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It is shown that, in agreement with the experimental results, the transition of a long inhomogeneous 
bridge to the superconducting state may decrease in width in a microwave field until it becomes a step. 
This happens because stimulation of the superconductivity varies with the value of T, characterizing a 
given region. The influence of the edges increases the width of the transition at high microwave radiation 
powers. The dependence of the transition width on the microwave power is derived. 

PACS numbers: 85.25. + k, 74.30.Gn 

Recent experimental investigations1 of the supercon- to the radiation power; the function f(c) gives the elec- 
ducting transition in long bridges subjected to a micro- tron energy distribution n(&)= [I- f(c)]/2; D= vJ,,/3 i s  
wave field revealed that an increase in the microwave the coefficient of spatial diffusion of electrons; p i s  the 
power causes the superconducting transition to f i rs t  density of states; S i s  the cross-sectional area of the 
decrease in width to a step and then to widen again to bridge. 
a finite width which increases with the microwave 
power. The length of such bridges L i s  much greater 
than the size of a pair 5 ,  and, therefore, they consist 
of regions whose critical temperatures T, differ some- 
what2 For  this reason the superconducting transition 
of a long bridge has  a finite width along the tempera- 
ture axis. In a microwave field the electron energy 
distribution function n(c) differs from the Fermi form 
and this nonuniformity may result in stimulation of the 
superconductivity in a bridge.'p4 However, stimulation 
varies from one region to another because of variation 
of T, and, a s  shown below, this accounts for  the ob- 
served behavior of the superconducting transition width 
on the microwave field power. 

1. NARROWING OF A SUPERCONDUCTING 
TRANSITION AT HIGH RADIATION POWERS 

The order parameter A of a bridge is found from the 
Ginzburg-Landau equation which, supplemented by the 
nonequilibrium term +(A), is4 

Ia2 T -T + L A  
8T 4neZpZDS'A'f (A)  T. 

--- 7t(3) A= +,(A) =o, 
8%' TL 

- 
where 1: i s  the average value of the square of the 
superconducting current through a bridge proportional 

The electron energy distribution in a microwave field 
i s  found from the transport equation. The electron 
energy relaxation time T, i s  long compared with the 
characteristic time of spatial diffusion of electrons in 
a bridge D / L ~  even if this bridge i s  long: ( ,<<L 
<< If we also assume that this relaxation time 
i s  long compared with the field period, we obtain the 
following equation for the function f(c) averaged over 
the coordinates and time 

where the coefficient D, represents the electron energy 
diffusion due to the direct acceleration of electrons in 
the electric field3 and oscillations of the gap character- 
izing the bridge in a microwave field4; the brackets 
(. . . ) denote averaging over the part  of the bridge 
where A< & and the bar represents the time averaging. 

The transport equation (2) has  to be supplemented by 
two boundary conditions. The distribution of electrons 
a t  the edges of a bridge retains i t s  equilibrium form in 
a microwave field since the current density a t  the edges 
i s  low. Therefore, electrons with energies greater than 
the maximum value of the order parameter A,, may 
diffuse freely out of the bridge and they acquire an . 
equilibrium energy distribution in contrast to the elec- 
trons whose energies a re  c <A,, and which a r e  "con- 
fined" to the bridge. This condition means 
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On the other hand, the electron flux D,af/a& should 
vanish at & = A,,, since there a r e  no states with ener- 
gies smaller than the minimum gap. This gives the 
second boundary condition: 

When the radiation power is high, the left-hand side 
of the transport equation (2) can be assumed to be zero 
and, if allowance i s  made for the boundary conditions 
(3) and (4), the function f(r,) becomes 

The nonequilibrium term @(A) in the Ginzburg- 
Landau equation corresponding to this distribution 
function can be calculated from Eq. (1) and i t  has the 
form 

i+ ( ~ - A = / A A ) , ~  A¶ 
@ (A) -APo (A) = - 

(h A/A- 2T 
- (1 --)Ih) . 

A'- 

We can see  that the nonequilibrium term @(A) given 
by Eq. (6) i s  large compared with the f i rs t  term in the 
Ginzburg-Landau equation (1). Therefore, when the 
radiation power i s  high, the order parameter A, of a 
bridge region of length a and with a critical tempera- 
ture T: depends weakly on the coordinates (significant 
changes occur only a t  the edges of this region a t  dis- 
tances - WA <<a) and can be found from the system 

- 
where P= (2n8p2~!?~3)-1z:is the dimensionless para- 
meter proportional to the radiation power and F,(A) i s  
found from Eq. (6). The maximum order parameter 
A, i s  found from 

since F,(A,,,) = 0 (there i s  no stimulation for A =  A,,). 
Simultaneous solution of the system (7) and of Eq. (8) 
gives the order parameters A, for  different parts of 
a bridge a s  a function of temperature and radiation 
power. 

