
eigenfrequencies w,,, approach one another and for 
x = -0 they merge (w,,,= - iy) and then they diverge 
along the imaginary axis. Before the onset of the in- 
stability, when w, goes over to the half-plane Im w>O, 
the other frequency is w,= - 2iy. The main contribution 
to fluctuations comes from the frequency w, closest to 
the imaginary axis. In calculations of fluctuations a t  
the instability threshold we find from Eq. (19) that the 
only important part  of the trajectory is 

Since 

We have deliberately ignored limitation of fluctuations 
by the nonlinear effects because the mechanism of such 
limitation (and the corresponding criterion) is different 
for each instability. 

 his is pointed out in Ref. 1 for one specific instability. The 
evolution of noise with time after an abrupt application of a 
pump field exceeding the parametric instability threshold of 
a plasma is considered in Ref. 2. 

2)The opposite case (instantaneous transition to an unstable 
state) is trivial; i t  follow from Eq. (13) that the intensity of 
the fluctuations does not change during the transition time. 

the contribution of the oscillations with the frequency 
w, is exponentially small and can be ignored. Allowance 
for just one branch w, gives the results obtained above; 
all  that is necessary is to introduce in Eq. (18) a cor-  
rection factor -1 because the fluctuations in the "initial" 
state a t  t = - * may include comparable contributions 
from both eigenfrequencies. [It is not possible to re -  
duce the problem to one branch if the merging of the 
eigenfrequencies occurs a t  a distance 5 (y/r)'12 from 
the instability threshold and, in particular, when it  
occurs a t  the threshold itself. This occurs if x and y 
vanish simultaneouslp. ] 
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The structure of actuating shock waves in a completely ionized plasma with collisions is calculated. Two 
limiting cases are considered, that of a magnetized and of an unmagnetized plasma. The processes 
determining the structure of the front of an actuating shock wave in an unmagnetized plasma are Joule 
dissipation and Hall currents. The width of the shock wave front in this case is determined by Joule 
dissipation and is equal to the diffusion length of the magnetic field. The magnetic field vector behind the 
shock wave front may rotate, but (with an accuracy to Q e ~ e  < < 1) remains in the plane of the initial 
direction. In the case of a magnetized plasma, the end of the magnetic field vector at the shock front 
rotates and describes a cone-like helix which expands behind the wave front. The number of revolutions 
along the helix is proportional to the degree of magnetization of the plasma. For a magnetized plasma, 
the processes defining the structure of the shock wave front are the electronic thermal conductivity, the 
electron-ion temperature relaxation and the dispersion due to the Hall terms and to the thermal emf. 
Correspondingly, the width of the front of an actuating shock wave in a magnetized plasma is equal to the 
scale of the electronic thermal wnductivity. The values of the critical Mach numbers for which 
isomagnetic discontinuities arise in the shock wave front are found. The structure of the front is 
investigated in these cases. 

PACS numbers: 52.35.T~ 

INTRODUCTION is the study of the structure of actuating shock waves in 
a completely ionized plasma with collisions, within the 

Those shock waves in magnetohydrodynamics in which framework of the hydrodynamic model with classical 
the magnetic field ahead of the wave front is directed transport coefficients.' A similar problem on a shock 
alongthenormal totheplaneof thefront ,  whilebehind waveinaplasmawithoutamagneticfieldandfora 
the shock-wave front there is a component of the mag- transverse shock wave was solved in Refs. 2 and 3. 
netic field parallel to the plane of the front, are  called' Some partial solutions for  actuating shock waves were 
actuating shock waves. The purpose of the present work obtained in Refs. 4-8. 
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As i s  well known, the boundary conditions for  a nor- 
mal shock wave (the magnetic field vector is directed 
along the normal to the plane of the front) permit solu- 
tions either in the form of the usual gasdynamic dis- 
continuity, and then the magnetic field no longer has an 
effect on the properties of the shock wave, completely 
dropping out of all the equations, o r  else the magnetic 
field behind the front of the shock wave changes direc- 
tion-the transverse component i s  actuated. In the lat- 
ter case, the structure of the shock wave front is such 
that along with the rotation of the magnetic field behind 
the front, the direction of the gas flow also changes, re- 
maining parallel to the magnetic field. Simultaneously 
with the rotation of the magnetic field, the transverse 
component of the field that is generated rotates about 
the initial direction through an angle that is larger the 
greater the degree of magnetization of the plasma. 

The structure of the actuating shock wave front is 
different, depending on the degree of magnetization of 
the plasma. ' In the case of an unmagnetized plasma, the 
fundamental dissipative process is Joule dissipation, 
and the width of the shock wave front i s  of the order of 
the diffusion length of the magnetic field. Depending on 
the intensity of the shock wave, the structure of i ts  
front is either continuous or, at sufficiently large val- 
ues of the Alfven Mach number, has a weak isomagnetic 
discontinuity, the structure and width of which are  de- 
termined by processes of electronic thermal conductiv- 
ity and electron-ion heat exchange. At still higher in- 
tensities of the shock wave, a strong isomagnetic (but 
electronically isothermal) discontinuity appears on the 
front of the shock wave. The structure and width of this 
discontinuity a re  determined by processes of ionic vis- 
cosity and thermal conductivity. 

