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The "first principles" approach is used to calculate the energy of the ground state of a hypothetic phase of 
solid atomic hydrogen as a function of its density in fcc and bcc lattices, ignoring the zero-point 
vibrations. The Wannier function representation is used. A combination of a variational procedure with 
perturbation theory based on a small overlap integral of the wave functions is employed in direct 
calculations. The ground-state energy is composed of the Hartree energy, direct exchange energy, indirect 
exchange energy associated with virtual transitions, and van der Waals-type energy. It is found that: 1) 
the hypothetic phase has the antiferromagnetic order; 2) it is an insulator stable against evaporation of 
atomic hydrogen; 3) at higher densities the insulator undergoes a transition to a state with metallic 
conduction. 

PACS numbers: 67.80. - s, 61.55.Dc, 72.60. + g 

1. INTRODUCTION type Hamiltonian with very definite quantitative values 
of the relevant matrix elements. This makes i t  possible 

We shall use the "first principles" approach to anal- to use, in particular, the methods developed earlier  for 
yse a hypothetic phase of solid atomic hydrogen. Our the Hubbard model. 
prime k k k  will be to determine the ground-state energy 
of the system a s  a function of the density within the 
framework of the exact microscopic Hamiltonian of the 
problem. This approach seems to be very attractive 
for several reasons. Firstly, i t  makes it possible to 
analyze the existence of a metastable crystalline phase 
of atomic hydrogen. Secondly, i t  provides a unique 
opportunity to use the same Hamiltonian in following 
phase transitions from an atomic crystal to an ionic 
one, and from an insulator to a metal. Thirdly, and 
this is the important point, an analysis of the atomic 
phase makes i t  possible to approach the problem of 
metallic hydrogen from the limit of narrow energy 
bands. We recall that until now the furthest advance in 
analysis of the metallic phase of hydrogen has been 
made by an approach corresponding effectively to the 
opposite limit of wide energy bands (see, for example, 
Refs. 1-3). It follows that the solution of the problem 
in question will make it possible to obtain a ser ies  of 
qualitative and sometimes quantitative results. The 
present paper is the f i rs t  step in this direction. 

We shall confine our treatment to relatively low den- 
sities, when the overlap of the electron wave functions 
of neighboring atoms is small. In this case the Hamil- 
tonian of electrons in the static field of protons can be 
conveniently subjected to second quantization in the 
Wannier function representation. In the zeroth approxi- 
mation, the ground state of our crystal is a state with 
one electron per atom. As the atomic separation de- 
creases,  the ground-state energy becomes the result of 
competition between reduction in the energy due to 
virtual transitions of electrons to excited atomic states 
or to neighboring si tes and the obvious increase in the 
local part of the energy because of the reduction in the 
atomic volume. The net result depends on the spin con- 
figuration and this makes i t  possible to solve simul- 
taneously the nature of spin ordering corresponding to 
minimum energy. 

It should be noted that in the intermediate state the 
problem reduces essentially to an effective Hubbard- 

Allowance for virtual transitions leads in a natural 
manner to the appearance of states with two electrons 
per site. The energy of such states is equal to the 
difference between the energy of the virtual repulsion 
and the energy of the attraction between an extra elec- 
tron and a hole at a neighboring site. As the atomic dis- 
tance decreases, the probability of such transitions in- 
creases and this eventually favors a phase transition 
from an atomic crystal either to a metallic state o r  to 
an ionic crystal, formed by the H- ions and protons. 
This leads in a natural manner to the interesting prob- 
lem of the relationship between two dielectric and one 
metallic phases and the hierarchy of phase transitions. 

The problem under discussion is of general impor- . 
tance. In particular, the analysis developed in the 
present paper for crystalline hydrogen can easily be ex- 
tended to hydride systems of the LiH type. 

We shall determine the ground-state energy by a vari- 
ational procedure within the framework of second quan- 
tization in the Wannier function representation. This 
makes i t  possible to go effectively beyond the limits of 
the Hartree-Fock approximation, which i s  usually em- 
ployed in applications of the variational method to many- 
particle problems. 

2. VARIATIONAL METHOD 

The Harniltonian.of the system for an atomic phase 
considered in the Wannier function representation is 
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In this expression R is the coordinate of a site; a! de- 
notes the number of a given level (band) and also the 
spin index of an electron. We shall use atomic units 
(e = m  =E = 1) throughout. It should be pointed out that, 
strictly speaking, we a re  using the site (Wannier) rep- 
resentation and the functions IRIY) can be any completely 
orthonormalized system of functions localized near 
crystal lattice sites. 

