropic-liquid phase diagram. It should 
also be emphasized that the heats of the crystal-HI- 
phase and HI-phase-isotropic-liquid transitions (-10 
kcal/mole) a r e  greater by a t  least an order of magni- 
tude than the characteristic heats of transitions from a 
nematic liquid crystal to an isotropic liquid. There- 
fore, in i t s  narrow range of existence (of the order of a 
few degrees), the nematic phase might not be distin- 
guished by the calorimetric method of Ref. 1. 

forth we shall designate this phase as HI. In Sec. 2 of the paper we study the phase transition 

It should be noted that the above interpretation of the from the solid-crystalline phase to the intermediate, HI 
phase. We use de Gennes' model2 of the nematic-smec- x-ray patterns and optical textures' is not, of course, 
tic-A liquid-crystal phase transition. The condition 

unique. Therefore, it is necessary to study other prop- 
that the two-dimensional lattice be rigid requires that 

ert ies of this mesophase. The present paper is devoted 
the Frank constant Kll become infinite. This condition 

to an analysis of the possible features of the HI phase. (K,,-m, and not KIl-0 as in the de Gennes model) r e -  
The characteristics of the H, mesophase in the vicinity 

moves the divergences (characteristic for the smectic 
of the transitions to the solid-crystalline, ordinary 

phases) of the fluctuations of the order parameter (in 
nematic, and isotropic phases a r e  considered in the agreement with the well known Landau-Peierls the- 
framework of the Landau theory. It is especially nec- 

orem". 
essary to mention the transition to the crystalline phase. 
According to the Landau theory (see below), the crys- In Sec. 3 we consider certain properties of the HI 
tallization of the HI phase is a ra re  example in which phase-in particular, the spectrum of the low-frequency 
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(hydrodynamic) normal modes. 

Section 4 is devoted to a description of the possible 
phase transition from the H, state to the nematic liquid 
crystal. If this phase transition is almost second-order, 
then, in the nematic phase in the critical region, be- 
cause of fluctuations of the H, order parameter, an in- 
crease of the Frank constant K,, (but not of K,, and K,, 
a s  in a transition to a smectic phase) should be ob- 
served. In the same section the transition from the H, 
phase to the isotropic liquid i s  briefly considered. 

In conclusion (Sec. 5), some experiments that could 
elucidate the nature of the H, phase of the liquid crys- 
tal a re  proposed. 

2. We shall consider the free energy of the H, phase. 
The density in this state is modulated in accordance 
with the two-dimensional hexagonal order: 

where p, i s  a coefficient with the dimensions of density. 
In the perpendicular direction (2) there is no periodicity. 
The transition to the solid-crystalline phase implies the 
appearance of periodicity in this direction also. If the 
period along the z axis i s  equal to d, in place of (1) we 
can write 

where go = 2r/d. 

In the H, phase x =0, but if the transition to the crys- 
talline state is almost second-order, then, in the vicin- 
ity of the transition, $ i s  smqll and (in the spirit of the 
Landau theory) we can expand the free energy in a ser-  
ies in X :  

where a = a(T - T*), and b, c,, and c,, a r e  constants. 
Formally, (3) is equivalent to the free-energy expres- 
sion used to describe the nematic-smectic-A transi- 
tion. However, there is an important difference, asso- 
ciated with the different symmetry of the H, phase. To 
better emphasize this difference, it i s  convenient to in- 
troduce the orientational degrees of freedom directly 
into (3). As is well known, in its most general form the 
orientational order parameter of a liquid crystal i s  
specified a s  follows: 

where n and m a re  the unit vectors specifying the ori- 
entations of the long axes of the molecules (n) and of the 
planes in which they a r e  situated (m); s, a r e  the corre- 
sponding order parameters. 

Bearing in mind the experimental situation of Ref. 1, 
we put s, = 0 (there i s  no ordering of the long axes) and 
s, = 0 (the molecules a r e  nonpolar). The unit vector m 
is analogous to the director in ordinary nematic liquid 
crystals. Any deformation of the field m gives r ise  to 
an increase of the energy. Obviously, the correspond- 
ing expression for the elastic energy coincides with the 

Frank energy: 

F,= ~ d ~ r ( ~ / , ~ , ,  (div m)a+L/zK,z(mrot m)Z+'/ ,K3,[m rot m]') .  (5) 

The minimization of (5) corresponds to the nematic 
phase of the disk-shaped molecules, when the orienta- 
tion of the planes in which the molecules lie i s  ordered. 
However, the symmetry of the H, phase imposes cer- 
tain restrictions on the formula (5). The point i s  that 
the formation of a two-dimensional lattice in the planes 
orghogonal to m implies that the flux of the vector m 
through an arbitrary surface is fixed. In other words, 
the rigidity of the two-dimensional lattice implies the 
condition 

div m=O. (6) 

To fulfill the requirement (6) it is necessary to put K,, 
= 00 in the functional (5). 