In the case of a magnetized plasma, the fundamental 
dissipative processes which describe the width of the 
shock-wave front a re  the electronic thermal conductiv- 
ity and the electron-ion heat exchange. In comparison 
with the case of an unmagnetized plasma, dispersion 
plays a significant role here. The dispersion processes, 
which lead to polarization rotation (oscillations) of the 
magnetic field in the plane of the shock wave front, a re  
the Hall currents and the thermal emf. 

1. SETUP OF THE PROBLEM. INITIAL EQUATIONS 

We consider a plane stationary shock wave propagat- 
ing with the velocity v, along the x axis in a simple 
(ye  = y i  = 5/3), completely ionized plasma. The magnetic 
field ahead of the shock front is normal to the plane of 
the front, H={H,, 0,O). Transforming a s  usual to a set  
of coordinates moving with the shock front, we have a 
flow of equilibrium plasma, flowing into the front of the 
discontinuity with velocity v, from x =  -m (we denote the 
equilibrium state at x = -- by the index 1) and flowing 
out at x = +m (index 2). 

As will be shown, the dispersion effects associated 
with the departure from quasineutrality a re  insignificant 
in the considered case. Therefore, we shall consider 
the plasma to be quasineutral everywhere in what fol- 
lows, setting n, =n,= n. In the next approximation in 
the small ratio of the Debye radius to the width of the 

shock front, these effects can be taken into account in 
the same fashion a s  in Ref. 3. 

We assume the problem to be one-dimensional, set- 
ting V = {d/dx, 0,O). Then, from the Maxwell equations, 

4n 
rot E-0, rot H = - j ,  div H=O 

C 

together with the boundary conditions at x =  --, 
ve=v'= (u,, 0, 01, H= ( H , ,  0, 0), 

T,=T,=T, ,  n=n, 

i t  follows that 

As the equations of motion for  a medium in a plasma 
with collisions, we use the equations of two-fluid hydro- 
dynamics for electrons and ions. The complete set  of 
such equations and the values of the kinetic coefficients 
were obtained by Braginskii.' Taking i t  into account 
that v: = v:= v follows from the equation of continuity 
from the condition of quasineutrality, we write down 
the first  integrals of the equations of continuity, mo- 
mentum flux conservation and energy flux for the entire 
plasma: 

The equations of motionfor the electron component and 
the equation of heat conduction for  the ionic component 
will be 

dv dq, dv,' n  
3 C d T , + n ~ , - + - - n , , ' - = 3 8 a -  (T,-T,).  (1.11) 
2 dx & & dx Z. 

Here C ,  P, Q,, Q,, S a re  constants of integration, deter- 
mined from the boundary conditions; n:, i s  the viscous 
s t ress  tensor of the ionic component, 92' are  the heat 
fluxes of electrons and ions, and Re is the force of fric- 
tion acting on the electrons. Terms with electron vis- 
cosity a re  small relative to (m ,/m = E << 1 and are  
omitted. 

Equations (1.2)-(1.11) represent the complete set  of 
equations for the variables H,, H,,n, v, v:', T,, T,. 

2. DIMENSIONLESS EQUATIONS. BOUNDARY 
CONDITIONS 

Just  as in Ref. 3, we transform to dimensionless vari- 
ables 

833 Sov. Phys. JETP 48(5), Nov. 1978 M. A. Liberrnan 833 



O=V/UI,  ~ . , i = v : . ~ / v ~ ,  p,,,-v,'"/w, 

(2.1) 
h ,  .-Hv. =/Hi,  8.. i-T., JT,, ~ = x / A ,  

where the index k = 1 or 2, depending on whether the 
quantities are  made dimensionless relative to the equi- 
librium values of the variables ahead of (k = 1) or  behind 
(k = 2) the shock front. The Alfven (Ma,= vk/va(k)) and 
acoustic (M,=v,/c,(k)) Mach numbers are defined as  in 
Ref. 3. 

We write down Eqs. (1.2)-(1.11) in dimensionless 
variables (2.1) with k = 1 for the equilibrium state 2. It 
i s  obvious that in state 2 we have A,= A, = &, pe= pi, 
0, = 0, = 0,. Elminating the dimensionless density and 
the transverse components of the velocity from the 
equations, we obtain a set of algebraic equations which 
connect the values of the equilibrium variables ahead of 
and behind the shock front, i.e., the boundary conditions 

hU2 (02-IIM.,') =hZ2 ( 0 2 -  I/M.,') =O, (2.4) 
where % = h$+ h:,. 