The Hamiltonian (2.1) i s  supplemented explicitly by 
terms describing the Coulomb interaction between pro- 
tons in the lattice. This makes i t  possible, on the one 
hand, to remove the usual Coulomb divergences and, 
on the other, to ensure that the eigenvalues of the Ham- 
iltonian (2.1) represent the total energy of a crystal 
with a rigid ionic lattice. 

It is convenientto rewrite the Hamiltonian (2.1) in the 
form 

separating clearly the part which is  diagonal in respect 
of the occupation numbers n ~ ,  and to find the Hartree- 
Fock energy: 

1 +Lx 2 G ~ a i k a x  ( (Ra t ,  RU, 1; 1 RUZ, R a t )  
a,+ar 

The variational method seems to be the most suitable 
for finding the ground-state energy of an insulating low- 
density phase. A certain minimum precision is needed 
in applications of the variational procedure to a many- 
particle problem because otherwise macroscopically 
diverging terms may appear. Bearing this point in 
mind, we shall write down the variational function in 
the form 

Here, 9, is one of the eigenfunctions of the operator 
(2.2) which has to be selected from physical considera- 
tions a s  the closest to the expected ground state of the 
total Hamiltonian (2.1). 

T!e Hermitian operator A and the projection opera- 
tor P identify a class of functions which a r e  included in 
t_he variational procedure. Both the type of the operator 
A and the function 9, a r e  varied. In particular, varia- 
tion of the function Q, in respect of the spin configura- 
tion determines the optimal magnetic structure. The 
approximate ground-state energy is defined a s  the mini- 
mum of the functional 

In the case of the reduced Hamiltonian 

the subspace {PQ} of the total space {\k) forms a com- 
plete system of functions. Therefore, an extremal 
value of the functional (2.4) corresponds to a selection 
of the operator exp(-ij) in the form of an S matrix de- 
fined relative to the Hamiltonian (2.5). Then, determin- 
ation of the minimum of the functional (2.4) reduces ef- 
fectively to calculation of the ground-state energy of a 
system described by the reduced Hamiltonian (2.5). 
This energy can be calculated employing familiar 
methods in the theory of many-particle systems. 

Retaining the Wannier (site) representation, we can 
represent the operator a s  a sum of two operators: 

The operator I? is responsible only for intrasite transi- 
tions in which only atomic states a r e  excited, whereas 
the operator ,f determines nonzero matrix elements if 
a t  least one of the electrons jumps from one site to 
another. Then, if we seek the eigenvalues of the r e -  
duced Hamiltonian (2.5) corresponding to a fixed spin 
configuration (for 3=0) in the form of a perturbation 
theory ser ies  

we find that the ser ies  converges rapidly. In fact, the 
matrix elements of the operator i contain at least one 
small overlap integral between the s i te  wave functions. 
On the other hand, for long distances between the atoms 
the matrix elements of the operator k responsible for 
the multipole interaction a re ,  a s  usual, small. A direct 
quantitative analysis shows that the net result in the 
Y, 2 2 case is that only terms up to the second order 
need be retained in the expansion (2.7) and that in all 
the calculations, including determination of E,, terms 
up to the second order in the overlap integral have to 
be retained. 

Naturally, the rigorous variational procedure de- 
mands variation of the total expression (2.7). However, 
we can easily show that inclusion of higher terms of the 
ser ies  (2.7) results in just small corrections to the 
energy and to the values of the variational parameters: 
these corrections a r e  of the order of the cube of the 
over1 ap integral and of the third order in 2 .  Naturally, 
the self-consistency of the whole calculation procedure 
requires a lower limit on the permissible values of Y,. 

3. COVALENT PHASE 

The most obvious quasiequilibrium state of crystalline 
atomic hydrogen is the covalent phase formed by a lat- 
tice of neutral atoms. We shall investigate this phase 
selecting Q, in Eq. (2.3) a s  the wave function in which 
unity is assigned to all  the occupation numbers corres-  
po nding to lower electron states of atoms at all si tes 
with some fixed spin configuration. This function i s  the 
eigenfunction of the Hamiltonian (2.2) with the eigen- 
value 

(3. la)  
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Here and later,  we shall simplify the notation by adopt- 
ing IR) for the orbital part  of the Wannier function in a 
lower 1s-type state; hT is the number of si tes which is 
naturally identical with the total number of electrons; 
the exchange interaction energy is expressed in a stan- 
dard way in terms of the spin operators at the si tes gR. 

