
CONCLUSION 

Thus, the structures of shock waves propagating 
in a plasma, along the magnetic field depend on the 
values of the Mach numbers Ma and M. In the region 
outside the "wedge" in Fig. 1, the shock wave is gas- 
dynamic and the magnetic field plays no role, generally 
dropping out of the equations. Inside the wedge, the 
gas-dynamical shock wave is unstable, and the shock 
wave is magrietohydrodynamic with front width equal 
either to the diffusion length of the magnetic field, 
c2/4nov, in the case of an unmagnetized plasma, or  
to a length that is characteristic for the electronic 
thermal conductivity I / &  for a magnetized plasma. 
The characteristic size of the oscillations of the mag- 
netic field is connected with the Hall terms and the 
thermal emf, leading to a dispersion of the magneto- 
sonic waves propagating at an angle to the magnetic 
field; the corresponding scale i s  A =  M61/% = c/w,,. 

In the present work, we have not considered the pro- 
blem of the stability of the actuating sound wave, which 
is discussed in a series of theoretical works (Refs. 
12-14). In particuiar, it has been shown by Roikhvar- 
ger and Syrovatskii14 that while the actuating wave is 
evolutionary, i.e., there exists for it a unique solution 
of the problem of small perturbations, the actuating 
shock wave is non-evolutionary in the linear approxi- 
mations, i.e., i is unstable to the spontaneous emis- 
sion of Alfven waves. The instability of the actuating 
shock wave is evidently c o ~ e c t e d  with the fact that 
azimuthal symmetry of the original unperturbed flow 
is disrupted in it. An arbitrarily small azimuthal 
asymmetry ahead of the shock front removes such a 
degeneracy in the intermediate region. The solution 

of the problem of the stability of the actuating shock 
wave in such an arrangement is the object of a separ- 
ate paper. 

In conclusion, I express my gratitude to A. L. Veli- 
kovich for numerous discussions. 
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The effect of developed hydrodynamic turbulence on sound is studied. The correlation time and length of 
the acoustic field, the isotmpization length and the frequency diffusion coefficient for the acoustic wave 
packet are calculated. The region of applicability of the kinetic equation for sound with a linear dispersion 
law are found. The parameter k,LM (k, is the sound wave vector, L is the energy-containing scale, M is 
the Mach number) is of interest in principle for solution of the aforementioned problems. Precisely this 
parameter determines whether the second-order perturbation theory is sufficient or an infinite set of 
diagrams must be summed (i.e., transport must be taken into account) in studies of the interaction 
between sound and hydrodynamic turbulence. 

PACS numbers: 43.25.Lj, 47.25. - c 

INTRODUCTION sound in a turbulent atmosphere was considered in the 
work of ~a t a r sk i ?  under conditions in which the princi- 

Various aspects of the problem of the interaction of pal role i s  played by processes of elastic scattering of 
sound with hydrodynamic turbulence have been studied ' a monochromatic sound wave; in our previous work,' 
in a number of researches.'-5 Thus, the propagation of processes of absorption and emission of sound by homo- 
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geneous turbulence were considered. In the present 
paper we consider the evolution of sound packets 
(acoustic turbulence) in a medium with homogeneous 
isotropic hydrodynamic turbulence. For definiteness, 
we assume that i ts  spectrum is a Kolmogorov one: J ,  
- k'"h in the inertial interval L >k-'>l, where L and I ,  
= L ~ e " ~  are the external and internal turbulence 
scales. At low sound intensities, we cannot consider 
processes of the interaction of sound with sound, and 
are limited to the study of the role of processes of in- 
teraction of sound with turbulence. 

In Sec. 2, we consider the scattering of sound in a 
turbulent medium. As is well knc~wn,~.~ these process- 
e s  are almost elastic cind lead to the isotropization of 
the acoustic packet with respect to directions. For 
very narrow packets  LA^, < l), the process of scatter- 
ing from vortices of energy-containing scale L with 
characteristic time 

are important. Here k, is the acoustic wave vector, v, 
is the characteristic value of the turbulence velocity, 
M =v,/c, is the Mach number. Scattering takes place 
here at the small angle ~ e = ( k ,  L)". But this does not 
mean that the evolution of broad packets LAk,>> 1 can be 
considered in the differential approximation. The fact 
is that the small-angle scattering does not materially 
change the shape of the broad packet and the basic role 
is played by scattering through angles of the order of 
i ts width. As a result, the characteristic time of change 
of the width of the packet increases and, in place of (1) 
we obtain 

The total time of isotropization r,, is determined by 
the evolution of the packet at the last stage, when Ak, 
=k,, whence 

This expression is valid if k, lies in the inertial interval 
of scales lo< k i l <  L. At k, L <1, the scattering processes 
are strongly suppressed because of the small intensity 
of vortices with kTL <1; in the case k,l,>>l, the scatter- 
ing takes place at a small angle and the differential ap- 
proximation i s  valid; the time of isotropization i s  de- 
termined by the scattering from vortices of scale I,: 

v, 
T . . - ~  = -M R~~~~ . 

