
and hence it follows that 6 N ,  is not small when Aw 
< 2lJ2r], and, consequently, the single -frequency solu- 
tion is unstable. Moreover, we can show that even 
the multisatellite solutions of Eq. (4.9) obtained in Ref. 
10 are  also unstable. In fact, Eq. (4.9) linearized 
against the background of the multisatellite solution 
transforms into a system of linear algebraic equations 
and has neutrally stable solutions, corresponding to a 
small change in the parameter E (see Ref. 10). The 
determinant of the linearized system vanishes a t  the 
points w, where the satellites a re  located. Since this 
determinant changes sign near the first  satellite for 
E = Em,, (i.e., against the background of the single-fre- 
quency solution), we may expect it to change the sign 
also near satellites for any value of E. It thus follows 
that there is a range of frequencies w in which the de- 
terminant is negative and perturbations grow. 

It follows from the above analysis that the instability 
of single-frequency and multisatellite states is related 
to the nonlinear nature of the interaction of PW's: 
+,,, a Na , cr > 1 and, in spite of the fact that we have 
proved this only for specific situations, i t  is generally 
true. Therefore, the only stable (in the case of f re-  
quency broadening) state of the system is a multifre- 
quency turbulence of PW's with a continuous frequency 
distribution. 
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Fluctuations in a nonstationary nonequilibrium system near 
its instability threshold 
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The example of electrostatic oscillations is used in considering the growth of fluctuations in a 
nonequilibrium system in which transition from a stable state (characterized by a small-perturbation 
logarithmic decrement y-,) to a stable state occurs in a finite time T. In contrast to a stationary system, 
fluctuations at the instability threshold are bounded even in the linear approximation. If the eigen- 
frequency of weakly damped fluctuations is a simple root of the permittivity (or a root of the 
corresponding generalized susceptibility in the case of other fluctuations), the ratio of the intensity of 
fluctuations at the instability threshold to the intensity in the stable region is (rry-,~)"~ before the onset 
of the transition. 

PACS numbers: 41.10.Dq 

1. INTRODUCTION 

It is well known that when a system is not in thermo- 
dynamic equilibrium and when the small-perturbation 
logarithmic decrement y tends to zero as the charac- 
teristic parameter of the system a approaches a ce r -  
tain value a,, the level of fluctuations considered in the 
linear approximation can rise without limit for a -  a,. 
In this case the fluctuation level is restricted only by 

nonlinear effects. This situation occurs, in particular, 
on approach to an instability threshold where y changes 
its sign. However, strictly speaking, this result ap- 
plies to the case when the system is stationary. In 
reality, the system becomes unstable only after a finite 
time !and it then cannot exist in a stationary state). Al- 
lowance for the nonstationary state results in limitation 
of fluctuations even in the linear approximation1' and, 
a s  shown below, there is a simple relationship between 
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the fluctuation intensities a t  the instability threshold 
and in the stable region. If the transition from the sta- 
ble to unstable state occurs not too slowly, the fluctua- 
tion level remains small s o  that the nonlinear effects 
may be unimportant. 

We shall also assume that by a certain moment the 
transition to the unstable region is complete and the 
parameter a assumes a steady value. Then, the fluc- 
tuations which have grown by that time represent a 
natural initial level of perturbations in the problem of 
evolution of initial fluctuations in a stationary unstable 
system. In the case when fluctuations a re  small, 
which-as mentioned above-occurs in the case of a 
sufficiently fast transition, we a r e  justified in adopting 
the classical linear formulation of the problem. How- 
ever, if the transition to the unstable state occurs 
adiabatically slowly, s o  that the level of fluctuations 
at each moment depends (as in the stationary case) only 
on the value of a and not on the previous history of the 
system, this fluctuation level is governed by the non- 
linear effects even near the instability threshold. Thus, 
the real "background" of perturbations in an unstable 
system is not small right from the beginning, i.e., 
from the instability threshold, s o  that the linear for- 
mulation of the problem of behavior of small initial 
perturbations in the system loses i t s  physical meaning. 

2. FORMULATION OF THE PROBLEM 

By way of example, we shall consider electrostatic 
fluctuations. Such fluctuations a r e  characteristic of a 
nonequilibrium plasma which is a medium rich in in- 
stabilities. A typical situation is one in which individ- 
ual spatial modes become unstable consecutively a s  the 
parameters (plasma concentration, magnetic field, 
etc.) a re  altered. We shall be interested in fluctua- 
tions of an electric field in a single mode (one degree 
of freedom) near i t s  instability threshold. For simplic- 
ity, we shall consider a homogeneous medium s o  that 
the eigenfunctions of the fluctuation field a r e  of the 
form Eke"", where a discrete set of k is governed by 
the boundary (or periodicity) conditions. As shown in 
Sec. 4 below, the approach adopted and the results a re  
valid in reality for normal oscillation modes in any 
system (including a continuous medium which may be 
inhomogeneous or  a discrete system). 