The subspace of the functions selected by the projec- 
tion operator @ will be taken to be the se t  of functions 
obtained from \k, if a t  some s i tes  an atom with one elec- 
tron and a wave function IR) is replaced either with: 
1) an atom with one electron in the first  odd state (of 
the 2p type) or 2) a negative ion with two electrons of 
opposite spins in the state IR) or 3) a negative ion with 
one electron in the state (R) and the other in IRm) or ,  
finally, 4) a positive ion without electrons. We do not 
include in the subspace the variable functions of the 
state which differs from 9, only by spin configuration. 

The operator I? of Eq. (2.6) contains all the terms of 
(2.1) which a r e  nondiagonal in respect of the occupation 
numbers and for which there i s  no change of electrons 
a t  energy site: 

Here, o is the spin index of an electron. In the above 
expressions we have omitted the terms proportional t o s  
the matrix elements of the second order in respect of 
the overlap integral: 

(not al l  R, a r e  equal). 

The contribution of electron jumps (3.4) to the energy 
(2.7) can be represented in the form 

Theprimed sumsdenote exclusion of the diagonal terms. 
If the Wannier functions are deduced from the Bloch 
eigenfunctions of the single-particle Hamiltonain f i  [see 
Eq. (2.1)], the first  term in Eq. (3.2) vanishes. When 
the Wannier functions a r e  selected with variable param- 
eters,  this term is in principle different from zero. 
However, i f  only the states of the opposite parity rela- 
tive to the ground state a r e  included in the excited state, 
then the first  term in Eq. (3.2) again vanishes. 

The effective amplitudes of virtual jumps T, and T, in 
Eq. (3.5) can be calculated by assuming that 

The second term in Eq. (3.2) makes no contribution to 
the energy (2.6) in the second order in v. The third 
term in Eq. (3.2) determines the van der Waals energy 
contribution to Eq. (2.6): 

and the corresponding assumption in Eq. (3.7) is 

The denominator of Eq. (3.8) contains the excitation 
energy of the polar states Here, I R ~ )  is the odd Wannier function at a site R ,  

which goes over to the hydrogenic 2p function (L = 1, 
L, =m) in the atomic limit. The denominator of Eq. 
(3.3) includes the change in the energy (2.2) due to ex- 
citation of two atoms and this energy consists of the 
energy of excitation of atoms and of the change in the 
Coulomb interaction of excited atoms with unexcited 
atoms and with one another. 

where 

u R ~ ( 0 ,  R I $ I R ,  o ) ,  U . - , / = ( O ~ ,  R I ~ ~ R ,  o m ) .  
The operator f. in Eq. (2.6) represents transitions 

accompanied by a change in the electron number, i.e., 
those involving electron jumps from one site to another: 

We thus find that the energy of a crystal in the covalent 
phase is described approximately by the sum of Eqs. 
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(3,1), (3.3), and (3.8): 

E=Eo+EL+EVdw. 

4. IONIC PHASE 

belongs to the proton lattice and the sum over R, to the 

(3.12) 
H -  ion lattice. 

It is worth noting the following important point. In 
applying of the variational procedure to the ionic phase 
i t  is desirable to select different Wannier functions for 

Another possible metastable phase of atomic crystal- the sites in the different sublattices. This makes it 
line hydrogen is an state which, in the zeroth ap- possible to allow more accurately for the electron ener- 
proximation, consists of two sublattices, one of which gy of the negative ions, which is of fundamental impor- 
is formed by the H -  ions (two electrons in the lower tance in any quantitative comparisons of the energies of 
state of IR) per site) and the second sublattice i s  formed different phases. 
by protons. The wave function rk, characterized by such 
occupation numbers now behaves' as  rk, in the variational 
function (2.3). This function corresponds to the energy 

Eop=iVC,, > 

To be specific, we shall assume that the R = 0 site be- 
longs to the H -  ion sublattice. Here, the second term 
is due to virtual repulsion of electrons. The third term 
is the standard electrostatic energy of an ionic crystal, 
where g is the distance between the nearest neighbors 
and a' is the Madelung constant. The last term in Eq. 
(4.1) i s  the correction for the extended nature of the 
Wannier electron functions. The summation in this 
term is carried out over a sublattice with two electrons 
per site, except a t  R, = 0. 