One root h,=h,,=O of Eq. (2.4) refers to the gas-dy- 
namic shock wave in which the flow i s  everywhere pa- 
rallel to the magnetic field and does not interact with it. 
The second root of this equation w, = 1/~,2,  corresponds 
to the actuating shock wave. 

From the necessary condition of stability, which re- 
quires that the shock wave be a compression wave with 
%>n, and v,<v,, i.e., w,<l and %>0, we obtain the 
admissible region of change of the Mach numbers: 
M, > 1 and M, > 1. It can be shown that the temperature 
and the entropy here increase through the shock front, 
i.e., 8 ,>1  andO,w,>l, where 

The region of change of the Mach numbers, corre- 
sponding to the actuating shock wave, i s  given by the 
condition h2 >O and w, < 1. Substituting these inequalities 
in (2.2)-(2.4), we obtain 

I tM. , ' t4Mi21(Mi'+3) .  (2.6) 

Thus the admissible values of the Mach number for the 
actuating compression shock wave i s  

The corresponding region of change of the Mach numbers 
on the @I:,,M:) plane is shown in Fig. 1. 

For the Mach numbers in the outgoing flow (behind the 
shock front), M, =v,/c,(2), M, =v,/va(2), we find: 

M.,1=l, M,1=9MtZI[ ISMa1'-6Mai2+5(Ma11_1) 'Mi'] .  

Then the equation of the curve on the plane (M2,,,M;) cor- 
responding to the given value of M, is 

M,'=3M.,'M,'(SM,,'-2) /[9-5M2'(M.,Z-I)']. (2.7) 

It follows from (2.7) that the admissible limits of varia- 
tion of M,, are 1/5 c M: < a. We also note that the maxi- 

FIG. 1. Region of change of the Mach numbers of the actuating 
wave, allowed by the boundary conditions 1 6  M i i s  4, 1 G M: 
< .o. The two lines on the drawing with the asymptotes Mi, 
= 5/2 and M:, =1+ 3 / 6  at Mi -- are the levels of the critical 
Mach numbers M; and M$ corresponding to the values M i  
= 1 and Mi =4/5, respectively. 

mum value of M: at a given M, is achieved at M, - -, 
i.e., at 8, = 5M:1/6M: =0, and i s  equal to M:,(p, = 0) 
= 1 + 3 / ~ , 6 .  

From Eqs. (2.2)-(2.3), we have 

It then follows that the maximum value of % at fixed M, 
in the region (2.6) is 

Thus h, changes from h, = 0 at M, = 1 to % = 312 at M, - m. 

The values Mi, = 5/2 and Mi =4/5 correspond to the max- 
imum value of 4. 

3. STRUCTURE OF THE SHOCK WAVE IN AN 
UNMAGNETIZED PLASMA 

Since the form of the equations, the kinetic coeffici- 
ents and, consequently the processes which determine 
the structure of the shock wave are different in the 
cases of magnetized and unmagnetized plasma, we con- 
sider these two limiting cases separately. We denote 
the degree of magnetization of the ions by ( ~ , 7 , ) - ~ =  6, 
where 52, and 7, a re  the cyclotron frequency and the 
time of Coulomb collisions. For electrons, we have 
then (S1,7,)-' = ~ 6 .  

We consider the case of a completely unmagnetized 
plasma, i.e., we require that the inequalities 6 >> 1 and 
c6>> 1 be satisfied over the extent of the entire shock 
front, both in state 1 and in state 2. We transform in 
(1.2)-(1.11) to dimensionless variables and, eliminating 
the density and the transverse components of the elec- 
tron velocity, we obtain the equations which describe the 
structure of the shock wave. 

Scales that are  characteristic for different processes 
appear in this case in the equations for the dimension- 
less  variable^.^ The scale A,= Z/M corresponds to the 
ion viscosity, while A,= E ~ M  I/M, and A,=M 61 corre- 
spond to the dispersion associated with electron inertia 
and Hall terms, respectively, the scale A,=E~~MI/M: 
corresponds to joulean dissipation and A,,= Z/&M3, A,, 
= Z/M~, A,=M I/& corresponds to the electronic and ionic 
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thermal conductivities and the thermal exchange, re- We now investigate the obtained solution. We consider 
spectively, where I is the path length. (3.5) at the singular points 1 and 2. For k=  1 or 2, we 