The source of fluctuations of the electrostatic field 
a re  fluctuations of the microscopic charge density 

where r,(t) is the trajectory of a single charge q, and 
the summation is carried out over all the charges. The 
starting point is the Poisson equation 

where ell is the longitudinal permittivity. 

In the stationary (steady-state) case when 
(E,(t) E Z(t1)) depends only on the difference t - t', we find 
from Eq. (1) that 

where ( 14 1 ') is the spectral density of the Fourier 
component of the charge density in a system of nonin- 
teracting particles. Calculation of this spectral density 
is a separate problem and we shall not consider i t  here. 

We a r e  interested in the contribution made to fluctua- 
tions by weakly damped normal oscillations 

i.e., we shall consider the contribution made to Eq. (2)  
by a sharp maximum in the integrand near the eigen- 
frequency w,= 51-iy nearest to the real  axis and satis-  
fying Eq. (3). We shall consider only the case when 
w, is a simple root of E,,: 

Then, 

where 

For small logarithmic decrements obeying 

we can replace ( 1 pkl 2, in the integration domain I w-62 I 
S y in Eq. (5) with "white noise" representing a constant 
quantity ( 1 p,l2) .. In this way we find 

(IEt12)=nlCI'(Iprl')n~. (7) 

For an equilibrium system the quantity (lp,1 2)n is 
proportional, in accordance with the fluctuation-dis- 
sipation theorem: to the temperature T of the system 
and to the imaginary part of the permittivity ~,,(Sl,k), 
i.e., to the decrement y,  and then Eq. (7) gives the 
energy of the field fluctuations proportional to T, which 
remains finite no matter how small the decrement. In 
the absence of equilibrium we find that ( 1  p,) 2). does not 
generally tend to zero together with y and the fluctua- 
tion energy then r ises  without limit on approach to the 
instability threshold. 

Before considering the nonstationary case,  we shall 
go over to the time representation. The Poisson equa- 
tion (1) together with the expansion (4) can be written 
in the form 

where the constancy of the spectral density ((p,(2), in 
the integration domain [condition (6)] has the conse- 
quence that &(t) is delta-correlated4: 

+(t) p,'(t1) )=2n( / pt 12).S (t-t') . (9) 

Having solved Eq. (8) and calculated, with the aid of 
Eq. (9), the quantity ( 1 E, 1 2), we can easily show that it 
is identical - a s  expected -with Eq. (7). 

We shall now consider the nonstationary case. Let us  
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assume that at a time t< to< 0 the decrement is constant 
and equal to y, , but beginning from t = to i t  decreases 
monotonically passing through zero a t  t= 0. The follow- 
ing equation describes E,: 

dEr/dt+ (iQ+r ( t )  ) E r = C p r ( t ) .  (10) 

Since the fluctuation level is sensitive particularly to 
the behavior of the decrement y,  i t  follows that when the 
condition (6) is satisfied, we can still regard the ran- 
dom process &(t) a s  stationary and delta-correlated. 
The problem thus reduces to finding ( 1  E,(? for the 
function E,(t) described by Eq. (10) with the right-hand 
side satisfying Eq. (9). 

3. CALCULATION OF FLUCTUATIONS AT THE 
INSTABILITY THRESHOLD 

The solution of Eq. (10) has the form 

The squared fluctuation 

I.' 

+ I ( - i ~ + y ) d r ]  (p t ( t f )p .*( t")  )dt'dt1' (12) 
-- 

can be represented, subject to Eq. (Q), in the form 

If y = const=y-,, Eq. (13) gives the steady-state fluc- 
tuation level (7); this level will be denoted by ( 1  E, I '), 
and it  occurs for all  times satisfying t <  to. The fluc- 
tuations grow for t > to. We shall find ( IE, 1 ') a t  the in- 
stability threshold corresponding to t = 0. We shall a s -  
sume that the reduction in the decrement is not too 
fasta: 

d y l d t ~ r - , ~ .  (1 4) 

Then, the main contribution to the integral (13) is made 
by the vicinity of the point t = 0, where the argument of 
the exponential function is largest. If we represent the 
decrement for this region by the first term of the ex- 
pansion 

we obtain 

Introducing a characteristic time for a change in the 
decrement 

we finally obtain 

( IEt lz>l -o=(ny- , z ) '"(  IEt12)-, .  

Equation (16) is dominated by the time interval 

and since y,r>> 1,  the expansion (15) is justified. 