The operator A, which defines a class of variable 
functions (2.3), is taken to be a jump operator of the 
type given by Eq. (3.4). Against the background of the 
Coulomb interactions in an ionic crystal we can ignore 
the van der Waals forces and ignore transitions des- 
cribed by Eq. (3.2). 

As a result, the energy of an ionic crystal considered 
in the approximation adopted above i s  (per one si te)  

where the summation is carried out over the positive 
ion sublattice. Here, the jump amplitudes T ,  and T,,, 
a re  given by Eqs. (3.5) and (3.6) where we have to as- 
sume, respectively, 

nu,-.=O, n ~ , - ~ = i ,  Z n , , . ,  = 2 or O (4.3) 

and 

n ~ , ~ s = 2  or 0, nn,-0-1, nnro=2 or 0, I (4.4) 
nalm,. a nu- - r( nnvn,.,=O. 

"1 

The value 2 clearly corresponds to the negative ion sub- 
lattice. 

The denominators of the sum (4.2) over the coordin- 
ates of the positive ions closest to the origin include the 
excitation energy due to a jump. of an electron from the 
origin to one of the si tes R =g: 

J 

It is assumed here that the si te R = O  in the sum over R, 

We shall not give the results  of calculations of the 
ionic phase energy. We shall simply note that in the 
range g> 3 (r,> 1.7) the Hartree energy (4.1) of the ionic 
phase lies above the corresponding energy of the co- 
valent phase. Attempts to allow for the second-order 
perturbation theory terms in Eq. (4.2) show that the 
range of validity of this formula i s  very limited, where- 
a s  for Y,< 1.7 the amplitudes of T, and T,,, a r e  large 
but for r,> 1.7 the excitation energy (4.5) begins to fall 
rapidly. 

5. CALCULATION PROCEDURE 

Explicit calculation of the energy of atomic crystal- 
line hydrogen in the covalent o r  ionic phases must begin 
with writing down the Wannier function system. The 
most rigorous way of obtaining the system i s  to apply 
the Fourier transformation to the Bloch functions, which 
a r e  the eigenfunctions of the single-particle Hamiltonian 
i [see Eq. (2.2)]. However, in the case of low densities 
and the correspondingly small  overlap integrals i t  is 
simplest to construct a system of mutually orthogonal 
spatially localized functions directly from functions of 
the type 

zn (2.2') "1 

IR).= =exp{-zlr-RI), IRm).=Y,,(O, 9)- r exp(-ZIr-RI). 
In 2r6 

We shall not include the remaining quasihydrogenic func- 
tions in the variational scheme. The effective charges 
Z and 2' a r e  the best regarded a s  independent variation- 
a l  parameters. However, for simplicity, we shall as- 
sume  the following dependence of 2' on Z and g: 

For this selection of 5 the matrix element (Olg, rn =O)  
has the simplest form. 

In the ionic phase case we have, instead of Eq. (5.1), 
a double se t  of such functions for si tes in both sublat- 
tices and, consequently, instead of 2, we have two vari- 
ational parameters Z+ and Z-. It should be noted that 
for limited densities the value of Z- should be close to 
2- = 11/16, which is known4 to be an extremal value in 
the problem of an isolated negative ion. 

An approximate orthonormalized se t  composed of the 
functions (5.1) is 
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FIG. 1. Dependences of 
AE2, (curve I ) ,  AEi (curve 
2), T2,0(curve 3), TI (curve 
4), and iFo(curve 5) on the 
atomic distance in the bcc 

I I structure with Z= 1 (atom- 
ic units). 

-05 
2.0 2.6 2 r, 

where v is the number of the neares t  neighbors. The 
orthonormalization conditions for  the nearest-neighbor 
functions a r e  satisfied with an accuracy to (Olg)' inclu- 
s ive,  whereas the orthogonality of the Wannier functions 
for the more distant neighbors is satisfied with an ac- 
curacy in excess of (Olg). This accuracy allows us to 
sum only over the nearest  neighbors in  the calculation 
of the energy contributions represented by Eqs. (3.1), 
(3.8), and (4.2). 