For an unmagnetized plasma, i.e., at ~6 >> 1 and 6>> 1, have 

the greatest scale will be A, and, consequently, in this 
a ) ( k ) = 1 = - { 5 + - * 3 1 i - & 1 ) .  1 3 

case, both the structure and the width of the shock front 8 Mkz (3.9) 

are determined by the joulean dissipation. It is easy to 
see that, with accuracy to small quantities of the order It follows from (3.9) that the integral curve, which 

of ( ~ 6 ) - ~ < <  1, the electron and ion temperatures are leaves point 1, is always supersonic (L,) since M, > 1 

equal on the scale A,. Setting 0,=0, = 0 ,  and omitting and we must choose the plus sign in (3.9) to satisfy the 

terms that are small in E, 6", (&6)-', we obtain the fol- condition w(l)= 1. The integral curve ending at point 2 

lowing equations for the structure of the s h o ~ k  wave: is supersonic and belongs to L+  at M, > 1, and is  subson- 
ic L, at M, < 1. Since the value of w on the different 

Here the index k = 1 or  2 and depends on which dimen- 
sionless variables are used. At k= 1, we have h, = (A2 
+ p2), = 0 and at k = 2, = (A2+ p2),. 

The Hall terms in the equations of motion for elec- 
trons (the corresponding scale is A,) have been left in 
(3.1)-(3.4). As is well known,1° the corresponding 
terms lead to dispersion of the magnetosonic waves 
propagating at the angle 0 >> E to the magnetic field. 
For the actuating shock waves, at Ma- 1, we have A, 
=M6l=c/wP,, where w,, is the ion plasma frequency. 
Since the scales of the other possible dispersion me- 
chanisms, which correspond to electron inertia c/o,, 
and charge separation va/w,,, are considerably smaller, 
we can neglect them in the considered problem. 

In (3 .l) and (3.2), we find 

We transform in Eqs. (3.3) and (3.4) from the variables 
h,, h, to the variables h, = h sincp, h,= h coscp. Then we 
get the following equations for h2 and cp. 

Substituting w(h2) and 8(h2) and integrating, we obtain 
the solution or the actuating shwk wave: 

It is  easy to see that the obtained solutions for h2, 
w(h2), 8(h2) etc., satisfy all the boundary conditions. 
It follows from (3.8) that the total angle of rotation of 
the magnetic field vector in the plane (h,, hd is a small 
quantity Acp = 0(1/&6). Thus, the change in direction of 
the magnetic field vector in the case of an unmagnetized 
plasma occurs in one plane, with accuracy to 0(1/&6). 

branches i f  (3.5) at one and the same h2 are connected 
by the conservation laws, a transition is possible in the 
structure of the shock front from one branch (L,) to the 
other (L, ) through the gasdynamic discontinuity, which 
we can determine by direct calculations similar to those 
performed in Ref. 11. 

The mentioned gas-dynamical discontinuity is an iso- 
magnetic discontinuity, since the magnetic Reynolds 
number at such a discontinuity is  small, in view of 
smallness of all the characteristic scales of the physi-' 
cal processes in comparison with the scale of Joule 
dissipation. 

We rewrite Eq. (3.7), omitting terms that are small 
in 1 / ~ ~ 6 ~ ,  in the form 

Differentiating Eqs. (3.1) and (3.2) once and twice, re- 
spectively, and repeating the calculations performed in 
Ref. 3, we find that the condition for entropy growth, 
which requires the monotonicity of dw/dg <0, leads to 
the necessity of satisfaction of the inequality 

for all w. Considering (3.10) at the singular points 1 
and 2, similar to Ref. 3, we find that (3.10) i s  always 
satisfied at point 1, since M, > 1, and at point 2 at 
M,>l. In the case M,< 1, the inequality (3.10) is  vio- 
lated and we must introduce the isomagnetic discontin- 
uity in the structure of the shock fronL3 The form of 
the function h2(w) for the cases M, > 1 and M, < 1 is 
shown in Figs. 2a and 2b. 

Linearizing Eq. (3.7) in the vicinity of the singular 

FIG. 2. Form of the function w(h2)  for a) purely resistive 
structure of the actuating shock wave at M2 >1, and b) struc- 
ture of the actuating shock wave with isomagnetic jump at 
M2 <1; w 3 =  ( ~ i +  3) /4~: .  
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point 2, we obtain 

where const > C. Since the limit cycle h 2  = h : a t  M2 < 1 
on the plane (h , ,  h,) i s  unstable a s  x - + a ,  the integral 
curve does not approach it. Therefore solutions of the 
form (Fig. 2b) 1 - a t - b t - 2  o r  l - a n - b " - 2 a r e i m -  
possible. The only possible solution i s  1 -a - 2 (see 
Figs. 2a, b). 