L (4) 

Within the isotropization time, the sound is not able 
to give up the turbulence energy because the time of 
sound absorption by the turbulence rdis, which is cal- 
culated in Ref. 3, turns out to be very large: 

It is interesting that rd,, does not depend on the sound 
wave vector; therefore the initial shape of the sound 
energy distribution function over the frequencies does 
not change in the absorption process. The frequency 
evolution of the acoustic packet of low intensity is 
therefore determined by the inelastic part of the scat- 
tering of sound by the vortices. As is shown in Sec. 2, 
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under the conditions lo< k ; ' < ~ ,  the characteristic time 
of frequency evolution rdjff is 

The time rdw was calculated earlier in the work of 
Krasil'nikov and Pavlov4 under the conditions k, LM < 1, 
k,l,>l. With increase in the sound intensity, the 
necessity arises of taking into account the interaction 
of sound with sound (ss interaction) and the problem is 
how this is to be done. It is known that the approxima- 
tion of almost random phases (the kinetic equation) i s  
inapplicable for the description of acoustic turbulence 
in the case of a linear dispersion law w, = c, k,. The 
fact is that all the waves propagating in one direction 
have the same velocity, and the interaction between 
them leads to a strong phase correlation. In the pres- 
ence of dispersion, a spreading of the acoustic packet 
takes place and the kinetic equation i s  applicable if the 
time of ss -interaction 

is longer than the time of randomization of the phases 
in the packet 7,: r;'=wt'(~k2). Another reason exists 
for the randomization of the phases for sound in a tur- 
bulent medium-its scattering from the random vortex 
field. It is therefore natural to estimate the time of 
randomization from the time of scattering of the sound 
by the vortices, i.e., to assume r;'=r;'= (k, ~ ) ( k ,  WM) 
[(see (I)]. Thus the kinetic equation is applicable if 7, 
>rr,  i.e., 

In the region k, WM< 1 this criterion is obtained in Sec. 
3 by the analysis of the diagram series for renormal- 
ization of the vertex that describes the interaction of ' 

sound with sound. At k, LM > 1, this analysis leads to 
another criterion for the applicability of the kinetic 
equation 

Let u s  clarify the reason for this difference. The pa- 
rameter k,LM has the meaning of a phase lag Aq over 
the distance L, which arises because of its interaction 
with the vortex velocity field of scale L. At k, LM< 1, 
Aq<l  and the time of destruction of the phase correla- 
tion rC, is determined by the random distribution of the 
phase over a large number of vortices; at k, LM> I, the 
phase shift over the path L is large and the destruction 
of the correlations takes place over a distance A,,, that 
is smaller than L.  We can therefore assume that the 
acoustic packet is transported a s  a whole in the almost 
homogeneous velocity field of the large-scale vortices; 
the time A,, is determined by the Doppler effect from 
these vortices and rc,= (kyT)-'. 

The transport of the packet as a whole does not de- 
stroy the correlation of phases between the waves in- 
side the packet and therefore the criterion of applicabil- 
ity of the kinetic equation is not determined by the time 
rCor. TO obtain this criterion, as  we have shown in Sec. 
3, it is necessary to compare the interaction length 
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TABLE I. Characteristic frequencies describing the interaction it for the statistical description of nonlinear interacting 
of sound with hydrodynamic turbulence. fields q,, bk. 

1. FUNDAMENTAL EQUATIONS 
Frequency 

of the 
procesr 

T ~ I  

I 

T;: 

7 

1. Dynamic description. The Hamiltonian 

The Euler equations for barotropic flows of a com- 
pressible fluid can be represented in Hamiltonian form 
with the help of the Clebsch variables.' At small Mach 

Region of applicabw 

L-I < k, < ( L M P  I (LMI-1 < k3 < 1. I k, > 1. 