Physically, the condition div m = 0 simply correspond 
to the fact that the rigidity of the lattice is considerably 
greater than the rigidity against bend and twist defor- 
mations of the "liquid" columns. 

Introducing a natural system of coordinates, with one 
of the axes (2) along m, we can rewrite (3) in the form 

The fluctuations of x a r e  now connected with the fluctu- 
ations of m and a r e  determined from (7) and (5) under 
the condition (6). 

With allowance for what has been said above, the total 
free energy Fo takes the form 

where 

and we have gone over to the complex order parameter 
$ in the locg-wavelength limit (i.e., it i s  assumed that 
the characteristic wave vectors of the fluctuations of the 
order parameter a r e  much smaller than 9,). 

The subsequent calculations a r e  analogous to those 
performed in Ref. 2 for the nematic-smedic-A tran- 
sition. Naturally, the conclusions about the fluctuation- 
a1 growth of K,, and K,, , and other consequences stem- 
ming from the analogy with superconductivity, a r e  also 
the same. There i s  only one difference, associated 
with the presence of the condition (6) in the H, phase. 

Following Ref. 2, we introduce explicitly the trans- 
verse part of &m: 

G m - ~ = V ~ ,  is) 
and transform the order parameter accordingly: 

Because of the Gaussian character of the fluctuations, 
we have 

< f ( r ) q ( O )  )=<@'(r)Q (0) )e~p{- ' /~qd' (  [L(r ) - -L(O)  1')). (11) 

The correlator of the longitudinal part ~ ( r )  can be 
found easily from the expansion (8). If we consider the 
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nematic-smectic-A transition (i.e., we keep the term 
-K,,), we have, in the Fourier components q = (q,, q,), 

The logarithmic dependence of the correlator ( [ ~ ( r )  
- L(O)] ') and the power dependence of ($*(r) $(O)) follow 
from formula (12) (in the ordered phase) in the usual 
way. In the H, phase, however, Kll-w and ([L(r) 
- L(0)I2) -0. Therefore, there a r e  no divergences (in 
agreement with the Landau-Peierls result3). The di- 
vergence of (12) is associated with the longitudinal part 
of 6m and, a s  was pointed out above, i s  absent in the 
H, phase. The correlator of the transverse part is fin- 
ite: 

(cf. Ref. 3). 

We note that, numerically, the fluctuations of J I  de- 
pend only slightly on the size of the modulus K,, . The 
character of these dependences can be understood, e.g., 
in terms of the Ginzburg-Landau parameter x. For K,, 
= 00 (the H, phase), we have 

while for K,, = 0 (the nematic-smectic-A transition), 

If the anisotropy of the "effective masses" is large 
(c,, /cL >>KS3/K2,), the Ginzburg-Landau parameter for 
K,, = O  is substantially smaller than that for K,, = m. In 
accordance with this, the transition to the ordered state 
(with K,, = m) would be closer to a second-order phase 
transition. The experimental data of Ref. 1 indicate 
the opposite, and this implies that K,,/K,, - c,, /c,. 

In reality, the phase transition can be classified a s  
first-order not only on account of the above mentioned 
fluctuation mechanism (i.e., the interaction of 11, with the 
gauge field 6m) but also on account of striction effects 
of various kinds. We shall not investigate this question 
in more detail. 

3. We shall consider certain properties of the H, 
phase. The elastic orientational energy in this state is 
given by the formulas (5) and (6). In addition, since 
there is a two-dimensional lattice in the surface per- 
pendicular t , ~  m, its deformations a r e  determined by the 
corresponding displacement u (u, , u, , 0). The elastic 
energy of such a deformation i s  specified by the free 
energy 

If we take into account the bulk compressibility of the 
system, we must add to (13) the term 

where 8 = -p(%, + u, + u, ); u, is the displacement along 

m,, . Taking into account also that the condition div m = 0 
leads to the relationships 

we can transform (5) to the following form: 

(for nonpolar media the term with K,, gives no contrib- 
ution). Finally, we have the following expression for 
the total elastic energy (consistent with the require- 
ments of the Landau-Peierls theorem3): 

where C,, =B,, + Ap2, C,, =BIZ + Ap2, and C,, =C1, =Ap2. 

We note that, in an ordinary crystal with uniaxial 
symmetry, C,,f C13 and, in addition, there is a mod- 
ulus C,, (in the standard notation for the moduli, C,, is 
the coefficient of d, + u;,). 