To find the structure of the isomagnetic discontinuity, 
we must rewrite the initial equations in dimensionless 
variables, referred to the state behind the wave front, 
setting h = 1. The most important of the dissipative 
processes determining the structure of the isomagnetic 
discontinuity a r e  the electronic thermal conductivity 
and the electron-ion heat exchange, which have a char- 
acteristic scale of the order of 1 2 / & .  It was shown in 
Ref. 3 that a t  4/5 < M: < 1 the isomagnetic discontinuity 
i s  a weak one with width, according to Prandtl 

At M: < 4/5 an internal electronic isometric discon- 
tinuity ar ises  inside the isomagnetic discontinuity, the 
structure of which i s  determined by the processes of ion 
viscosity and thermal conductivity. The equations and 
solutions for the structure of both "weak" and "strong" 
isomagnetic discontinuities agree with those obtained 
in Ref. 3 (see Figs. 8 and 9 of Ref. 3). 

Setting MZ2= 1 and MZ2=4/3 in Eq. (2.6), we obtain 
the equation for the line of critical values of the Mach 
numbers on the plane (Ma12, M:)-see Fig. 1. For Ma: 
<Ma:@,) the structure of the shock wave i s  purely re-  
sistive, while for MalT> M,,>M,," there i s  a weak iso- 
magnetic discontinuity in the structure of the shock 
front, and a t  Ma1>MalT a strong isomagnetic discon- 
tinuity. The values of the critical Mach numbers a t  0, - 0 a r e  the following: 

We investigate qualitatively the structure of the shock 
wave and the behavior of the integral curves. As fol- 
lows from Eqs. (3.3) and (3.4), there i s  a singular point 
(0,O) on the plane (h,, h,) and a limit cycle, determined 
by the relation w(h2) = 1/Ma12-a circle of radius h: 
with center a t  the origin of the coordinates. The char- 
acteristic number a t  the singular point i s  

Thus, the singular point 1 i s  an unstable focus. Since 
E 6 >> 1 in the considered case of an unmagnetized plas- 
ma, i.e., A, >>A,, i t  follows that I~ek,,,l >> Imk,,,. It 
then follows that the motion in the (h,h,) plane i s  
aperiodic-the oscillations of the direction of the trans- 
verse component of the magnetic field vector, which 
ar ise  because of dispersion, a re  suppressed by the 
strong Joule dissipation or, as was shown above, the 
total angle of rotation of the magnetic field vector in the 
plane of the shock front i s  a small quantity, of the 

' 

order of 1 / ~ 6 .  

I dh' 
I== 

1 

FIG. 3. Field of the inte- 
gral curves on the (h2 ,  w) 
plane of Eqs. (3.111, 
(3.14) at M L < ~ M : / ( M ~ + ~ )  
= 1/03. 

For a qualitative investigation of the behavior of the 
integral curves, we consider a model problem, re-  
taining in Eqs. (3.1)-(3.4) only the dissipative terms 
with the ion viscosity and Joule losses. We have 

Eliminating the temperature terms from (3.12) and 
(3.13), we find 

We now investigate the behavior of the integral terms 
of Eqs. (3.11) and (3.14) on the (hZ, w) plane. As  i s  
seen, in the region of the gasdynamic shock wave, a t  
M,,: > ~M;(M: + 3), the isoclines dh2/dx = 0 and dw/& 
= 0 do not intersect a t  h 2  > 0 and w > 0 and, consequently, 
the only possible solution i s  a gasdynamic shock wave 
(Fig. 3). Here the point 1 i s  an unstable focus, while 
the point 2 i s  a saddle point (Ma: = ~ $ 4 ~ :  = (M1 + 3)Ma12/ 
4M12> 1). In the region of Mach numbers corresponding 
to the actuating shock wave, i.e., a t  M , , ~ < ~ M ~ ( M ~ ~ + ~ ) ,  
the point 1 i s  as before an unstable focus (Fig. 4), while 
the point 2GD, which corresponds to the gasdynamic 
shock wave, i.e., h2 = 0, represents a stable node 
(Ma:< 1), while the point 2AC, which corresponds to 
the actuating shock wave, i s  a saddle. Obviously, the 
se t  of integral curves that enter into the point 2GD, i s  

FIG. 4. Field of the integral curves on the ( h 2 ,  w )  plane of 
Eqs. (3.11) and (3.14) for M:~ < 4 ~ f / ( M ;  + 3). The point 2AC 
corresponds to the state behind the front for the actuating 
shock wave, the point 2GD-to the state behind the front 
corresponding to the gas-dynamical shock wave with h2 = 0. 
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evidence of the ambiguity of the structure of the gas- 
dynamic shock wave in the region M a t  < 4Ml2(M; + 3), 
i.e., of instability of the solution with the state behind 
the front, corresponding to h2  = 0 in this region. It 
then follows that a t  M,: <4M12/(M12+ 3), only the so- 
lution corresponding to the actuating shock wave i s  rea- 
lized. 