Note. For comparison, we give the sound damping decrement: numbers, wes have constructed a canonical transforma- 
TdiSE 21TL-i~z  a t M ~ - i  < k s < M ~ - i ~ e i / z ,  Tdisiz: Vk; at ks >ML-i~ei~z .  tion to new variables, in which the vortex motion of the 

liquid (a:, aJ and the potential motion (bz, bb,) are separ - 

k,uT ( k p )  

k , ~ ,  ( k ,LM)  

ated to a m k i m u m  extent. In these variables, the 

ksr, 

ky, ( k S ~ ~ ) - ' l A  

b,, =csrSs with the distance A,, in which the phase cor- equations of hydrodynamics have the form (14j with the 

relation in the wave is destroyed. The correlation Hamiltonian 

c ,~"  ( A ~ L ) ' ~  u,L'M Re-"' 

L h  ( k  I U,L-'M"' ( h & ~ ) - " ~  v T ~ - l M ~ ~ e - l k s ~ ~ ) ' 1 8  

length A,,, a s  is shown in Sec. 2, is determined by the H=H.+Hl+H.,. (1.1) 
sound siattering from vortices of scale A,,, <L;  deter- Here Hs is the Hamiltonian for sound in the quiescent 
mining it self-consistently, we obtain liquid7: 

A.,=L(k,LM) -w4. (11) 
H ,  = S"kbk*bkdk + ; S ~ l , p ~ ( b l * &  + C.C. ) d ( i - 2 - 3 ) d f  d2d3. (1.2) 

The relation h,,> A,, is equivalent to the criterion 
(10). It is seen fromall that has been said above that where 
the interaction of the sound with the hydrodynamic tur- 1 
bulence is characterized on the whole by a set of times "k = kc,. v1.2d= - (5)"(klk&af" + + nln~)+  (Y - 2 ) 1 *  

2  (2n)'l'  PO 
which describe the sound attenuation, the scattering and 
correlation properties of the acoustic packets and so on. (1.3) 

For convenience in comparing these, we have collected n = k / k ,  y is the adiabatic exponent, = cdc,; Ht is the 

the corresponding expressions for the frequencies 7-I 
Hamiltonian for turbulent pulsations of an incompres- 

in a table. sible liquid: ' 
1 In the region of weak turbulence [upon satisfaction of H ,  = T ~ ~ l u a l * a > % a & ( i  + 2 - 3 - $ d l  626364. (1.4) 

the criteria (9) and (1011 the interaction of sound with 
in which sound appears first in the frequency evolution of the 

packet. It becomes decisive when Tir. ar = ~~(cpiscpzc + ~ 1 4 ( p n ) *  

E.>p,v,'W (k.L) -".. 
If now rSs <rdiS, i.e., 

E.>p,v:M(k.L) -', M<kL<M Re", 

~ . > ~ , v , l ( k , L )  M-' Re-', k J > M  Re", 

Hst is the Hamiltonian of interaction of the sound with 
turbulence; 

then the role of turbulence is reduced merely to the iso- + +SW,., 12,,, (ak + b:k)s (t - i  - 2  + 3  + 4 ) d k d f d 2 a d 4 .  
tropization of the packet and is determined in other re- 
spects by the kinetic equation of the interaction of sound (1.6) 
with sound. The first component describes the scattering of sound 

If we consider the problem of the spectrum of acous- by the turbulence, the second, the processes of emis- 

tic turbulence, then the Zakharov-Sagdeev spectrum sion and absorption of sound by the turbulence. The 

E , - & ~ ~  will be produced in the region (9), (10) and (13) matrix elements have the form 

as the exact solution of the kineti;equation. If the i (k,k,)"= Sl2,?4 = -2- o'/' q l 2  + 4). sound intensity is large surd the criterion (91, (10) is 
violated, a region of strong acoustic turbulence begins, Ws, n p  = - ,,, 1 p':: - )"' [(*aq) (mh) + (%a%) (%mq)l. 

(1.7) 

the effect of the vortices can be neglected1) and the 
Kadomtsev-Petviashvili spectrum E,-&-' will be real- Components of the type ~ ( " ' ~ a , * b " + ~  and ~n)a2a*2bn+1, 
ized. which are not significant for what follows, are not writ- 

In the study of the questions enumerated above, we ten out in Eq. (1.7). They differ from Saa*bb* and 

started from the Hamiltonian equations of motion wa2aZ*b by the small parameter bn(ks/p,cs)"h. 

idt=6H/6ak', i6k-8H/6br' (14) 2. Statistical description 

for the vortical, ell, and potential, bk, barotropic flows Just a s  before,' we use the canonical diagram tech- 
of a compressible fluid. The Hamiltonian of the prob- nique of Wyld for the statistical description of the non- 
lem is given in Sec. 1-formulas (1.1)-(1.7). Here the linear fields 4, b,. This was analyzed in detail in Ref. 
diagram technique of Wyld is described briefly. We use 8.. The averaged equations contain the pair correlations 
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n, and N,: 

as  also the Green's functions G,,g,, which have the 
meaning of the linear response of the system to the 
forces F, and f,: 

8(q-q')Gq=(6bq/8Fq,), 6 (q-q1)gq=<6ad6fq,), 

These quantities satisfy the Dyson equations 

Gq-'=o-0,-Zp, gq-'=o-uq, 
(1.10) 

Nq= I Gq I 'mq, nq= I gq i 'cpq7 

where C,, o,, iP,, cp, are the sums of the corresponding 
irreducible diagrams. In particular, ImC, has the 
meaning of the damping decrement of the plane wave. 