With neglect of the dissipation, three gapless acoustic 
modes follow from (16). However, the velocities v,, , , , 
of the modes depend on the orientation of their wave 
vector with respect to the symmetry axes of the system. 
If we introduce a polar frame with axis m,, , then 

In the general case the expressions for v,,,,, a r e  very 
cumbersome and we shall not give them. If, however, 
Cl1<<C3,, then, in first order in the ratio 6 =C,,/C13, 

v,=(C,,/p)" (1-M cos2 0).  
v,, r=(Css8/p)'h sin 0 cos Ofr. r(p) ,  

where the function f,, ,(cp) is determined by the two- 
dimensional symmetry of the lattice, and, in the given 
case (a hexagonal lattice), depends weakly on cp. The 
formulas (18) a r e  fulfilled qualitatively for arbitrary 
values of the parameter 6. The first mode corresponds 
to ordinary sound in a liquid (with a weakly anisotropic 
velocity), and the other two (in a smectic there is only 
one additional mode!) correspond to def ormational vi- 
brations of the planar lattice (in which the volume is 
practically unchanged). The velocity of these modes 
depends strongly on the polar angle 8, vanishing at q, = 0 
and q, =O. 

Thus, in the sense of the elastic properties, the H, 
phase is analogous to a "real" three-dimensional crys- 
tal (in a general direction q) and possesses three acous- 
tic modes. In this, the H, phase differs from smectic- 
A liquid crystals, in which, in the general case, there 
a r e  only two acoustic modes. 

This character of the acoustic spectrum is manifested 
in features of the light scattering. The cross section 
for scattering into unit solid angle by fluctuations (u:) 
and (u;) is determined in the usual way: 

where p and p' a re  the polarizations of the incident and 
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scattered beams. The fluctuations be,, of the dielectric 
permittivity are, in turn, related to fluctuations of the 
displacement: 

Thus, the scattering intensity for polarizations p and p' 
in the plane perpendicular to m is, according to (19), 
(20), and (l6), equal to 

It is interesting to note that the scattering does not 
have the character of critical opalescence-in fact, I 
is small in the entire region of existence of the H, phase. 
This is also reflected in the fact that there i s  no sing- 
ularity in the longitudinal scattering (unlike in degen- 
erate systems of the type of nematic and smectic liquid 
crystals4). 

4. Formally, the treatment is Sec. 2 of the paper can 
also be generalized to the case of the phase transition 
to the nematic liquid crystal. The density is now given 
not by (2) but by the formula 

where @, i s  the complex order parameter of the H, 
phase (in the nematic phase, I/, =O), while f (x ,  y) i s  de- 
termined by the periodicity of the two-dimensional lat- 
tice and, in hexagonal symmetry, is given by formula 
(1). 

In analogy with the derivation of (8), in the vicinity of 
the transition from the nematic to the H, phase we can 
write 

+ c  1 [ $ - i(p&m) $ + - K t .  (div 6m)' I I I: 

here, po is a vector in the xy plane, with components 
(po ,po), where p, i s  the modulus of the reciprocal-lat- 
tice vector. 

The free energy (23) describes the transition from the 
nematic to the H, phase. We shall discuss only one con- 
sequence of this transition-the fluctuational increase 
of the modulus K,, . Physically, this increase is entire- 
ly understandable. In fact, if the phase transition be- 
tween H, and the nematic liquid crystal is almost sec- 
ond-order, fluctuational clusters of the H, phase al- 
ready appear in the nematic region. These clusters 
cannot make a contribution to a deformation with div 6m 
=0, and so correspond to an effective increase of the 
modulus K,, . 

The effect is easy to estimate. The energy required 
for a deformation in a region of H, phase of the order 
of the coherence length 5 is found from (23): 

6F-clI 1% 1'6m2p02f 3. 

Such a fluctuation corresponds to an increase of the 
elastic constant K,,: 

~K, , -c , I  191 1 'E'Po'. 

But it follows from (23) that aI$11253-T, from which we 
finally obtain 

6K11-c,p,'TE. (2 4) 

For a more exact calculation of 6K,, we can use the 
method of response f~nc t ions .~  It i s  convenient to in- 
troduce a molecular field acting on 6m a s  a result of 
the fluctuations of $,: 

The formulas (25) and (23) define the molecular field h. 
The mean value (h) is related to the small deformation 
6m by the response function: 

<h>=QGm. 

From (26) and (23) we find 

In formula (27) the "four-particle" fluctuations have 
been approximately decoupled: (@: @,@: @,) - - ( I  @,I ')(I @,I2). 

