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A self-consistent formulation of the fluctuation-dissipation theorem (FDT) is given for a macroscopic 
system in which the interaction of the particle can be separated into a strong and a weak part. The 
properties of the system considered determine not only the susceptibility tensor and the spectral densities 
of the internal parameters but also the spectral densities of the generalized forces conjugate to the internal 
parameters under consideration. As the weak interaction we consider the interaction of atoms via the 
fluctuating electromagnetic field in the dipole approximation. A theory of nonequilibrium fluctuations is 
developed. For nonequilibrium states the fluctuation-dissipation relation holds only for individual 
transitions and includes a dependence on the nonequilibrium distribution function. The corresponding 
kinetic equations, which describe, in particular, the process of relaxation to the Gibbs distribution, are 
found. In this case a spectral distribution in accordance with the equilibrium FDT is established. As an 
example, the kinetic equation for a gas whose atoms interact only via field fluctuations is obtained from 
the general kinetic equation. The first-poment approximation for the averaged density matrix and mean 
field is considered. The kinetic equation obtained can be used to describe the kinetics of equilibrium and 
nonequilibrium coherent states, eg.,  in phase transitions and super-radiance in the atoms + field system. 

PACS numbers: 05.40. + j 

1. INTRODUCTION 

We r e c a l l  briefly the content of t h e  well known Callen- 
Welton and Kubo formulas. This  is necessary  f o r  the 
formulation of the problem of the p resen t  paper. We 
consider a macroscopic s y s t e m  with Hamiltonian 

where Z?,, is the Hamiltonian of a macroscopic s y s t e m  
consisting of N par t ic les  interact ing a rb i t ra r i ly  s t rongly,  
Fi are external  fo rces ,  and Xi are the  corresponding 
internal  parameters .  

ceptibility t ensor  ai,(w) and t h e  s p e c t r a l  density of the 
fluctuations of X, i n  the absence  of ex te rna l  fo rces ,  
when (XI) =O. The susceptibility t ensor  defines the re- 
lationship between the m e a n  response  (Xi) and the  ex- 
t e r n a l  force. In the  notation of the  book by Landau and 
Lifshitz [see Eq. (125.10) in Ref. 11, t h i s  fo rmula  h a s  
the  f o r m  

ih Ao 
(XcX,) r = T(arr'--ajr) cth -. 2kT 

The relat ionship expressed  by th i s  f o r m u l a  is cal led 
the  fluctuation-dissipation theorem (FDT). The i n v e r s e  
relat ionship is called the  Kubo formula.'-4 

The Callen-Welton formula establ ishes a connection - The formula (1.2) is establ ished by comparing the ex- 
between the dissipative (antihermitian) p a r t  of the sus -  p ress ions  f o r  the  susceptibility t ensor  and t h e  s p e c t r a l  
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density of the fluctuations of X,. The f i rs t  of these is 
obtained by averaging formula (125.9) from Ref. 1 over 
the distribution f,. The antihermitian part  of this tensor 
has the form 

where (X , ) , ,  is a matrix element for the system with 
Hamiltonian I?,. The expression for the spectral density 
is obtained by averaging the formula (125.5) from Ref. 
1. After symmetrization in the states n and m, 

To obtain the Callen-Welton formula from (1.3) and (1.4) 
we must use the equality 

f*+f. ho 6(0-0,,m) -=6(0 -0 .~ )c th - ,  
f m - f n  2kT 

which is valid when f n  is the Gibbt canonical distribution 
for the system with Hamiltonian H,. 

In the formulas cited, only the temporal dispersion is 
taken into account. The generalization of these formulas 
to the case of spatial dispersion is well known (see, e.g., 
Sec. 9 in the book by Silin and Rukhadze5 and Appendix I 
in the book by Levin and Rytov6). 