If the interaction is in some sense weak, then we can 
limit ourselves in the series for Z and 9 to diagrams of 
second order in the vertices, which correspond to the 
kinetic-equation approximation for sound. In this case, 
cP, describes the arrival terms of this equation. For 
the study of sound propagation in a turbulent medium, 
this approximation frequently turns out to be insufficient 
because of the fact that the hydrodynamic turbulence i s  
strong. 

Difficulties develop here that are specific for the the- 
ory of strong hydrodynamic turbulence of an incompres- 
sible liquid, in particular, the long-wave divergences 
of the integrals, which are connected with the fact that 
the fundamental interaction reduces to the kinematic ef- 
fect of transport of the small-scale vortices by large- 
scale motion. Since these difficulties have not been en- 
tirely overcome at the present time, we shall use an 
approximate description of hydrodynamic turbulence: 
we shall sum the most strongly diverging "transport" 
diagrams exactly as  was done in the work of one of the 
 author^,^ after which the diagram interaction of the vor, 
tices will be taken into account in the "direct interaction 
approximation," limiting ourselves to some simple se- 
quence of diagrams. In this approximation, the diagram 
equations have solutions in the form of a Kolmogorov 
spectrum: 

where (...) denotes averaging over the ensemble of tur- 
bulent velocity v(r, t) at an arbi!rary point r, t, and 

2. SCATTERING OF SOUND IN A TURBULENT MEDIUM 

1. Scattering of a p h z e  wave. The damping decre- 
ment rk =Cf ,% of a plane wave in a turbulent medium 
appears first a s  a result of the direct absorption of 
sound by the turbulent pulsations and, second, because 
d scattering of the sound. The contribution to C;, due 
to direct absorption of sound that arises from the dia- 

grams containing the vertex W, was analyzed in detail 
previously.' The diagrams Ckew, which describe the 
scattering of sound by turbulent pulsations, have the 
following structure: 

Diagrams with a single vertex S (for example, 1) de- 
scribe the Doppler shift of the frequency k(v,) and are 
equal to zero in a system of coordinates where the li- 
quid is at rest on the average. 

In the region k, L<1, diagrams of the series (2.1) 
make no contribution to Z,, because of the laws of en- 
ergy-momentum conservation, under the assumption 
that there are no turbulent pulsations with scale kL < 1. 

At 1 < k, L < M-', i t  is necessary to take into account 
only diagrams of the order of s2: numbers 2, 3, etc., 
from series (2.1). It is not difficult to see that the sum 
of this series has the form 

X6 (k-k'-k")6 (a-a'-o")dak' do' dak"do".. (2.2) 

Here la is the pair correlator of the velocity: 

In the calculation of the correction to the sound dis- 
persion law Aw, =ReCk, ,,,, it is necessary to substitute 
the complete Green's function in (2.2). As a result, 

We now estimate ImZ on the mass shell, substitut- 
k, wk ing the bare Green's funchon in (2.2). The principal 

contribution to the integration over k" is made by the 
energy-containing region k"= L-'. As a result, 

In the scattering processes, the frequency and, conse- 
quently, the energy of the sound is conserved (the in- 
elasticity is small in the parameter M), broadening of 
the Green's function and of the pair correlator in w is 
due to loss of phase coherence. Strictly speaking, the 
time 7= is the time of phase correlation and is not at 
all connected with the sound energy dissipation in the 
turbulent medium. 

We now obtain the estimate of (2.5) qualitatively, con- 
sidering the sound scattering from vortices of scale k;'. 
In a single scattering act, the phase of the wave is al- 
tered, because of the Doppler frequency shift, by an 
amount 

k* 
Acp =- Y (k,L) -", 

k. 

where vT(kT~)-1'2 is the circumferential velocity of the 
vortex. In a time 7, N = ~ ~ C J  acts of scattering take 
place and the phase change increases by N'". The time 
of loss of the correlations in scattering from vortices 
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of scale k-,' is determined from the condition ~ c p ~ ' " =  1: 

I; (k,) - -~r ; ' ( k ; )  = ~ / u L M /  ( k ; ~ ) " .  (2.6) 

The principal contribution to rk(k,) is made by vortical 
motion with characteristic scale k,-L-', which corre- 
sponds to the estimate (2.5). 