4. STRUCTURE OF THE SHOCK WAVE IN A 
MAGNETIZED PLASMA 

We now consider the case of a strongly magnetized 
plasma, i.e., we shall assume that = 6 << 1 
everywhere and, correspondingly, (Q,T,)'~ = 66 << 1. In 
this case, we must take into account the anisotropy of 
the transport coefficients for the plasma. Here it i s  
convenient to introduce a unit vector directed along the 
magnetic field: 

n=H/H=(I f  he) -"'{l,hyhZ), 

and distinguish between the vector components parallel 
and perpendicular to the magnetic field: 

an 
a,, = l+h2. (1 ,  h,, h.1, al=a--au. 

In particular 

For example, for the force of fraction, eliminating the 
currents with the help of Maxwell's equations (1.2) and 
(1.3), we find 

m.cHi h dh, ~ ~ ~ = ~ [ 2 - 0 . 4 9 2 ( h = - - h , 5 ) ] .  4ne z= I+hz dx d x  

Similarly, for the thermal emf, with accuracy to small 
terms of the order of c6,  we have 

Without writing down the entire se t  of equations here, 
we note that since the quantity 1 + h 2  < 5/2, which ap- 
pears a s  a factor in the terms with the electronic therm- 
al conductivity and thermal emf, i s  of the order of 
unity, then the basic dissipative process in the case of a 
magnetized plasma i s  the electronic thermal conductivity 
and the electron-ion heat exchange, which have char- 
acteristic scales of the order of I d & ,  while the Joule 
dissipation, ion viscosity, and thermal conductivity, 
with scales A* = E ~ ~ M , / M , ~ ,  Av- AT, - 1 respectively, a r e  
small in the small parameters E and ~6'. Principal 
among the dispersion mechanisms a r e  the Hall currents 
and the thermal emf with scales A, = M6l and Af = 6 l / ~ ,  
respectively. 

Neglecting the ion viscosity in the scale L/E,  we find 
from Eqs. (1.6) and (1.7), 

the structure of the front of the actuating shock wave: 

dh, dh, h dh, dh, 
A -  - A +  0 , 4 9 A j L  

d z  d.z i + h z ( h z ~ - h u ~ )  

where 

Transforming in (4.4) and (4.5) from the variables h, 
and h, to the variables h 2  and c p ,  we obtain 

It follows from (4.6) that since 0,-M2, the characteris- 
tic scale of change of h 2  i s  actually the scale of the 
electronic thermal conductivity A Te - l/&. Thus, the 
width of the front of the actuating shock wave in a mag- 
netized plasma, i.e., the dimension over which the 
magnetic field, temperature, velocity, etc., change, is  
of the order of the electronic thermal conductivity 
length. The magnetic field vector here in the scale 
2 / &  executes a large number of rotations, of the order 
of 1/66. 

To get the solution, we eliminate 0,. As a result, we 
obtain 

-- 5MbZ dh' { 5: [ d " + w - +  - 
2 dx  2Mmk2 dx 

Thus, for a solution of the problem of the structure 
of the actuating shock wave in a magnetized plasma, 
there i s  a se t  of three equations: (4.6), (4.8), (4.9) for 
the functions w,0,, h2. 

In three-dimensional phase space of w ,  O,, h2, these 
equations have three sinular points. The equilibrium 
state in the incoming flow a t  point 1: 

Eliminating the transverse components of the ion ve- (the dimensionless variables a r e  taken relative to point 
locity, and omitting terms that a r e  small in the pa- 1). Point 2, which corresponds to the actuating sound 
rameters E and 6, we obtain the following equations for wave, has 
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where 0, and h ,  a r e  defined in (2.5) and (2.8). Point 3, 
which corresponds to the equilibrium state behind the 
front for  a gas-dynamical shock wave with Mach number 
M, i s  given by 

o-or- (Mla+3) /4M,', 

The sought structure for the actuating shock wave is the 
integral curve of Eqs. (4.6), (4.8), and (4.9), which 
emerges from point 1 at  x = -a, and enters into point 2 
a t  x = + m .  

We consider the characteristic equation for (4.6), 
(4.8) and (4.9) a t  the singular points. At point 1, we 
have 

The first  factor corresponds to a positive root, since 
Ma,> 1, while one of the other two roots i s  positive and 
the other is  negative. The two positive roots of Eq. 
(4.10) correspond to the two-dimensional surface S,-(1) 
of the integral curves emerging from point 1. Since the 
point 1 is a saddle point on the plane h 2 =  0, only one 
integral curve emerges from it in thedirectionof growth 
of 0, and of decrease of w. 

The characteristic equation a t  the singular point 3 
will be 

The dimensionless variables in the f i rs t  factor here 
refer to state 1, and those in the second to state 3. 
The Mach number in the outgoing stream for the gas- 
dynamic shock wave is 

The root of Eq. (4.11) corresponding to the f i rs t  fact 
is negative in the region (2.6), which corresponds to 
the actuating shock wave. The other two roots a re  
negative at M:> 4/5, ( q <  19/15) and have different 
signs at @< 4/5 (M:> 19/15). Correspondingly, the 
integral curves entering into point 3 fill the three-di- 
mensional region Sg(3) at q < 19/15 o r  the two-dimen- 
sional surface ~ 3 3 )  at @> 19/15. 

