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A theoretical investigation is made of the behavior of a semiconductor with a narrow band gap in parallel 
magnetic and periodic strong electric (for example, laser) fields. The Diac equation is used in the two- 
band approximation and the solution of this equation is employed to calculate the probability of many- 
photon direct allowed interband transitions. This investigation has made it possible to remove a basic 
discrepancy between the theory and experiment: the theory predicts the appearance of magnetoabsorption 
maxima only for transitions involving an odd number of photons, whereas the experimental spectra show 
clearly such maxima in even-photon (specifically two-photon) absorption. A transformation of the Dirac 
equation, which should be of interest on its own account, is proposed. This transformation is analogous to 
the Foldy-Wouthuysen transformation and it makes it possible to identify the operators due to the 
electric field, some of which induce intraband nonstationary states with definite positive and negative 
quasienergies and can be allowed for exactly, whereas others induce interband many-photon transitions 
which are allowed for in a resonance approximation. The results are compared with the experimental data. 

PAC3 numbers: 78.20.L~ 

A theoretical analysis is made of the behavior of a explain the oscillatory nature of the magnetoabsorption 
semiconductor with a narrow band gap subjected to a coefficient and of the even-photon photoconductivity in 
magnetic field parallel to a strong periodic electric the experiments described in Refs. 3 and 5. A qualita- 
(for example, laser) field. The Dirac equation is used tive comparison of the theoretical and experimental re- 
in the two-band appro~imation'*~ and the solution of sults will also be given. 
this equation is employed to calculate the probability 
of many -photon direct allowed interband transitions. 
This analysis has made it possible to remove a basic 
discrepancy between the theory and experiment, which 
has existed for some time.'-' The discrepancy arises 
because the theory of magnetooptic absorption for para- 
bolic  band^,^^' as well as  the more general theory al- 
lowing for the band nonparabolicity in the absence of a 
magnetic field,g give very different frequency depen- 
dences of the transition probabilities in the case of even 
and odd numbers of the absorbed photons. In particu- 

We shall consider the case when the conduction band 
and the highest valence band are isotropic, orbitally 
nondegenerate, and have extrema at the same point 
(k = 0). The two band equation in the absence of an ex- 
ternal field is then the Dirac equation in which the 
velocity of light is replaced with the parameter s 
= (&,/2~n)"~ (Sf is the band gap and m is the effective 
mass). In the presence of external fields described by 
the potentials A = (O,HX,  0) and cp = -eF(t)z, we can rep: 
resent the wave function @ (r, t) in the form 

lar, the appearance of magnetoabsorption maxima in Y (r, t )  =exp { i f i - ' [ ~ . ( t ) ~ + ~ ~ ~ ~ l J ( p ~ ~ ( x ,  t ) ,  (1) 
the case of allowed interband transitions is predicted where 
only in the case of an odd number of photons, whereas 
such maxima are clearly observed in two-photon ab- 

t 

p.01 =p.,--eJ ~ ( t ) d t .  
sorption experiments.3s5 

(2) 
0 

In view of this situation we shall investigate many- 
photon magnetoabsorption in a narrow-gap semiconduc- 
tor by a consistent analysis of the Dirac equation allow- 
ing for parallel magnetic and alternating electric fields. 
This analysis will be made within the framework of the 
theory of interband tunneling in an alternating electric 
field, put forward by Keldysh." Use will be made of a 
transformation which makes it possible to separate the 
operators due to the electric field, some of which in- 
duce intraband nonstationary states with a definite 
quasienergy and can be allowed for exactly, whereas 
others inducing interband many-photon transitions will 
be included in a resonance approximation. We shall 
show that in a strong magnetic field and for a sufficient- 
ly narrow band gap (of width of the same order as the 
separation between the Landau levels) the expression 
for the probability of many-photon transitions may have 
frequency singularities (maxima) for odd and even num- 
bers af the absorbed photons. This makes it possible to 

The function ,(x, t) satisfies the equation 

A(t) ~p~,=tha~p,.~at, (3) 

where 

i% ( t )  =s (aP) +yomsz, 
a 

(4) 
p - ( - i f i - , p . + ~ ~ ~ x , p , ( t ) ) .  a x  . s H.-58: (5) 

a! and -yo are the Dirac matrices in the standard repre- 
sentation." 

We shall seek the solution of Eq. (2) in the form 

where a *  =o,~io,;  a,, cry, and a, are the four-row Pauli 
matrices; X(t) is a four-component function which de- 
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pends o$y on time; ~ : ( t )  are the eigenvalues of the op- 
erator Xa(t): 

E.(t)  =[ (ms') '+sap.'(t) +2ehsHf ( n + l )  (9) 

un([) are the normalized functions of a harmonic oscil- 
lator; 

In the case of a periodic field we can separate the 
periodic part from the exponential factors in Eq. (15): 

The above transformation is analogous to the Foldy- 
Wouthuysen transformation and it makes it possible to 
separate the positive and negative states (this separa- 
tion is exact for F = 0). 

where 

The substitution of Eqs. (6)-(8) in Eq. (2) gives the 
following system of equations for the components of the 
function *(t): 

The quantity En which appears in Eq. (17) represents 
the change in the electron quasienergy as  a result of an 
interband transition or, which is equivalent, a change 
in the quasienergy of a newly created electron-hole 
pair. 

where 

R ( t )  = - (n+l)  '"f* ( t )  + i j r ( t ) ,  
an Since R(t) varies periodically at the same period as 

the field, we have 
+- 

R ( t )  S, ( t )  = A,e-""I, and 
1--.. 