In the shorter-wave region, when (k, L M )  > 1, the 
physical picture of the scattering of the wave is changed, 
since the Doppler phase shift by a single vortex of en- 
ergy-containing scale exceeds n. Formally, this is ex- 
pressed by the fact that the diagrams (2.1) with two, 
three and more vertices S turn out to be of the same 
order of magnitude. The principal contribution to Zk , 
is made by those diagrams for which the external mo- 
mentum is carried along the "backbone" of the sound 
Green's function, oriented from left to right, while in- 
tegration is carried out over the remaining turbulent 
lines %, g, in the energy-containing region Lk= 1. This 
sequence is summed by the method described in Ref. 9. 
As a result, 

This Green's function describes the transport of the 
field of the sound wave a s  a whole with random velocity. 

The width in w determines the lifetime of the phase 
correlations T;&= ksvT. However, A,,,# c,~,,, because 
the sound wave vector is conserved in the approxima- 
tion (2.7) corresponding to transport of the spatially 
homogeneous velocity field. Therefore, the correlation 
function K(R, 0) is proportional to exp(ik,R) and the 
spatial correlation of the phases is not destroyed. 

2. Spatial cowelation length. At k, LM << 1, the dis- 
tance at which the phase of the wave falls off by n, 

A = C . T ~ ~ .  (2.8) 
is greater than the energy-conserving scale L and is 
the correlation length A,,. At kWM> 1, we cannot as- 
sume the quantity (2.8) to be the correlation length, as 
has already been noted above, since the almost homo- 
geneous transport of the scale (2.8) by vortices of the 
scale L, making the principal contribution to T,,, does 
not lead to a destruction of the spatial correlations. We 
refine the approximation (2.7) seeking Gkw in the form 

The diagram series for 2 has the form 

where the vertex-triangle is &2,346(k2 -k4)6(w2 - o,) and 
differs from the usual vertex-point, which has the form 
Sl,,,,b(ql -9,  -9, -9,). Subtraction leads to cancellation 
of terms in 5 from the region of integration over kT<u 
which is determined from the condition 

x c * = ~ L : ~ .  (2.10) 

With account of this, estimate of C from the first  
bracket gives 

All the remaining diagrams here are of the same order 
of magnitude. Thus, 

Ek,., = (kv,) (kLM) -'I4 . (2.12) 

This contribution to 2 arises because of the spatial in- 
homogeneity of the velocity field and therefore leads to 
a destruction of the spatial correlations: 

~ , . . ( k )  = c. E ~ ; : = L ( ~ L M ) - " +  . (2.13) 

We note that A,,=%-', where n is determined from 
(2.10). Thus, A,,, is of the order of the size of the 
vortices which make the principal contribution in the 
destruction of the spatial correlations. 

We now obtain an estimate for A,, qualitatively. It is 
obvious that vortices with size k, A,, <1 do not destroy 
the phase correlations at. a distance A,,. Their effect 
reduces to the uniform transport of the sound field in 
the volume A:,, while the shortwave vortices with k, 
kTA,,>l weakly disrupt the correlations [see (2.60)]. 
Therefore, we can understand why the basic contribu- 
tion to A,, is made by vortices with size k,A,,= 1. 

From the qualitative estimate of (2.6), we obtain the 
following for the correlation length: 

Substituting bib, as  k, and solving the resultant equation 
relative to A,,, we obtain the desired estimate (2.13). 

3. Evolution of acoustic packet in directivn. With the 
help of the nonstationary kinetic equation 

we obtain the evolution of the acoustic packet in the lin- 
ear  approximation from the intensity of the sound. At 
k, L<1, there is no sound scattering at all; in the range 
M < k, L M < 1, as has already been noted, we can limit 
ourselves to diagrams that are quadratic in the vertices 
S. Using the expression (2.2) for rk and summing the 
diagram series for ekw in analogous fashion, 

we obtain 

X G  (k-k'+kN) 6 (oh-a,-+of') dk' dk" do". (2.15) 

This equation was discussed previously in the work of 
Krasilnikov and Pavlov., For isotropic turbulence in 
the approximation M << 1, this can be simplified: 

dNr i - =- j ~ . . ~ . ~ .  ( 4  (N.-N~,)6(k-k'+k") 
dt 16n" 

x 6 (or-o,. +on) dk' dk" do". (2.16) 
At the beginning of this section, in the calculation of 

the damping decrement of a plane wave in scattering 
processes, it was shown that the principal contribution 
to I?, is made by large-scale vortices, which lead to 