The purpose of this paper is to generalize the fluctua- 
tion-dissipation relations to nonequilibrium states,  
when the function f, is not a Gibbs distribution but satis-  
fies a certain kinetic equation. The establishment of 
the form of this kinetic equation is one of the problems 
of the present work 

It will be shown in the paper that, under certain con- 
ditions, the expressions (1.3) and (1.4) also remain 
valid for nonequilibriurn states. In this case, however, 
the Callen-Welton formula does not hold, since the 
equality (1.5) is fulfilled only for an equilibrium state. 
The fluctuation-dissipation.relation is preserved for 
individual transitions n- m. In fact, by comparing the 
expressions under the summation signs in the formulas, 
we obtain the relation 

This expression is also valid for an inverted population. 
In this case, naturally, both factors in the right-hand 
side change sign. 

We remark that the presence of the function 6(w - on,) 
in formulas (1.3) and (1.4) corresponds to the condition 
for an infinitesimally narrow resonance. In i t s  turn, 
this demonstrates the presence in  these formulas of an 
undetermined time parameter, defining the real  width 
of the resonances. We shall denote this undetermined 
parameter by T,,, (the correlation time). Naturally, in 
the generalization of the Callen-Welton formula to non- 
equilibrium states the value of this as-yet undetermined 
time parameter becomes important. This question will 
be discussed in Sec. 4. 

The parameter T,,, may also turn out to be important 
in the equilibrium state. Indeed, the equality (1.5) is 

fulfilled only in the zeroth approximation in the fre- 
quencies 

When the resonance has a finite width this condition 
ceases to  be fulfilled at sufficiently low temperatures, 
which could be, e.g., tenths of a degree. 

In all  the preceding formulas the matrix element 
(x,),, is determined by wavefunctions that a r e  eigenfunc- 
tions of the Hamiltonian &. It is not possible to find 
these eigenfunctions in the general case,  and, therefore, 
the FDT is applied in  practice to simpler systems, when 
i t  is possible to use small  parameters,  e.g., the plasma 
parameter o r  density parameters,  in the calculations. 
In these cases the FDT has also been used for nonequil- 
ibrium states. The theory of fluctuations of laser  radia- 
tion7'0 and the theory of nonequilibrium fluctuations in 
a dilute can serve  a s  examples. In both 
cases the distribution functions appearing in the fluc- 
tuation-dissipation relations satisfy appropriate kinetic 
equations for the single-particle distribution functions. 

To solve the problem of the derivation of the kinetic 
equations for the many-particle distribution functions 
occurring in the formulas (1.3), (1.4), and (1.6), i t  is 
necessary to use a different interpretation of the Callen- 
Welton and Kubo formulas, in which the susceptibility 
tensor determines the response not to external forces 
but to internal fluctuation forces. This possibility has 
been discussed in the literature (cf. Secs. 124 and 125 
in  Ref. 1); however, i t  has not been developed to com- 
pletion, inasmuch a s  the question of the nature of these 
random forces has remained open. Naturally, they 
shoul d be determined by the structure of the actual 
system under consideration. Thus, before proceeding 
t o  the derivation of the kinetic equation for the many- 
particle distribution function f,, i t  is necessary to give. 
a self-consistent formulation of the FDT in which the 
properties of the system under consideration determine 
not only the tensor at, and the spectral density of the 
fluctuations of X, but also the spectral density of the 
random forces F,. 

The problem of constructing the kinetic equation for 
the distribution function for the states of macroscopic 
systems has attracted the attention of many investiga- 
tors  for a long time. Of the recent work we note the 
paper by K u k h a r e n k ~ . ~  Unlike in  the latter work, here 
we separate not the weak interaction with surrounding 
bodies but the weak interaction of the particles of the 
actual system under consider ation. For definiteness 
we shall assume that the weak (in the dipole approxi- 
mation) interaction yia the fluctuating electromagnetic 
field is included in H , .  Below, the system with Hamil- 
tonian co will be called the basic ?yst?m, while the 
system with the full Hamiltonian H, +HI will be called 
the extended system. 

2. FLUCTUATIONS OF THE DENSITY MATRIX 

For the basic system the density matrix f,,,(t) gives a 
complete statistical description. In the classical theory 
the corresponding quantity is the distribution function 
f,(x, t), satisfying the Liouville equation. The two-time 
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distribution function fN(x, t; x', t') also satisfies this 
equation, since the variables x' and t' appear a s  param- 
eters. Here, x is the se t  of coordinates and momenta 
of the basic system. 