It is worth noting that in the bcc phase the distance 
to the second coordination sphere g, is quite s imi lar  to 
the distance g to the nearest  neighbors ( g ,  = 2 g / f i ) .  
The precision of the calculations of the total energy can 
be increased by including explicitly the contribution of 
the second coordination sphere  retaining in  a l l  the cal- 
culations not only t e rms  of the order  of (Olg)' but a l so  
of the order of (Olg,)', inclusive, For  example, for  
r ,  =2  and the optimal value of Z we have the following 
for the bcc phase: 

(0 1 g)'=0.048, (0 ig?) 2=0.026, (01 gs)Z=0.0018, 

whereas for the fcc phase, we have 

(0 1 g)'=0.037, (0 1 gz) '=0.004, (01 ga)'=0.0006. 

Hence, i t  follows that in  the range of densities defined 
by r ,2 2 the contribution of the f i r s t  two coordination 
spheres is decisive. 

Figure 1 shows the resul t s  of calculations of 4, AE,, 
A E , , ~ ,  T,, and P,,, a s  a function of the atomic distance 
in  the bcc lattice with Z = 1. Figure 2 gives the contri- 
butions to the total energy due to the direct  exchange 
&,,, = - v A / ~  given by Eq. (3.lb), due to jumps &,, 

2.0 2.6 32 r, 
FIG. 2. Dependences of the contributions made to the total en 
erby by gj2 (curve 11, 8,, (curve 21, geXch(curve 3), and gfl ( 
(curve 4) on the atomic distance in the bcc structure with Z 
= 1 (atomic unite). 

=-VT~/AE,  and S,, = -VT;,,/AE,, given by Eq. (3.8), and 
van der Waals interactions &,,,given by Eq. (3.3). The 
resul t s  show how the total energy of the atomic phase 
forms a s  a function of density. The results  for the fcc 
lat t ice differ little f rom those for  the bcc structure and, 
therefore,  they a r e  not given. It should be noted that 
the adopted approximations a r e  l e s s  accurate for  r,< 2. 
Therefore,  the dependences in  Figs. 1 and 2 can be 
regarded simply a s  est imates in the range 1 . 7 ~  r,< 2. 

In the range of densities of interest  to us a n  extremal 
value of the variational parameter  Z does not differ 
greatly from unity and the behavior of the various quan- 
t i t ies  remains basically the s ame  a s  shown in  Figs. 1 
and 2. Independent variation of ,f also has little effect 
on the final results .  

6. ANALYSIS OF RESULTS 

It is c lear  from Fig. 1 that the zeroth-approximation 
energy & of Eq. (3.1) decreases  monotonically on in- 
c r ease  in  the atomic distance and, a s  expected, in the 
atomic limit i t  approaches the binding energy of a f ree  
hydrogen atom in the ground s ta te  4 =-0.5. The direct  
exchange energy A of Eq. (3.1) and the contribution of 
virtual jumps EL of Eq. (3.8) a r e  second-order quan- 
tities in the overlap integral (Olg) and they should be 
considered together. The contributions of these two 
quantities to the total energy depends on the spin order-  
ing. We can easily s e e  that 

where v +  (v-) i s  the number of the nearest  neighbors of 
the R s i te ,  which have the s ame  (opposite) spin direc- 
tions relative to R. The energy per s i te  then becomes 
simply 

It follows from the symmetry considerations that 
T,,,,,, = O  (the las t  t e rm representing the contribution 
of the van der  Waals energy will be discussed later). 

It i s  clear  from Eq. (6.2) that the direct  exchange 
energy stimulates the ferromagnetic ordering, whereas 
the jump exchange energy of amplitude T, favors the 
antiferromagnetic order.  It should be s t ressed  that the 
separation of the exchange energy into direct  and jump 
is quite a rb i t ra ry  and i t  is determined by the selection 
of the Wamier  representation. As pointed out already, 
the variational procedure used in  the present study im- 
plies above al l  var.iation over the spin configuration. 
The resul t s  of our calculations show that throughout the 
investigated range of densities, when the distance be- 
tween the nearest  neighbors var ies  from 3 to infinity, 
the contribution of the jump exchange mechanism is 
considerably greater  than the direct exchange in the bcc 
and fcc structures.  Therefore,  the energy minimum of 
the covalent phase corresponds to the antiferromagnetic 
spin order. This is true also when the optimal value of 
the variational parameter  Z,,, is used. The bcc struc- 
ture  in  the antiferromagnetic s ta te  is characterized by 
v+=O and v-=8. The antiferromagnetic state in the fcc 
phase corresponds5 to three spin configurations. In the 
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FIG. 3. Dependences of the total energy of covalent antiferro- 
magnetic bcc and fcc structures on rs (atomic units). 

nearest-neighbor approximation two of these configura- 
tions have the same energy because for each of them 
we have v +  = 4  and v- =8. The third structure is less  
favored by the energy considerations because i t  is 
characterized by u+ = u, = 6. The contribution to (6.2) 
made by the jumps to excited states (E3,) is numerically 
very small (see Fig. 2). 