0 
+I/" 

A, - - j eS"'R ( t )  S, ( t )  dt. 
2n -n,m 

We shall now substitute Eq. (19) into Eq. (16) and 
average out the coefficients of the resultant equations 
over the field period T = ~ I T / ~ .  We then find that the 
functions vl(t) and v4(t) corresponding to states with a 
quantum number n, satisfying the condition ~ w ,  =En - ZEw << ~ w ,  are described by the system 

It is clear from the above formulas that, in the ab- 
sence of an electric field, the system (11) splits into 
separate equations whose solutions correspond, in a 
static magnetic field, to stationary states of energy 
En>O (an electron in the conduction band) or of energy 
-En <O (an electron in the valence band). Application 
of an alternating electric field modifies the diagonal co- 
efficients of the system S2:(t), describing the intraband 
motion and also gives rise to nondiagonal terms - ~ ( t ) ,  
which mix the states from different bands and give rise 
to many-photon interband transitions. 

f v l , = ~ ~ ~  exp ( i o , t ) c , ( t ) ,  &,=A: exp ( i o , t ) f ,  ( t ) .  (21) 

Here, ?~,(t) and ?J4(t) are the functions vl(t) and v,(t) 
averaged at a moment t over one period of an external 
field: 

i '+*'" 
I&) = - J v , ( t )d t .  

T (22) 
1-r/2 

We shall now consider a periodic electric field F(t) 
=Foe, coswt. The field can induce transitions between 
such quasienergy band states which transform, in the 
limit Fo-0, to stationary states of energies equal in 
magnitude and opposite in sign. 

The system (21) is analogous to the corresponding 
equations of the two-level problem12 and its solution 
subject to the initial conditions ?J1(O) = 0 and ~ ( 0 )  = 1/a 
gives 

2 sin Art  
~ , ( t ) =  --=-A, -exp{+rol t} ,  

12 a1 

We shall replace the functions X,(t) with v,(t), defin- 
ing them as follows: 

where the values of the quasienergy of a pair 6, and of 
the coefficientd, are given by Eqs. (18) and (20). Ex- 
actly the same procedure gives the functions v2(t) and 

(t). The expressions obtained for the functions U, (t) 
are valid if A << w (resonance approximation). 

Then, instead of the system (ll), we have 

It follows from the procedure of deriving the solu- 
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tions Uj and their meaning that the probability of an 
interband electron transition is given by 

which is obtained bearing in mind that (v , (~  = Iv2i,12. As 
in the case of a two-level system, an interband transi- 
tion resulting in the creation of an electron-hole pair 
is a periodic process of frequency A, and under reso- 
nance conditions Iwzl<< lA, I the probability of this tran- 
sition is s i n 2 ( ~ , l t  (Refs. 12 and 9). In the opposite case, 
it follows from the general results of quantum mechan- 
ics, that the transition probability (24) becomes 

The result obtained can be presented explicitly if we 
calculate the coefficientA,. Since this coefficient is de- 
termined by the formulas (20), (17), (12), (13), (9), 
and (2), we shall introduce the variables sinwt'=u, 
s i w t  =u, in all of them and represent the expression 
forA, at wz=O in the form 

where 

E,' (u) [msS+E. (u) I 
Integration in Eq. (26) is carried out over a contour 

which envelops the points u=* 1. This integral can be 
calculated by the steepest-descent (saddle) method, as- 
suming that the ratio below is a large parameter: 

here, 

As a result we find that the exponential function in Eq. 
(26) becomes rapidly varying, compared with the func- 
tion iP .  The main contribution to the integral comes 
from the first term in the brackets of Eq. (27), which 
has poles at both saddle points, found from the condi- 
tion E,,(u)= 0. The con tribution of the second term in 
Eq. (27) is small compared with the first when consid- 
ered in relation to the parameter (28). In fact, integra- 
tion reduces to bypassing singularities in an arc of (*hr 
size with a vanishingly small radius and the functions 
free of singularities should be taken at the saddle points 
allowing for bypassing of the branching points. Details 
of the calculation of such integrals can be found in Ref. 
2 and also in Ref. 13. 

The functions in the arguments of the exponential 
functions in Eqs. (27) and (26) and also the quasienergy 
& of Eq. (18) can be calculated exactly. In particular, 
the last two expressions are obtained in Ref. 10 and ex- 
pressed in terms of elliptic integrals of the first and 
second kind. However, we shall simplify the results by 
assuming that 

where the f i rs t  condition corresponds to the many-pho- 
ton nature of transitions of interest to us and the second 
limits the frequencies w to the most important region 
adjoining the edges of the Landau bands. Moreover, the 
argument of the exponential function in Eq. (26) is cal- 
culated allowing for the properties of the functions 
which determine it in the complex plane.' Consequently, 
the contributions to the integral (26) from both saddle 
points located in the complex plane acquire respective 
phase factors which are exp(*ik/2) for o ,=O.  