To determine the two-time distribution function i t  is 
necessary to solve the Liouville equation with the initial 
condition 

f.\-(5, t,; XI, t ' )  I r - t r = 6 ( ~ - ~ ' ) f N ( ~ ,  t ) ,  j f N ( x 7  t ) d x = i .  @.I1 

We introduce notation for  the deviation of the two-time 
function from the product of the distribution functions 
a t  each of the times: 

When the times coincide, taking (2.1) into account, from 
this we find 

( 6 f d f x ) x .  =., t = 6 ( ~ - ~ ' ) f N ( x ,  t ) - f N ( x ,  t ) f X ( x 1 ,  t ) .  (2.3) 

The usefulness of the notation introduced is revealed 
when we go over to the extended system, when the de- 
scription by means of the function f, (or f,,,,) is no longer 
complete, since the state in this case is determined not 
only by the particle variables but also by the field vari- 
ables, so  that f,(x, t) is a random function. 

Because of this, for the extended system i t  will be 
possible to interpret the expressions in the left-hand 
sides of the equalities (2.2) and (2.3) a s ,  respectively, 
the two-time correlator and one-time correlator of the 
fluctuations of the distribution function. Here, the fN 

in the right-hand sides of the equalities must be under- 
stood a s  the corresponding averaged functions. Hence- 
forth, (fN)= fN. The symbol (. . .) denotes averaging 
over the ensemble of extended systems. 

We shall give the corresponding definitions for a 
quantum system. The equality analogous to (2.3) has 
the form 

If the density matrix is nonequilibrium but diagonal this 
definition is simplified and, after symmetrization, 
takes the form 

We shall regard this expression a s  the initial condition 
to the equation for the corresponding two-time function: 

Jumping ahead, we shall assume that for the extended 
system the relaxation time of the function ( fn (t)) = fn(t) 
is long compared with the characteristic times for the 
two-time correlator (with T,,,). In the zeroth approxi- 
mation with respect to these times (the "collisionless" 
approximation in the calculation of the fluctuations), 
using Eq. (2.6) we find the following expression for the 
spectral density of the fluctuations of the distribution 
function: 

This spectral density depends implicitly, through the 
. 

distribution functions, on the time. The condition w + 0 

allows us to omit the term with 6(w). 

We note that the spectral density (1.4) of the fluctua- 
tions can now be represented in the form 

i.e., a s  a quantum-mechanical average with the spectral 
density (2.7). Naturally, the formula (2.7) is more gen- 
e ra l  than the formula (1.4). 

In place of Eq. (2.6) with the initial condition (2.5) we 
can write the corresponding Lagevin equation, which is 
the Liouville equation (in the classical theory) o r  the 
corresponding density -matrix equation with a random 
source. The intensity of the random source can be de- 
termined, e.g., by comparing the results obtained by the 
two methods. 

We note once again that, for the basic system, the 
formulas (2.5) and (2.7) a re  exact, i.e., they give a 
complete description. However, for the extended system 
they can be regarded a s  the sources in the corresponding 
equations for the correlators o r  spectral densities of the 
fluctuations. To emphasize this circumstance, below we 
shall use the index "sou." 

3. FLUCTUATIONS IN THE EXTENDED SYSTEM 

To make the account less  formal, we shall assume 
a t  once that the Hamiltonian 2, is determined by the 
interaction of the atoms via the electromagnetic field in 
the dipole approximation, i.e., 

Here Pm and Em are  the vectors of the polarization and 
intensity of the field. The superscript m indicates that 
these a re  mic_roscopic characteristics. The matrix 
elements of H, a re  defined by the expression 

Here we have used the notation 

where V is the volume of the system, and x =  (Y,, . . . , 
Y N , R ~ ,  ,RN)* 

The equation for the density matrix of the extended 
system has the following form: 

In order to separate out the relaxation process deter- 
mined by the weak interaction we suppose that 

(f.m(t))=6nm(f.(t)>=6mfm <PF>=0, (E~)=o., (3.5) 

A kinetic equation will be obtained for the function fn(t). 
Naturally, a kinetic stage of evolution also exists for 
the nondiagonal eleme!ts of the density matrix, but 
when the interaction H, is small  the contribution of the 
nondiagonal elements to the collision integral is small. 
In this approximation the dissipative matrix in the equa- 
tion for the function (f,,,,,) is expressed in terms of the 
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transition probabilities that determine the collision inte- 
gral  Zn(t). 