The solution of the system (7)-(8) is  shown graphic- 
ally in Fig. 1. We can see that, for a given radiation 
power, a t  a temperature 

the region with the maximum critical temperature be- 
comes superconducting and its  order parameter is  

The nonequilibrium term results in stimulation of the 
superconductivity also in other regions; consequently, 

FIG 1. Graphical solution of the system (7)-(8). The results 
in the figure correspond to the radiation power P2 in which the 
superconducting transition width vanishes. 

the regions with the critical temperatures Tt< T y  can 
also be in the superconducting state at the same temp- 
erature if the corresponding straight lines T, = (T: 
- T)/T: intersect the curve F,(A) - F,(A) and the inter- 
sections a r e  used to find the order parameters A, (Fig. 
1). 

The absolute minimum of the function F,(A) - F,(A) 
ar ises  on increase of the radiation power because this 
increases the stimulation term F, proportional to 
Amax= A, and the suppression term F, r i ses  more slow- 
ly [see Eqs. (6)-(a)]. Consequently, when the power . 
becomes 

where AT= ( T a x -  T;'")/T,, a l l  the other parts of the 
bridge become superconducting a t  the transition temp- 
erature of the region with the maximum T, (this case 
i s  shown in Fig. 1) s o  that the transition to the super- 
conducting state i s  in the form of an abrupt step. The 
width of the super conducting transition along the 
temperature axis remains zero also in the power range 
P>P2 ,  

At lower powers the width of the superconducting 
transition AT, i s  finite and it i s  given with logarithmic 
precision by 

The width of the transition has a maximum ATPX 
= ~ ~ T , ( A T / ~ ~ A T ) ~ ,  where the power i s  P 
= 2 8 i 2 t ( 3 ) ( 6 ~ ~ ) 6  Iln'~T1, which i s  clearly small 
compared with the width of the transition in the absence 
of radiation AT,= A T T ~  Equation (10) ceases to be 
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valid a t  low powers when we can no longer regard the 
left-hand side of the transport equation (2) as zero and 
we cannot use Eqs. (5) and (6) for the distribution func- 
tion f ( c )  and the nonequilibrium term @(A). 

2. WIDTH OF A SUPERCONDUCTING 
TRANSITION A T  LOW RADIATION POWERS 

At low radiation powers the transition temperature 
of a region with the maximum T, (beginning of the 
transition) i s  still given by Eq. (9) because the spatial 
diffusion of electrons makes the nonequilibrium term 
@(A) vanish. However, the superconducting transition 
temperature of the region with the minimum T, (end 
of the transition) can be found only if we know the non- 
equilibrium (stimulation) term a t  low radiation powers. 
The main contribution to the nonequilibrium term i s  
made by electrons of energies c close to A,,, and the 
order parameter of the region with the minimum Tc 
depends weakly on the coordinates a t  the transition 
temperature (the transition occurs when the non- 
equilibrium term has its maximum value- AL,,/T, 
which i s  much greater than the gradient term " A;, J T ~  
in the Ginzburg-Landau equation). On the other hand, 
a t  low radiation powers at the moment of the transition 
we have A,,,<< A,,,, SO that the spatial diffusion of 
electrons out of the bridge can be ignored in calculat- 
ing the nonequilibrium term. These circumstances 
make i t  possible to find the nonequilibrium term 
employing the results obtained for a homogeneous 
superconductol3: 

where E i s  the electric field responsible for the energy 
diffusion of electrons. 

The transition temperature of the region with the 
minimum T, is  found from 

T."'"-T 
rmr.--- max 

T .  

because the nonequilibrium term in the Ginzburg- 
Landau equation (1) i s  large compared with a l l  
the other terms a t  low radiation powers. 

Since the relationship between the field intensity E 
and the superconducting current I, through a bridge i s  

where V =  EL i s  the voltage across the bridge and ,y 
= Svcpdx i s  the phase difference cp between the order 
parameters of the edges (this integral i s  dominated by 
the region with A =  A,,,), the width of a superconducting 
transition i s  

where a is the length of the region with the minimum 
T, and k i s  a number of the order of unity. 

Equation (15) is valid up to powers of the order 
of P , = ( T / W ~ T ~ )  - when the transition of a region 
with T ~ "  to the superconducting state makes Amin 

FIG. 2. State diagram of 
an inhomogeneous super- 
conducting bridge in a 
microwave field (the 
shaded region is  the inter- 
mediate state); P is  the 
radiation power in dimen- 
sionless units. 

- TAT(P/P,)'~~ comparable with A ma, - TAT. If P 
> P,, we find that Eq. (11) now applies. Throughout 
the power range P < P , ,  a reduction in the order para- 
meter by the current is  samll compared with the stim- 
ulation effect because of the large value of T,: 

Equation (15) ceases to be valid a t  very low powers 
P C  (w/TAT)~P,, when the nonequilibrium term can no 
longer be described by Eq. (12) (the transition width i s  
then close to AT). Oscillations of the gap character- 
izing the bridge4 then gives r i se  to an expression for 
@(A) which i s  proportional to 14, and, therefore, it i s  
small  for  P <  PI. 

The dependence of the transition width on the radia- 
tion power i s  shown in Fig. 2. It is  interesting to note 
that for  PI< Po [the power Po corresponds to the max- 
imum of Eq. (12)] the width of the superconducting 
transition increases nonmonotonically, in agreement 
with the experimental results.' 