844 Sov. Phys. JETP 48(5), Nov. 1978 V. S. L'vov and A. V. ~ikhaylov 844 



scattering at small angles of the order of (k~)- ' .  
Therefore, we can show that the diffusion approxima- 
tion is valid over the  angle^,^ i.e., the process of scat- 
tering at large angles i s  the result of small angle scat- 
tering in stages. However, analysis of Eq. (2.16) shows 
that the diffusion approximation over the angles i s  valid 
if the sound wavelength i s  greater than the internal 
scale of the turbulence. The fact is that the contribu- 
tion of the scattering at small angles A0 and the evolu- 
tion of the acoustic packet of width Ak, is strongly sup- 
pressed (as a result of the scattering, the wave does 
not emerge from the packet) if A0 < (~kdk , ) .  There- 
fore, scattering from vortices with k, L > 1 begins to 
play a role in the inertial interval. As a result, the 
evolution i s  essentially determined by the scattering at 
angles A0 of the order of the width of the acoustic pack- 
et: A & A ~  Jk,. Formally, all this means that a strong 
cancellation takes place in the integral (2.16) in the re-  
gion k; < Ak, and the fundamental contribution i s  made 
by kc = Ak,. With account of this, the damping decre- 
ment l?,(k,) of a packet of width Ak, turns out to be of 
the order of 

This result is easily obtained from qualitative consider- 
ations by considering scattering from vortices of scale 
k,=Ak,. Taking it  into account that the peripheral speed 
in these vortices i s  vkT=vT(kT~)-'I2, i t  i s  not difficult 
to obtain an estimate for the scattering angle from a 
single vortex: A ek,= M(kT L) - ' ~ .  By virtue of the ran- 
dom character of the scattering some k:/(k$0,,) acts 
are necessary for scattering at an angle of the order of 
kT/k,. Then the length of the path of the sound relative 
to the scattering processes from the vortices k, has the 
form 

Its corresponding damping decrement, rk (Ak,) 
=c,A-'(k,), i s  identical with the estimate (2.17). It is 
clear from this consideration that we must take L-' as  
k, if Ak,< L-'. Then (2.17) i s  identical with the damp- 
ing decrement of a plane wave (2.5). At Ak,>L-', k, 
=Ak,. For broad angle packets Aka-k, and 

r,=-k.vM ( k L )  -"a. (2 .19)  

This estimate determines the isotropization time of the 
packet. Its corresponding path length determines the 
distance A,, over which the direction of propagation 
changes by an angle of order n: 

k,=LM-'(k.L)-"; (2.20) 

if l,Ak>l (lo i s  the internal scale), then, in place of 
(2.20) we have 

A,.=LM' (L/l,)'''=LM-2 Re-'". 

Here and in (2.20), we have assumed that the isotropi- 
zation length i s  less than the viscous damping length. 

4. Criterion for the transparency of the turbulent 
layer. In propagating through a turbulent layer, sound 
i s  chiefly absorbed by two mechanisms; in the region 
M < k, L < MR~'" ,  as  a consequence of direct absorption 

of the sound by the turbulence, with decrement I', 
=v, L"M~; in the region ks L>MR.el", because of vis- 
cosity and thermal conductivity of the medium. If k& 
<1, then the sound i s  propagated in a straight line and a 
layer of thickness 

k,L<M Re'" 
-'M-' k,L>M ReLh 

turns out to be opaque because of the sound absorption. 

At L-'<k < 1;' i t  i s  necessary to take into account pro- 
cesses of elastic scattering of the sound, which lead to 
a random walk of the phonons in the turbulent medium. 
After traveling a path A,, >>A,,, the phonon moves away 
from the initial point to a distance of the order of 

Thus the turbulence will be opaque if 
LM-''*(kL) -'/a, I t k L t M  Re" 

A=-A,, =(A,.&,.)% = { L - %  ( k )  - k L l M  Re'" 
' (2.21) 

5. Frequency evolution of the acoustic packets. Since 
isotropization takes place rapidly, there i s  sense in , 

limiting ourselves to isotropic distributions in the study 
of the frequency evolution of the wave packets. The 
process of sound scattering from turbulence i s  almost 
elastic, A w  = Mw; therefore the differential frequency 
approximation i s  valid. Averaging Eq. (2.15) over the 
directions, we obtain 