We shall average Eq. (3.4). Under the condition (3.5) 
we obtain the following equation for the distribution 
function fn(t) : 

--- a :  - f m  ) D ~ ( R I ( ) .  (3.6) 
m 

We see  that to calculate the collision integral i t  is nec- 
essary to find the correlator of the fluctuations 6f,, and 
6E. The deviation of 6fnm from 6f r; a s  a consequence 
of the small interaction I?, is determined in the linear 
approximation in 6E by the equation [compare with Eq. 
(35.1) in Ref. 101 

(3.7) 
The Fourier components of the fluctuation of the po- 

larization vector a r e  related to the function bf,,,. Using 
this relationship, we obtain an equation for 6P,: 

The polarizability tensor and function 6 P F  that appear 
in this a r e  determined by the expressions 

~ P ~ " ( R ,  a )  =z D , ~ ( R )  G/,Y(w) .  (3.10) 
nm 

In the case of a homogeneous and isotropic medium the 
dielectric permittivity tensor E,) is expressed in terms 
of the functions cl' and which, for the system 
under consideration, a r e  determined by the expressions 

Here D ~ L  and D:, a r e  the longitudinal and transverse 
components (with respect to the wave vector) of the vec- 
tor Dn,(-k). 

We find the spectral density of the fluctuations 6PmU 
with the aid of the formulas (3.10) and (2.7): 

This expression corresponds to the formula (1.6). The 
superscript "sou" is justified by the fact that induced 
fluctuations of the polarization vector also exist in the 
extended system [cf. Eq. (3.8)]. 

In the equilibrium state, using the expressions (3.10)- 
(3.13) we can obtain two Callen-Welton formulas, con- 
necting the functions 

( 6 ~ ~ ~ 6 ~ ' )  Im e U ( o ,  k )  ; ( 6 ~ ~ 6 ~ ~ )  11m eL (o, k )  . 

For nonequilibrium states the corresponding relations 
hold only for individual transitions n - m. 

In accordance with what has been said above, in the 

present self-consistent description of the fluctuations 
for equilibrium and nonequilibrium states we can also 
find expressions for the spectral densities of the fluc- 
tuations of the longitudinal and transverse fields: 

In the equilibrium state,  when fn is the Gibbs distribu- 
tion, well known  expression^^^^*^' follow from this; e.g., 

Naturally, the concrete form of the function appear- 
ing here is different for different systems. 

4. KINETIC EQUATION FOR THE DISTRIBUTION 
FUNCTION f,, ( t )  

It follows from the definition (3.6) of the collision 
integral that the relaxation time of the distribution func- 
tion fn(t) is determined by the weak interaction I?, and, 
because of this, is long compared with the character- 
istic times for the system with Hamiltonian A,. On this 
basis we can divide the fluctuations into fine-scale (fast) 
and coarse-scale (slow) fluctuations. Using the jargon 
of plasma theory, we may say that the formulas (3.11)- 
(3.15) apply to the "collisionless" regime. However, 
the fluctuations described by these formulas themselves 
determine the collision integral. Thus, to a certain 
degree the situation that obtains in the theory o r  gases 
and plasmas"' is repeated here. 

We note that, in i ts  structure,  Eq. (3.7) coincides with 
Eq. (33.24) in the author's book,1° which determines 
the evolution of fluctuations of the phase density of the. 
charged particles of a plasma. Because of this we can 
omit the computations, which a r e  analogous to those 
performed in Secs. 34-37,39, and40inRef. 10, andwrite 
down -immediately the final expressions for the colli- 
sion integral. 