The van der Waals energy of Eq. (3.3) is of the zeroth 
order in respect of the overlap integral and a t  very low 
densities of a crystal (r,>4.5) i t  decreases a s  /3/gs,  
where p is approximately half i t s  nominal value P, = 6.5 
(Ref. 6). In this limit the van der Waals energy predom- 
inates over the exchange terms which decrease a s  
(Olg)'. However, in the most interesting case of mod- 
erately low densities (r,< 4.5) the numerical smallness 
of the matrix element of the dipole transition makes 
EdW much smaller than the direct exchange energy or 
the energy of jumps of amplitude T, (Fig. 2). Moreover, 
a t  these densities the law l /g6 practically disappears 
because the dipole approximation is no longer valid. 
Consequently, a reduction in g results in a relatively 
slow r ise  of the van der Waals energy s o  that i ts  contri- 
bution to the total energy (compared with the other 
mechanisms) decreases. 

The values of the total energy given by Eq. (6.2) for 
the bcc and fcc covalent antiferromagnetic structures 
a re  plotted in Fig. 3. The curves given there allow for 
the contribution of the second coordination sphere and 
they a r e  found retaining terms of the order (Olg2)2 in- 
clusive and ignoring terms beginning from (Olg)3. For 
each fixed atomic distance we varied the effective re-  
ciprocal radius of the atomic functions 2. These calcu- 
lations show that Z,,, increases monotonically on re- 
duction of r, reaching, for example, Z,,,= 1.07 for r, 
=2  in the bcc phase. It follows from the results in Fig. 
3 that throughout the range of densities of interest to us 
the bcc phase is energetically more favored and we shall 
concentrate on this phase alone. 

We must particularly draw attention to the relatively 
weak variation of the total energy right down to relative- 
ly high densities in the range rs- 1.7. A strong r ise  of 
the Hartree energy (Fig. 1) on increase of the den- 
sity is practically completely compensated by the energy 
of the virtual jumps &,, (see Fig. 2). Since AE, =IT ,  - U, 
is practically constant in the range r,> 1.7 (Fig. I), the 
r i se  of &,, i s  entirely due to an increase in the jump 
amplitude T,. However, the r ise  of the same amplitude 
represents an increase in the degree of delocalization 

of electrons and the appearance of a "premetallic" situ- 
ation. At high densities the electron-hole interaction 
U,  r ises  s o  a s  to overtake the interaction between elec- 
trons at one si te U,; this enhances the tendency to form 
the metallic phase. At high densities in  the bcc and fcc 
structures the covalent phases a r e  absolutely unstable, 
which is a consequence of vanishing of AE,. In this 
range of densities the adopted approximations a r e  known 
to be poor representations so  that a reliable estimate 
of the critical density a t  which this happens is impos- 
sible. 

However, the appearance of metallic conduction 
should really occur at much lower densities r,. This 
can be  demonstrated by noting that the problem is 
formally the same a s  that of the Hubbard Hamiltonian 
but with the antiferromagnetic spin order. Consequent- 
ly, we can find the critical density r: by methods used 
to detect the insulator-metal transition is systems 
described by the Hubbard Hamiltonian. 

The simplest way of estimating the range where this 
transition occurs is to find the value of rC, at  which the 
electron and hole bands of single-particle excitations 
begin to overlap. At high values of &,) these bands 
a re  separated by a gap which in our notation is denoted 
by U,. On increase of the density the electron and hole 
energy bands become wider and their widths approach 
a value close to 2v+T1(g), where v+ is the number of the 
nearest neighbors with the same spin direction and 
Tl(g) is the amplitude of a jump given by Eq. (3.5) (see 
Fig. 1). We recall that in antiferromagnetic systems 
the translational transfer of excitations is due to jumps 
between a sublattice of s i tes  with the same spin direc- 
tion. Applying the Cyrot method," we obtain the follow- 
ing criterion for the appearance of the overlap of the 
electron and hole bands in the fcc phase: 

It follows directly from the above results  that metallic 
conduction should appear in the fcc phase for 

In the bcc case the appearance of metallic conduction 
may be associated with jumps to the second coordination 
sphere because we have v+=O for the nearest coordina- 
tion sphere, Then, instead of Eq. (6.3), we have 

The critical density r: is now 

It is interesting to note that the critical densities YC, 
of Eqs. (6.4) and (6.6) a r e  close to the values corres- 
ponding to the minimum of the static energy of the 
metallic phase of hydrogen with structures of the same 

These values have been found earlier1*' 
by direct analysis of the metallic state within the frame- 
work of the many-particle formalism applying perturba- 
tion theory to the electron-ion interaction. 