Here 

At k,lo< 1, this expression differs from the expression 
for D, obtained in Ref. 4 with another upper limit of in-. 
tegration in k' (2k, and not a): it i s  obvious that the 
vortices with kf>2kS cannot participate in almost elastic 
scattering because of the energy-momentum conserva- 
tion laws. Taking i t  into account that the basic contri- 
bution to the integral i s  made by the region k'-k,, we 
obtain the estimate 

This diffusion coefficient corresponds to a characterist- 
ic time of change of the distribution function raw =r;iff, 
where 

We obtain this resqlt qualitatively by considering the in- 
teraction with vortices of scale k,'. The change in the 
frequency in the scattering i s  connected with motion of 
the vortices relative to the observer. In a single act, 

Ao. h M 
s - -  
o. c. (k.L)'" ' 

where 5, i s  the fluctuation of the velocity of vortex mo- 
tion over the distance of phase correlation of the sound. 
At ~ L M  <1, it i s  obvious that 5, =vT and AW,/W, 

= M2/(kS L ) ' ~ .  Thus, AW/W is smaller by a factor of M 
than ~ k / k  in a single act (2.23). Therefore, r,,, i s  
smaller by a factor M' than the isotropization decre- 

845 Sov. Phys. JETP 48(5), Nov. 1978 V. S. L'vov and A. V. ~ikhaylov 845 



ment (2.19): 

At k, LM > I  we can not restrict ourselves to the dia- 
grams of the kinetic equation (2.15), i.e., to diagrams 
that are proportional tos2. We sum the entire diagram 
series with the help of the method described in Sec. 2. 
As a result, we find that the estimates (2.19) and (2.20) 
for the elastic part of the scattering do not change. 
Actually, it follows from the qualitative considerations 
given above that the physical picture of elastic scatter- 
ing does not depend on the parameter ~ L M .  

For the diffusion coefficient in the range k, L M > 1, we 
get 

Dk=o.'M"*(kL)"-. (2.24) 

The difference of (2.24) from (2.22) arises because at 
kL M > 1 we have 

o,'v, kLM B,=v,(kLM)-'I' ; Dh = -Mz - 
L 

[ Re ) at JG-~. 

3. INTERACTION OF SOUND WITH SOUND IN A 
TURBULENT MEDIUM 

In the study of the evolution of the sound field, we have 
up to now neglected the interaction of sound with sound 
(ss interaction) in  comparison with the interaction with 
hydrodynamic turbulence. The characteristic inverse 
time of the ss interaction r,, is easily estimated from 
the kinetic equation for the sound: 

at low sound intensities, r,, is small. 

For isotropic acoustic turbulence, the approximation 
used above (which is linear in the sound amplitude) i s  
valid if r,, is less than the sound damping decrement 
due to the turbulence r ,,,, (2.20), i.e., 

where E, is the sound energy density. 

In the opposite case, the ss scattering is decisive. 
Limiting ourselves to the fir st diagrams for Zk and @,: 

we obtain the kinetic-equation approximation for the 
sound.' This approximation is valid if the subsequent 
diagrams, which renormalize the vertex of the ss inter- 
action, are small. For sound with dispersion, propa- 
gating in a nonturbulent medium,' we have 

For an acoustic packet of width Ak, calculation of the 
diagrams yields 

The well-known criterion for the applicability of the 
kinetic equation for sound then follows: r,, < w"(~k)'. 

It can be shown that the length of the ss interaction, 
A,, =c, r;: should be large in comparison with the cor- 
relation length for the phase: A,,=c~w"(~k)~. The 
phase mismatch of the waves in the packet arises from 
the fact that waves with different k propagate with dif - 
ferent group velocities Av,, = wl'Ak. 

In a turbulent medium, the series for has the fol- 
lowing form: 

At kLM <1, the diagrams which contain the turbulent 
lines have an additional smallness parameter: (k, L M ) ~ .  
Calculation of the diagram in the curly brackets with 
substitution of the solid lines N, and G,, which take 
into account the effect of the turbulence, yields the fol- 
lowing criterion for the applicability of the kinetic equa- 
tion: 

I',.cl';rk.vk.LM. 