On the other hand, from the Frank energy we have 

h,=-KI1q.'6m,. (28) 

Calculating Q in (27) in the limit qt << 1, we obtain 

A simple transformation in (29) gives 

The formula (30) agrees with the estimate (24). 

If we had a second-order phase transition, it would be 
possible to determine the critical indices from the sym- 
metry of the order parameter. In the given case (as 
for the transition from the solid crystal to the H, phase) 
there i s  one complex order parameter. Thus, the in- 
dices coincide with the corresponding quantities in the 
phase transition in helium. 

5. In principle, the effects considered in the preced- 
ing sections can be used to identify the H, phase. The 
fluctuational increase of the modulus K,, in the transi- 
tion from the nematic to the H, phase seems to be par- 
ticularly promising in this respect. The measurement 
of K ,, is easily carried out in the standard way by the 
Frederiks effect in the appropriate g e ~ m e t r y . ~  Analo- 
gous measurements in the H, phase would make it pos- 
sible to determine the fluctuational increase of the mod- 
uli K,, and K,, in the transition to the solid crystal. In 
this case, direct measurements of the scattered-light 
intensity will be more convenient, possibly, than static 
experiments on the Frederiks effect. As shown in Sec. 
3, the acoustic properties of the H, phase also differ 
substantially from the analogous properties of nematic 
and smectic liquid crystals. In particular, the Bril- 
louin scattering can give a pattern with three, two, or 
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one maximum, depending on the orientation of the liquid 
crystal. 

In conclusion, we shall discuss also one of the pos- 
sible reasons why the transition from the H, phase may 
occur directly to the isotropic liquid (as indicated by the 
experimental data of Ref. 1) and not to the nematic liquid 
crystal. The characteristics of the transition a r e  de- 
termined by the expansion (23) with K,, =O. Fluctuations 
of m lead to a shift of the transition temperature (re- 
normalization of the coefficient a): 

Thus, fluctuations of m lead to an increase of the 
temperature of the transition from the H, phase to the 
nematic phase. For sufficiently large coefficients c,, 
and pi (and "not very large" Frank constants K,, and 
K,,), T, may be found to be already in the region of 
stability of the isotropic phase. 

The author expresses his gratitude to Professor 
Chandrasekhar for sendingva preprint of Ref. 1, and 
also to I. E. Dzyaloshinskii for useful discussions and 
criticism. 

APPENDIX 
It is interesting to consider, on some simple model, 

what are  the requirements on the interaction for a 
solid-crystal- HI-phase-isotropic-liquid phase dia- 
gram to be realized. In the usual way, we assume an 
anisotropic pair interaction: 

where Y,, is the distance between the centers of mass of 
the molecules, 8,, is the angle between the normals to 
the planes of the molecules, and P, is a Legendre poly- 
nomial. We shall use this kind of expansion for the two- 
particle correlation function g: 

If we confine ourselves to just the lowest Fourier com- 
ponents of the interaction, in the self-consistent field 
approximation we have the usual equation for the dis- 
tribution function p, (Ref. 6): 

In Apl=ao+2a,j(z, y)o+pZz(cos 0)s 
+2plpz(c~s e)j(~, y)q. 01.3) 

Here, 

v - a3 is the volume of the unit cell, u is the translation- 
a l  order parameter (i.e., (f (x ,  y))), s is the orientation- 
a1 order parameter (i.e., (~,(cosB))), q is a mixed or- 
der parameter (i.e., (f (x ,  y )P,(cosB)) ), and A is the 
normalization constant. It is easily calculated from 
(A.3): 

where I ,  is a modified Bessel function. 

Provided that u # 0, we have a solid two-dimensional 
crystal; when s f  0 we have a nematic liquid crystal, 
and q#  0 corresponds to the H, phase. Thus, for a 
phase diagram without a nematic region to exist it is 
necessary that we have Do = 0 and a, = 0 in the interac- 
tion. After this, we have the following equation for the 
order parameter q: 

here, 0, plays the role of the dimensionless temper- 
ature; I,(z) =dIo(z)/dz. The equation (A.5) can be 
solved only numerically. There exists a critical val- 
ue P, such that for P1>P1, we have three solutions of 
(A.5): One root (q, = 0) corresponds to the isotropic 
liquid, and the other two (q,, 3# 0) correspond to the H, 
phase. At the lower of the two roots q, and q, the ther- 
modynamic potential 6+ = -T lnA has a maximum, while 
a t  the higher root it has a minimum. The phase tran- 
sition from the H, phase to the isotropic liquid is a 
first-order transition. We shall not give more-detailed 
calculations. We merely point out the critical value of 
the parameter: 
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