The collision integral can be represented in the form 
of a sum of two contributions, determined by the fluc- 
tuations of the longitudinal and transverse fields, r e -  
spectively: 

I n ( t )  =In" ( t )  + I n i ( t ) .  (4.1) 

The expressions for the collision integrals 1;' and If can 
be represented in the following form: 

1 
I , ,  ( t )  = - J ~ " ~ I D . . I I ( - L )  I26(u-a*,,,) [ ( 6 ~ 6 E ' ) . , t ( / ~ - f . )  

(2n)'h2 

1 
I , , ~ =  -z dwdkIDnmL(-k) 1'6 (a-a,,,,,) [ (6EL6EL) ",t ( fm- f* )  

16x3hZ 

These expressions must be supplemented by the formu- 
las (3.11), (3.12), (3.14), and (3.15). 

Thus, we have obtained the kinetic equation for the 
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distribution function of the nonequilibrium states of a 
system of particles with arbitrarily strong interactions. 
Only the interaction g ,  is assumed to be small. In the 
case under consideration, I?, is the interaction of the 
atoms via the fluctuating electromagnetic field. All 
information about the interaction not associated with I?, 
is contained in the matrix elements D,,,. 

Naturally, a different "Boltzmann" form of the expres- 
sion for the collision integral is also possible. To go 
over to this form we must substitute into the formulas 
(4.2) and (4.3) expressions for the functions 1mc'l and 
Imc', which follow from (3.11) and (3.12), and expres- 
sions for the spectral densities of the electromagnetic- 
field fluctuations. Taking into account here the condi- 
tions that the medium is homogeneous and isotropic, 
we obtain the expression 

. . 

1 
X 6(En+Em3-Enq-Em) [ lcl, k) +&I ( ~ m f ~ ~ - f * ~ f ~ ) .  

(4.4) 
This collision integral vanishes when the Gibbs distri- 

tribution is substituted into it. The collision integral 
(4.1)-(4.3) vanishes when we substitute the Gibbs distri- 
bution and the formulas for the spectral densities of the 
equilibrium fluctuations of the longitudinal and trans- 
verse fields into it. 

The collision integral (4.4) also possesses the prop- 
erty 

which ensures that the entropy 

for the system with Hamiltonian I?, does not decrease. 
The equality sign pertains to the equilibrium state. In 
this case, the expression (4.6) coincides with the Gibbs 
definition of the entropy. 

We note once again that the equation obtained de- 
scribes only those dissipative processes which a r e  de- 
termined by the weak interaction that we have separated 
out. In accordance with this, the growth of the entropy 
(4.6) is also determined entirely by these dissipative 
processes. 

In the zeroth approximation in I?,, Eq. (3.4) coincides 
with the Liouville equation (equation for the density ma- 
tr ix) for the system with Hamiltonian &. Naturally, in 
this approximation the entropy (4.6) remains constant. 

Also of importance is the fact that, in determining the 
collision integral, only the correlations of the fine- 
scale fluctuations a re  taken into account. As in the 
theory of gases and plasmas, here too we can develop a 
kinetic theory of the coarse-scale fluctuations whose 
correlation times are  determined by the weak interac- 
tion (see Chapters 4 and 11 in Ref. 10). 

Finally, we shall make one more remark. The kinetic 
equation with the collision integral (4.1)- (4.3) [or (4.4)] 
leads to a conservation law for the average energy (I?,) 

but not for the average energy (2, +I?,) of the extended 
system. This shows that, in the app~oximation under 
consideration, the weak interaction HI only determines 
the dissipative processes and does not make a contribu- 
tion to the law of conservation of the average energy. 
The situation here is analogous to that which obtains in  
the kinetic theory of gases and plasmas.1° Thus, e.g., 
in the Boltzmann kinetic equation the interaction of the 
atoms determines only the dissipative process, and the 
contribution of the interaction to the thermodynamic 
functions is not taken into account. For a more com- 
plete description of the contribution of the interaction, 
i t  is necessary, in the derivation of the kinetic equa- 
tion, to take into account the temporal retardation. 

The contribution of the interaction I?, is disregarded 
here not only in the expression for the average energy 
but also in the expressions for the other thermodynamic 
functions-in particular, in the expression (4.6) for the 
entropy. This is already clear from the fact that, in 
the equilibrium state, the formula (4.6) does not depend 
on I?,. When the nonideality with respect to I;?, is taken 
into account the expression for the entropy i s  changed 
(compare with the results  of Sec. 14 inpef .  lo). Under 
the condition that the average energy (H,), and not the 
total energy (go +g,), is conserved in the relaxation 
process, the fact that the entropy is a maximum in  the 
final state,  when f, is the Gibbs distribution, can also 
be proved without use of the kinetic equation. 