In the range k, L M > ~ ,  the situation becomes more 
complicated and, as usual, it is necessary to take into 
account the whole series of diagrams in powers of the 
hydrodynamic velocity. It is also impossible to estab- 
lish the fact that the role of hydrodynamic turbulence 
reduces to the renormalization of the functions Nkw Gkw 
and the vertex of the ss interaction. For example, dia- 
grams of the type 

are important. Nevertheless, the whole series of the 
"kinetic" equation can be summed by the method de- 
scribed in Ref. 9, through transition to the "randomly 
moving reference system," which eliminates from the 
Green's function the Doppler shift k.v from vortices 
with scale greater than A,,. As a result, we obtain 
the following criterion of applicability of the kinetic 
equation for sound in a turbulent medium in the range 
k, LM> 1: 

The inequalities (3.3) and (3.4) have a simple meaning- 
the length of the ss interaction should be large in com- 
parison with the length of the phase correlation. In this 
case, the phases have time to become stochastic and the 
kinetic equation is valid. We emphasize that the width 
of the acoustic packet does not enter into the criteria 
(3.3) and (3.4). The randomization of the phase in a 
turbulent medium at a distance A,,, takes place even 
for a single wave. 

It is of interest to express the criteria (3.3) and (3.4) 
in terms of the energy density of the acoustic field: 

In conclusion, we discuss the problem of the spectrum 
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of the acoustic turbulence exci ted by an external source. 
I€ the sound intensity sa t i s f ies  the criterion (3.2), then 
no energy redistribution over the spectrum takes place, 
since the sound attentuation due to turbulence exceeds 
the inelastic scattering of sound (3.1). In t h i s  case, the 
acoustic spectrum outside the  pumping region will be 
"eq~ilibriurn"~: E(w,)-w;~". If the sound intensity ex- 
c e e d s  the threshold (3.2), but all the criteria (3.5) are 
satisfied, then the  interaction of the  sound with sound 
can be studied in the approximation of t h e  kinetic equa- 
tion, and the sound interaction with the turbulence leads 
to isotropization of the acoustic spectrum with a time 
~ - ' = k , v ~ ( k ,  L ) ' ~ ~  [see (2.19)]. In t h i s  case, the isotrop- 
ic spectrum of Zakharov-Sagdeev is establ ished7 

as the  exact solution of the  kinet ic  equation. 

At higher intensities, the criterion (3.5) is violated 
and we fal l  into the  region of strong acoustic turbulence 
where  the  Kadomtsev-Petviashvili  spectrum exists.'' 

"ho ther  viewpoint is expressed in Ref. 5, the authors of 
which assume that the Zakharov-Sagdeev spectrum has a 
much wider region of existence than the region of applica- 
bility of the kinetic equation. 
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Equation of state of molecular hydrogen. Phase transition 
into the metallic state 

F. V. Grigor'ev, S. B. Kormer, 0. L. Mikhailova, A. P. Tolocht?ko, and V. D. Urlin 

(Submitted 23 September 1977; resubmitted 22 June 1978) 
Zh. Eksp. Teor. Fi. 75, 1683-1693 (November 1978) 

The parameters of semi-empirical model equations of state of the solid and liquid phases of molecular 
hydrogen are obtained on the basis of experimental data on the isentropic compression and 
thermodynamic properties at atmospheric pressure. It follows from the equation of state of the molecular 
phases, which is derived in the present paper, and from the equation of state of the metallic phase as 
given by Kagan, Pushkarev, and Kholas [Sov. Phys. JETP 46, 51 1, (1977)J that the phase transition into 
the metallic state at T = 0 K can take place at a pressure from 2 to 4 Mbar. Two variants of the phase 
diagram of the solid and liquid molecular and metallic hydrogen are calculated. 

PACS numbers: 64.30:+ t, 64.70.Kb, 8 1.30.D~ 

1. INTRODUCTION molecula r  phase a t  high p r e s s u r e s ,  and i t s  ze ro th  iso- 
t h e r m ,  are determined f r o m  the aggregate  of a vari- 

One of the essen t ia l  p rob lems  in the study of metal l ic  a b l e  and experimental  data ,  while the theoret ical  con- 
hydrogen, is the determinat ion of the s t a t e  p a r a m e t e r s  cep ts  are u s e d  to construct  a physically substantiated 
at which the molecular  hydrogen becomes metallic. model-deduced semi-empi r ica l  equation of s tate .  
The ra ther  wide range of theoret ical  es t imates  obtained 
until  recently f o r  the possible  t ransi t ion p r e s s u r e s  was  In contrast to  the preceding  paper^,"^ we take the ro- 
due mainly to  the uncertainty of the thermodynamic po- tation into account in the equation of s t a t e  of molecular  

tential of molecular  hydrogen, which could not be cal- phase. The  zero th  isotherm and the zero-point oscil- 
culated reliably enough theoretically. Therefore  in this lation energy  in the equation of s t a t e  of the metal l ic  hy- 

paper ,  just as b e f ~ r e , " ~  the equation of s t a t e  of the drogen are taken i n  accord  with the da ta  of Kagan, 
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