The characteristic equation at point 2 (the dimension- 
less  variables refer to state 2) will be 

It follows from (4.12) that at @>4/5 there is a single 
positive root and two negative roots, while at M:< 4/5 
there a r e  two positive and one negative root. Thus at 
M i >  4/5, the integral curves entering into point 2 fill 
the two-dimensional surface S,'(2), while at Mi> 4/5, 
only one integral curve S:(2) enters at point 2 in the 
direction of increase in h2 and decrease in w. 

The picture of the field of the integral curves for the 
case ~ : < 1 9 / 1 5  (i.e., Mt> 4/5 and @> 4/5) is shown 
schematically in Fig. 5. The two-dimensional surfaces 
~ ; ( 1 )  and ~ ; ( 2 )  intersect along the single integral curve 
1-2, which represents the structure of the actuating 
shock wave. In this case, the shock front is formed 
entirely by the electronic thermal conductivity, by 
the electron-ion temperature relaxation, by the Hall 
effect, and by the frictional forces between the elec- 
tron and ion components. The variables h2,ee,  w on the 
shock front change continuously, while the magnetic 
field vector (the transverse component) rotates in the 
plane of the front, completing a large number (of the 
order of 1/&6) of rotations in the shock layer [see Eq. 
(4.7)], i.e., the end of the magnetic field vector H des- 
cribes a cone-like helix that expands behind the front 
and has a pitch of the order of A,. The intersection of 
the three dimensional regions Sg(3) with the two-dimen- 
sional surface S;(l) separates the part of this surface 
filled by integral curves which emerge from point 1 at 
x - -03 and enter point 3 at  x - + .o . The curve 1-3 on 
the plane h2 = 0 represents the structure of the shock 
wave in a plasma without external fields at @,> 4/5 
(or, what amounts to the same thing, the structure of 
a weak isomagnetic discontinuity, see  Ref. 3). As is 
seen from Fig. 5, such an integral curve is not the only 
one; there is an infinite se t  of integral curves which 
connect the points 1-3 and fill the two-dimensional 
region S;(l)f' S;(3). The non-uniqueness of the struc- 
ture of the gasdynamic shock wave 1-3 in the region 
of change of the Mach number (2.6) means instability 
of this wavef2 

At M2,<4/5, a single integral curve of the system 
enters the singular point 2-the curve Sl(2) (see Fig. 
6). It can be shown that this integral curve does not 
lie on S;(l). Substituting (4.8) in (4.6) and (4.6) in 
(4.9), we find that at Mi<4/5 the factor in the curly 
brackets before dw/dx changes sign in the transition 
from 1 to 2, i.e., on the corresponding integral curve 

FIG. 5. Field of the integral curves of Eqs. (4.61, ( 4 . 8 )  and 
(4.9)  in the space ( w ,  h2,e$ for M$ > 4/5. 
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conductivity. It is integrated once with the help of 
(4.14) and (4.15). As a result, we get in place of (4.16) 

FIG. 6. Field of the integral curves of Eqs. (4.6), (4.8) and 
(4.9) in the space (w, h2, 9,) for M$ < 4/5. 

of the system (4.51, (4.8), (4.9), going from point 1 to 
point 2, the velocity w is a double-valued function of 
the coordinate x ,  which is physically meaningless. 
Therefore, it is necessary to introduce an internal dis- 
continuity-the "ion shock wave," which accomplishes 
the transition from S;(1) to S32). Since the scales of 
the ion viscosity and the ionic thermal conductivity a re  
small in comparison with the scale of electronic ther- 
mal conductivity in the parameter E ,  such a discon- 
tinuity-the isomagnetic discontinuity-is isothermal 
in the electron temperature and we have in it O = const 
accurate to small E. 

For the components of the ion viscous stress tensor 
that are  dimensionless relative to state 1, we have 

where 

Thus the equations of conservation of momentum of 
the plasma in the transverse direction will be 

whence we obtain 

Using the equality which follows from (4.13)) 

we obtain the following equations for the structure of 
the viscous isomagnetic discontinuity: 

The first equation here is a consequence of (4.13), the 
second is the conservation of momentum flux of the 
plasma (2.2). The last is the equation of ionic thermal 

where F is a constant of integration. 

The boundary conditions for  the ionic shock wave are  
the vanishing of all the derivatives in Eqs. (4.14), 
(4.15) and (4.17). We thus obtain 

Eliminating O,  from (4.19) and (4.20), we find the 
equation which connects the values of the velocity at 
the points a and b-the boundary points of the ionic 
shock wave: 

Equation (4.21) allows us to find for each point b in the 
space (h2, eB, W) a point a from which we can go to the 
given point b through the ionic shock wave. 