In fact, we shall compare the entropy values calcula- 
ted from formula (4.6) for two distribution functions: 
the Gibbs distribution f,, and an arbitrary distribution 
f,'. For the latter we can take the nonequilibrium solu- 
tion of the kinetic equation for any time t, i.e., the func- 
tion fi =f,(t). We shall compare the corresponding values 
of the entropy when the following two conditions a re  
fulfilled: 

i.e., the normalization condition and the condition for 
conservation of the average energy in the process of 
evolution to the equilibrium state. Using the method 
proposed by Gibbs himself ,I3 we can show that 

The equality sign holds only when the functions f,, and f: 
a r e  equal, i.e., when the equilibrium state is reached. 

We shall estimate the relaxation time for relaxation 
of the function f,(t) to the Gibbs distribution. We shall 
do this using the example of the equation for the loga- 
rithm of the distribution function. From the formulas 
(3.13)-(3.15) and the definition of the matrix element 
(3.3) i t  follows that, in the thermodynamic limit, under 
the condition that the correlation lengths of the quantum- 
mechanical distributions a r e  finite, the squares of the 
moduli of the matrix elements, i.e., ( D , , I ~ ,  increases 
like N .  Owing to this, the spectral densities (3.14) and 
(3.15) of the field fluctuations, and the polarizabilities 
a! 11 and a ! l ,  a re  proportional to the concentration n =N/V.  

In accordance with this, the dependence of the colli- 
sion integrals (4.2) and (4.3) on the number of particles 
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is determined, in the thermodynamic limit, by the de- 
pendence of the quantity IDnmIZ on the number of parti- 
cles. Since the square of the matrix element increases 
like N, In a: N. We define the relaxation time by the 
relation In=rglfn, and therefore r i l a N .  It follows from 
this that the time derivative of the logarithm of the dis- 
tribution function, calculated per particle, is determined 
entirely by the particle concentration. 

The relaxation time, proportional to IDnm14/~2-n2, 
characterizes the establishment of local equilibrium in 
the kinetic stage. The time of establishment of com- 
plete equilibrium is determined by the "hydrodynamic" 
stage of the relaxation process and depends, naturally, 
on the size of the system. 

5. KINETIC EQUATION FOR THE SINGLE-PARTICLE 
DISTRIBUTION FUNCTION OF THE ATOMS 

The kinetic equation with the collision integral (4.1)- 
(4.3) can serve as  the starting point for the derivation 
of the kinetic equations for simpler distribution func- 
tions, e.g., for the distribution functions of the states 
of the individual atoms. We shall consider an atomic 
gas, the particles of which interact only through the 
fluctuating electromagnetic field. Under this condition 
the eigenfunctions of the system of atoms can be repre- 
sented in the form 

Here, nl a re  the quantum numbers characterizing the 
internal states of the individual atoms, and P I  a re  the 
momenta of the atoms. Under this condition, e.g., the 
expressions for the permittivity &' and the spectral den- 
sity of the fluctuations 6EA take the form 

Here, n and m a re  the quantum numbers of the states of 
single atoms. 

The corresponding collision integral is determined by 
the expression 

The kinetic equation obtained for the distribution func- 
tion fn(P, t) of the states of the atoms and the correspond- 
ing equation for the nondiagonal density matrix can be 
used to solve various problems in the kinetic theory of 
electromagnetic processes in gases-in particular in 
the theory of lasers  and the theory of the broadening 

of the spectral emission lines of atoms (cf., e.g., Refs. 
14 and 15). 

6. THE REGION OF TRANSPARENCY 

In the collision integral (4.3) we shall separate out 
the contribution from the region of transparency, in 
which the values of o and k a re  related by a dispersion 
equation. If we confine ourselves to taking only the 
temporal dispersion into account, the contribution of the 
region of transparency to the expression (4.3) will be 
determined by the expression 

1 2honmS 
= - ( 0 )  1 %  [(E6EL),, f - f  (f"+f-) ] (6- 

3h" 

This expression can be simplified if we introduce 
notation for the coefficients of the induced and spon- 
taneous emission 

of the system of atoms. From (6.2), with the replace- 
ment 

the expressions for the Einstein coefficients character- 
izing the emission from individual atoms follow. 