It is clear from Fig. 3 that the total energy of the co- 
valent bcc phase is less than Em= -0.5 throughout the 
range of densities under consideration and for ~ , ~ - 1 . 7  
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the total energy lies practically on the plateau. The 
precision of our calculations is too low to reveal a 
minimum at  these values of r,. In the fcc case the total 
energy i s  higher than -0.5 throughout the investigated 
range of densities. 

Thus, ignoring the problem of the dynamic stability, 
we can see  that-in principle-we can expect a meta- 
stable crystalline phase of atomic hydrogen. It i s  
characterized by a considerable sublimation energy of 
~ 0 . 0 1 ,  which is in fact comparable with the static zero- 
pressure binding energy of metallic hydrogen amounting 
to ~ 0 . 0 3  for the bcc and fcc lattices (see Ref. 1). How- 
ever, this quantity should not be regarded a s  the final 
value of the sublimation energy of the static lattice be- 
cause our calculations a r e  variational and, in this 
sense, they represent an upper limit; moreover, the 
calculations a r e  characterized by limited accuracy 
which decreases on increase in the density. 

An estimate of the scale of the zero-pointvibration 
energy &,,characteristic of the densities under discus- 
sion3 easily shows that s,, is considerably less  than 
our sublimation energy for the static lattice. 

It is clear from the above discussion that a t  low den- 
sities the optimal atomic phase of hydrogen is an anti- 
ferromagnetic insulator (at T =O). 

The fact that the minimum of the static energy of the 
metallic bcc phase1*' lies in the region of the plateau 
and the binding energies a r e  in both cases relatively 
close, a s  well a s  the fact that metallic conduction ap- 
pears in the atomic phase in the same range of den- 
si t ies,  suggests that the transition between the atomic 
and metastable metallic phases is close to a second 
order transition. 

We shall conclude with two comments. The results 
obtained in the limit r, do give the energy of a gas of 
free hydrogen atoms but the asymptotic behavior of the 
energy a s  a function of r,, found by us, is not accurate. 
The point is  that to obtain the best results a t  intermedi- 
ate densities we calculated the van der Waals energy 
allowing only for one excited state in each atom. The 
cor rec t  asymptote of E(r , )  would have required the use 
of a method developed for the interaction of two hydro- 
gen atoms over long distances (see Refs. 9 and 10). 
Finally, i t  should be noted that in comparison of our 
results with those obtained in the usual Bloch represen- 

tation (see, for example, Ref. 8) one should recall that 
the designations of the individual energy terms a re  not 
identical in the two representations. In the Bloch rep- 
resentation the Hartree-Fock approximation allows ex- 
actly for the kinetic energy of electrons and for the 
self-consistent part of the Coulomb interaction between 
electrons, whereas the correlation Coulomb energy is 
regarded as  a small correction. Conversely, in the 
si te approximation the Hartree-Fock energy [see Eq. 
(2.2)] includes almost a l l  the Coulomb energy of the 
interaction between electrons and a considerably part 
of the kinetic energy of electrons, namely the part  that 
corresponds to the motion of electrons in quasihydro- 
genic atoms. The "correlation" energy in the si te rep- 
resentation allows for the van der Waals energy (in- 
trasite excitation of electrons) and for the small part of 
the kinetic energy associated with the motion of elec- 
trons in a crystal by jumps (see Sec. 3). Moreover, a 
careful examination of the structure of the matrix ele- 
ments describing electron jumps between the sites [see, 
for example, Eq. (3.5)] shows that the "correlation" 
energy EL [see Eq. (3.8)] allows simultaneously for th6 
one-electron motion [ ( ~ , l h  (R,) term in  Eq. (3.5)] and 
for the "Coulomb correlational" motion of electrons 
[remaining terms in Eq. (3.5)]. 
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