Thus a solution i s  constructed for <4/5 in the fol- 
lowing way. For each integral curve S;(2), we find the 
corresponding point a with the help of (4.21). These 
points form a certain curve Sl(2) ( ~ i g .  6). Let a be the 
intersection of SJ2) and S;(l), and b the point on S; 
corresponding to it. Then the structure of the actuating 
shock wave will be 1 - a-  b - 2 and will contain the 
ionic shock wave a = b in it. In a strong shock wave , 

(large MI), the temperature of the ions in the internal 
discontinuity reaches values higher than equilibrium 
corresponding to the point 2; then a relaxational layer 
follows behind the point 2 (see similar solutions and 
the drawing for the structures of the shock waves in 
Ref. 3). 

As in the previous case, a set of possible structures 
corresponds to the transition 1-3, which corresponds 
to a gasdynamic shock wave. For points of the surface 
Sf(3), in accord with (4.21), we can construct another 
surface Si(3) the transition to which takes place on 
Sf(3) through the ionic shock wave. The intersection 
of such surfaces S;(3) and S;(1) is the locus of points 
a "which appear at the beginning of the ionic shock 
wave in the structure 1 - a" - b" - 3. In particular, 
the transition 1 - a l -  bt - 3 in the plane h2 = 0 is always 
possible; i t  represents a shock wave in the plasma 
without external magnetic fields at <4/5. 

It can be seen from Fig. 1, [see also (2.7)], that at 
M: < 4/5 we also have @> 4/5. 1f M:> 4/5 and f l  
< 4/5 (the region below the curve M i  = 4/5 at @ > 19/15 
on Fig. 1)) then everything that has been said about 
the structure of the actuating shock wave remains 
without change. The vicinity of point 3 here will have 
the form shown in Fig. 6. 
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CONCLUSION 

Thus, the structures of shock waves propagating 
in a plasma, along the magnetic field depend on the 
values of the Mach numbers Ma and M. In the region 
outside the "wedge" in Fig. 1, the shock wave is gas- 
dynamic and the magnetic field plays no role, generally 
dropping out of the equations. Inside the wedge, the 
gas-dynamical shock wave is unstable, and the shock 
wave is magrietohydrodynamic with front width equal 
either to the diffusion length of the magnetic field, 
c2/4nov, in the case of an unmagnetized plasma, or  
to a length that is characteristic for the electronic 
thermal conductivity I / &  for a magnetized plasma. 
The characteristic size of the oscillations of the mag- 
netic field is connected with the Hall terms and the 
thermal emf, leading to a dispersion of the magneto- 
sonic waves propagating at an angle to the magnetic 
field; the corresponding scale i s  A =  M61/% = c/w,,. 

In the present work, we have not considered the pro- 
blem of the stability of the actuating sound wave, which 
is discussed in a series of theoretical works (Refs. 
12-14). In particuiar, it has been shown by Roikhvar- 
ger and Syrovatskii14 that while the actuating wave is 
evolutionary, i.e., there exists for it a unique solution 
of the problem of small perturbations, the actuating 
shock wave is non-evolutionary in the linear approxi- 
mations, i.e., i is unstable to the spontaneous emis- 
sion of Alfven waves. The instability of the actuating 
shock wave is evidently c o ~ e c t e d  with the fact that 
azimuthal symmetry of the original unperturbed flow 
is disrupted in it. An arbitrarily small azimuthal 
asymmetry ahead of the shock front removes such a 
degeneracy in the intermediate region. The solution 

of the problem of the stability of the actuating shock 
wave in such an arrangement is the object of a separ- 
ate paper. 

In conclusion, I express my gratitude to A. L. Veli- 
kovich for numerous discussions. 
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The effect of developed hydrodynamic turbulence on sound is studied. The correlation time and length of 
the acoustic field, the isotmpization length and the frequency diffusion coefficient for the acoustic wave 
packet are calculated. The region of applicability of the kinetic equation for sound with a linear dispersion 
law are found. The parameter k,LM (k, is the sound wave vector, L is the energy-containing scale, M is 
the Mach number) is of interest in principle for solution of the aforementioned problems. Precisely this 
parameter determines whether the second-order perturbation theory is sufficient or an infinite set of 
diagrams must be summed (i.e., transport must be taken into account) in studies of the interaction 
between sound and hydrodynamic turbulence. 

PACS numbers: 43.25.Lj, 47.25. - c 

INTRODUCTION sound in a turbulent atmosphere was considered in the 
work of ~a t a r sk i ?  under conditions in which the princi- 

Various aspects of the problem of the interaction of pal role i s  played by processes of elastic scattering of 
sound with hydrodynamic turbulence have been studied ' a monochromatic sound wave; in our previous work,' 
in a number of researches.'-5 Thus, the propagation of processes of absorption and emission of sound by homo- 
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