We note that in the formula (6.2) for the coefficient of 
spontaneous emission and in the corresponding formula 
for the Einstein coefficient, the properties of the me- 
dium a r e  taken into account through the refractive index 
(~ec)'''. Naturally, for a gas this factor does not play 
an important role, since the refractive index is close to 
unity. The position changes substantially for a system 
of strongly interacting particles. The role of this fac- 
tor is especially great for near-critical states. 

7. THE FIRST-MOMENT APPROXIMATION- EQUATIONS 
WITH A SELF-CONSISTENT FIELD 

It has already been noted above that, when the inter- 
action of the atoms via the field is taken into account, 
i.e., for the extended system, there is no closed equa- 
tion for the density matrix, and, therefore, when the 
corresponding operator equation (3.4) is averaged, a 
chain of coupled equations arises.  For this system of 
equations we shall consider the first-moment approxi- 
mation, i.e., we shall consider the equations for the 
functions ( fnJ  and E =(E"')with neglect of correlations 
of the fluctuations. In this approximation, from (3.4) 
we find the following equation for the averaged density 
matrix: 

The mean polarization vector is connected with the 
averaged density matrix by the relation 

P(R, t )  - CD,,(R) ( f n m ( t )  ), (7.2) 
m", 

while the charge density and current density a re  con- 
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nected with the polarization vector in the dipole approxi- 
mation by the usual relations. As a result, together 
with the Maxwell equations, we obtain a closed system 
of equations for the first moments. 

As in plasma theory, the first-moment approximation 
i s  valid when the characteristic times of the processes 
under consideration are much shorter than the relaxa- 
tion times determined by the collision integrals (4.2), 
(4.3). For example, one of the characteristic param- 
eters i s  the lifetime of the radiation (photons) in the 
volume occupied by the system. 

With the self-consistent field the system has the 
particular solution 

The equations of the approximation linear in the devia- 
tions from this particular solution determine, in parti- 
cular, the wave properties of the system. The values 
of o and k for the waves are  related by the usual dis- 
persion equations, in which the functions &I1 and &I are 
determined by the formulas (3.11) and (3.12). Now, 
however, f, in them i s  the particular solution (7.3) of 
the equations with the self-consistent field. 

The account in the present work touches upon only an 
extremely small fraction of the problems of the kinetic 
theory of electromagnetic processes in systems with 
strong interaction. Of these, the most interesting are 
problems in the kinetic theory of equilibrium and non- 
equilibrium coherent states, e.g., the kinetics of phase 
transitions in the atoms-field system, super-radiance, 
etc. Of course, the derivation of the corresponding 
kinetic equations for chemically reacting systems i s  of 
interest. 

We take the opportunity to thank L. V. Keldysh for 
comments on the text of the manuscript. 
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Apparatus is described for the measurements of the influence of pressure up to 140 bar on the frequencies 
of the oscillations in the de Haas-van Alphen effect in zinc in pulsed magnetic fields up to 100 kOe. The 
pressure dependence of the areas of the extremal sections of the Fermi surface serves as a confinnation of 
the correctness of the model proposed by Rubin and Stark (The de Haas-van Alphen Spectrum of Zinc, 
Preprint, University of Chicago) for all the sections observed in experiment. 

PACS numbers: 71.25.Hc, 62.50. + p 

The Fermi surface (FS) of zinc was investigated in band can lead to nonlocality of the potential and conse- 
detail both theoreti~ally'-~ and e~per i rnenta l ly ,~ '~~  but quently to a strong deviation of the FS from the form 
to this day it cannot be said that i ts form has been fin- proposed in Ref. 1 in some parts of the Brillouin zone 
ally established. In fact, on the one hand, the form of (BZ)? The interpretation of the observed oscillations 
the FS agrees well with the model of almost free elec-' in the de Haas-van Alphen effect is made difficult by 
trons,' but the presence of d states in the conduction the complexity of the "bare" form of the FS and by the 
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