3. INFLUENCE OF EDGES ON THE 
SUPERCONDUCTING TRANSITION WIDTH AT HIGH 
RADIATION POWER 

An increase in the radiation power enhances the cur- 
rent-induced reduction in the order parameter, where- 
as this parameter i s  hardly affected a t  the edges be- 
cause the current density i s  smalL Therefore, beginn- 
ing from the power 

the edges of a bridge become superconducting f i rs t  
(it i s  assumed that the critical temperature of the 
edges i s  of the order of the average value of T,, 
because AT,- AT). 

The transition of a bridge to the superconducting 
state can begin at a temperature higher than the initial 
value Ti [Eq. (9)] because the nonequilibrium term of 
the region with the maximum T, i s  finite if A,,<A,. 
In this situation the superconducting transition temper- 
ature of the region with Tc i s  found from the system 

T.-T r= -- - -FP(A,  A;) -Fc(A7 A*) 7 

T ,  

Fp'(A,  A=) -Fc'(A,  A&) 

where the last  equation corresponds to the stimulation 
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FIG. 3. Graphical solution of the system (16). Curve 1 cor- 
responds to the beginning of the transition of a bridge to the 
superconducting state and curve 2 to the end of the transition. 

maximum a t  the moment of the transition and the func- 
tions F ,  and F ,  a r e  given by Eqs. (6) and (7), where 
A,,, i s  replaced with A,. Substituting in Eq. (16) the 
values T=  7,-= T, + A T' and T+ T,,,= 7, - AT, [where AT, 
=(Tz- 2"'"')f T,], we can determine the initial (7:) and 
final ( ~ 9  values of T, corresponding to the beginning 
and end of the transition. The graphical solution of 
the system (16) is  shown in Fig. 3. Bearing in mind 
that F,>> F,  if P >  P,, we find that the width of the 
transition i s  now 

An increase in the power causes the width of the 
transition to increase. The formula (17) ceases to be 
valid for P- 1, when the temperature of the transition 
changes considerably (7- 1) and we can no longer use 
the Ginzburg- Landau theory. 

4. DISCUSSION OF RESULTS 

Figure 2 shows the normal and superconducting 
regions of a bridge a s  a function of temperature and 
radiation power. Shading i s  used to show the inter- 
mediate state in which a part of the bridge i s  in the 
superconducting state and another part is  in the normal 
state. It i s  clear from Fig. 2 that the superconducting 
transition narrows down a step and then the transition 
width r i ses  on increase of the power. This i s  in agree- 
ment with the experimental results.' 

A step-like transition i s  observed experimentally a t  
high radiation powers. This is evidently due to the 
smallness of the first term in the Ginzburg-Landau 
equation (I), describing the spatial change in the order 
parameter A, when the radiation power i s  high. There- 
fore, the order parameter cannot vary smoothly with 
the coordinate and the transitions of the separate re- 
gions to the superconducting state should be abrupt, 
which i s  why the transition of a bridge from the normal 
to the superconducting state i s  step-like. An increase 
in the radiation power makes a gradual transition im- 
possible for inhomogeneities of decreasing size so that 
the number of steps incerases. 

The reverse transition of a bridge from the super- 
conducting to the normal state is  always step-like be- 
cause when the region with the minimum T, goes over 
to the normal state the voltage across  the bridege in- 
creases  and, therefore, the current becomes greater 
so  that the whole bridge goes over to the normal state. 
The considerable hysteresis found experimentally i s  
evidently associated with the heating of a sample in the 
normal state by the microwave field (this is  indicated by 
the difference between the results obtained on cooling in 
liquid and gaseous helium). Therefore, even when the 
radiation power i s  low, the beginning of the transition of a 
bridge from the normal (N) to the superconducting (S) 
state shifts toward temperatures below T,B, whereas in 
the reverse case the stimulation of the transition may 
cause i t  to appear at a temperature higher than (Ref. 
1). 

We shall conclude by considering the resistance of a 
bridge before the transition from the superconducting 
to the normal state if the transition takes place at a 
temperature T > Tz (Ref. 1). Clearly, this resistance 
i s  equal to the resistance of the parts of the bridge 
adjoining the edges where the temperature i s  below 
T,ma' since in the range T >  the superconductivity is 
retained, a s  a result of stimulation, only between the 
two regions with T,ma'>Tz. 

We should also mention that in a qualitative explan- 
ation of the effect we can ignore the restriction on the 
length of the bridge, L << nC, which allows us to 
assume that electrons with energies r: > A,, a re  in 
equilibrium and that the stimulation term i s  +(A,) 
=O. Narrowing of the transition must occur if the max- 
imum nonequilibrium term stimulating superconduc- 
tivity in the region with the maximum T, i s  l e s s  than 
for other regions. This i s  always true because the 
stronger diffusion of electrons out of this region of the 
bridge makes the electron distribution function closer 
to the equilibrium form than the functions of the other 
regions. 

The author i s  deeply grateful to A. I. Larkin for  his 
valuable comments and to F. Ya. s ad' for making avail- 
able some preliminary experimental results. 
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