Substituting the obtained expression for IA, l a  in Eq. 
(2 5) and summing over the quantum numbers n, p,, and 
p,, subject to the explicit form of the quasienergy (18) 
under the conditions of Eq. (29), which is 

we obtain the final result for the total probability of an 
interband I-photon transition per unit time and per unit 
volume: 

W"' - 
36n3 (ms) 'an PA-Pa 7 
flpxz cos2 G(A) +plz sin2 G (A)  ] A-", 

n A 'Is = + 2 -  (-  PAS , A-Mu-2pLs 

Equation (3 1) is valid if the inequalities (28) and (29) 
(y >>l, A<<pLs) are satisfied. 

According to Eq. (31), the many-photon magnetooptic 
absorption spectrum has singularities - A-lk as  well as 
step-like dependences - A '" at frequencies w satisfying 
the condition A=O. The positions and intensities of the 
absorption peaks and steps depend strongly on the par- 
ity of the number of the absorbed photons I. For odd Z 
the absorption singularities are due to the term -p? 

. 

and the steps due to the term -p: in Eq. (31), whereas 
in the case of even values of 1 the situation is reversed 
so that singularities are due to the term -p: and the 
steps are due to -pa,. 

The presence of singularities in the even-photon ab- 
sorption is a circumstance characteristic of narrow- 
gap semiconductors, which appears when these semi- 
conductors are described by the Dirac equation in the 
two-band approximation. The singularities are due to 
the term -pH in the brackets of Eq. (27). In the case 
of wide-gap semiconductors, which satisfy in particu- 
larp,<<p,, this term is ignored so that we have to as- 
sume p,=O in Eq. (31) and the absorption singularities 
appear only for the odd-photon  transition^.^.' 

We can generalize Eq. (31) to optically anisotropic 
crystals by making consistent substitutions2 

where m, and @ are the components of the effective 
mass and of the reduced magnetic field along the prin- 
cipal axes. 

If the frequency w is assumed to be fixed, the condi- 
tion A = O  defines a discrete series of magnetic fields H 
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TABLE I. 

corresponding to various values of n at which peaks 
and steps appear in the optical absorption spectrum. 

The results obtained make it possible to explain qual- 
itatively the appearance of peaks in the experimental 
studies of the two-photon magnetooptic absorption by 
narrow-gap semiconductors InSb and PbTe (Refs. 3 and 
5). In these experiments a crystal was subjected to a 
magnetic field and laser radiation of 1-3 kW power of 
fixed wavelengths X = 10.6 and 9.6 p .  

If the amplitude of the electric field in the laser wave 
does not exceed ~ , , s l O ~  V/cm, the parameter y2 for a 
PbTe crystal in fields H = lo5 Oe satisfies the condition 
y2>15. It should be noted that under these conditions 
the amplitudes of the two-photon absorption peaks ex- 
ceed by aver an order of magnitude the three-photon ab- 
sorption peaks. At certain values of the magnitude field 
there are photoconductivity peaks interpreted as the 
maxima of the interband transition probability. Thus, 
these peaks can be regarded as  induced by a magnetic 
field H ocp; and corresponding to the absorption of the 
energies 2tiwl, Ztiw,, and tiw, +tiw,. In the case of a 
PbTe crystal we can also provide a quantitative de- 
scription based on Eq. (31) derived from the Dirac 
equation because the electron and hole bands of this 
crytal are simple and have extrema located at the point 
L on the c, axis in the Brillouin zone; moreover, these 
bands are characterized by approximately equal trans- 
verse and longitudinal masses. 

Generalization of the expression for A in Eq. (31) to 
the case of various frequencies by the substitution 2 m  - tiw,+m, becomes possible because of the similarity 
of these frequencies in the experiments described in 
Refs. 3 and 5, and also because when the condition y 
>> 1 is satisfied, the quasienergies 6, are practically 
independent of the frequency. 

When a magnetic field H is directed along the c ,  
axis," the spectra are practically identical for the 
longitudinal and transverse polarizations of the laser 
radiation. We allowed for the experimental geometry 
and estimated, for three values of the absorbed energy, 
the magnetic fields H for various values of n corre- 

sponding to the condition for  a maximum A = 0 and we 
ignored the term (2y)-a compared with unity. In these 
calculations we assumed m,, =0.25rn, m1=0.028Pn, and 
&,=0.19 eV, deduced from magnetooptic measure- 
ments.', 

The results of a comparison of the calculated values 
of H and those observed experimentally0 is made in 
Table I, which shows that the agreement between the 
theory and experiment can be regarded as  quite satis- 
factory. 

The absence in the experimental spectra of a peak 
corresponding to the lowest magnetic field is probably 
associated with the low intensity of this peak, which- 
according to Eq. (31)-is of the order of P. 

The authors are grateful to Yu.N. Demkov for a valu- 
able discussion of the results. 
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