The fluctuations grow for t> 0. In the range of the 
linear time dependence of the increment given by Eq. 
(18) this growth occurs [sufficiently far beyond the 
threshold s o  that t >> ( r / ~ , ) ' / ~ ]  proportionally to 

4. DISCUSSION 

We have considered fluctuations in a nonstationary 
system in the specific case of longitudinal oscillations 
of the electric field. However, the special nature of 
these oscillations does not affect our derivation in any 
way. The same derivation can be applied to oscilla- 
tions of any magnitude if ell is replaced by the corres- 
ponding generalized susceptibility a! (Ref. 3). The es-  
sential points of the above treatment a r e  the following 
three assumptions: 

1) in the time interval of interest to us  only one de- 
gree of freedom (one "mode") can be unstable; 

2) the intrinsic motion near t h e ' i n ~ t a b i l i t ~  threshold 
can be described by a first-order equation; 

3) in an interval -y wide near the eigenfrequency the 
spectral density of the "noise source" does not vary 
greatly and this makes it possible to use the delta-cor- 
relation approximation in the time representation. 

The assumption of homogeneity of the medium made 
in Sec. 2 is not essential. The index k in our example 
basically shows only which mode becomes unstable. 
When the assumptions 1-3 above a r e  satisfied, the 
main result (18) relating the intensity of fluctuations a t  
the instability threshold to their level in the stable 
state before the onset of the transition to the unstable 
state is valid also for a single normal mode in an in- 
homogeneous medium and also for oscillations in a 
"discrete" system. 

The approach can be extended in a self-evident man- 
ner to situations when the value of c,, (in general a) near 
the instability threshold has a zero term of power n> 1 
(the assumption 2 is then disobeyed). For example, if 
n=.2,  we have to solve not Eq. (10) but a second-order 
equation with a delta-correlated right-hand side. For 
n >  1,  we find that in a relationship of the (18) type the 
term ( y , ~ ) " ~  is replaced by a term in which y,? has 
a different power exponent. 

However, if in a system obeying a second- o r  higher- 
order equation the eigenfrequencies a t  the instability 
thereshold a r e  sufficiently far apart, the evolution of 
fluctuations is described by first-order equations of the 
(10) type, so  that the results of Sec. 3 a re  applicable 
subject to a small modification. For example, let us 
consider an oscillator with friction f + + x x  = 0, 
which becomes unstable when a potential well changes 
to a hump: x = -p .  Then, the changes in the eigen- 
frequencies occur a s  follows. As x decreases, the 
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eigenfrequencies w,,, approach one another and for 
x = -0 they merge (w,,,= - iy) and then they diverge 
along the imaginary axis. Before the onset of the in- 
stability, when w, goes over to the half-plane Im w>O, 
the other frequency is w,= - 2iy. The main contribution 
to fluctuations comes from the frequency w, closest to 
the imaginary axis. In calculations of fluctuations a t  
the instability threshold we find from Eq. (19) that the 
only important part  of the trajectory is 

Since 

We have deliberately ignored limitation of fluctuations 
by the nonlinear effects because the mechanism of such 
limitation (and the corresponding criterion) is different 
for each instability. 

 his is pointed out in Ref. 1 for one specific instability. The 
evolution of noise with time after an abrupt application of a 
pump field exceeding the parametric instability threshold of 
a plasma is considered in Ref. 2. 

2)The opposite case (instantaneous transition to an unstable 
state) is trivial; i t  follow from Eq. (13) that the intensity of 
the fluctuations does not change during the transition time. 

the contribution of the oscillations with the frequency 
w, is exponentially small and can be ignored. Allowance 
for just one branch w, gives the results obtained above; 
all  that is necessary is to introduce in Eq. (18) a cor-  
rection factor -1 because the fluctuations in the "initial" 
state a t  t = - * may include comparable contributions 
from both eigenfrequencies. [It is not possible to re -  
duce the problem to one branch if the merging of the 
eigenfrequencies occurs a t  a distance 5 (y/r)'12 from 
the instability threshold and, in particular, when it  
occurs a t  the threshold itself. This occurs if x and y 
vanish simultaneouslp. ] 
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The structure of actuating shock waves in a completely ionized plasma with collisions is calculated. Two 
limiting cases are considered, that of a magnetized and of an unmagnetized plasma. The processes 
determining the structure of the front of an actuating shock wave in an unmagnetized plasma are Joule 
dissipation and Hall currents. The width of the shock wave front in this case is determined by Joule 
dissipation and is equal to the diffusion length of the magnetic field. The magnetic field vector behind the 
shock wave front may rotate, but (with an accuracy to Q e ~ e  < < 1) remains in the plane of the initial 
direction. In the case of a magnetized plasma, the end of the magnetic field vector at the shock front 
rotates and describes a cone-like helix which expands behind the wave front. The number of revolutions 
along the helix is proportional to the degree of magnetization of the plasma. For a magnetized plasma, 
the processes defining the structure of the shock wave front are the electronic thermal conductivity, the 
electron-ion temperature relaxation and the dispersion due to the Hall terms and to the thermal emf. 
Correspondingly, the width of the front of an actuating shock wave in a magnetized plasma is equal to the 
scale of the electronic thermal wnductivity. The values of the critical Mach numbers for which 
isomagnetic discontinuities arise in the shock wave front are found. The structure of the front is 
investigated in these cases. 

PACS numbers: 52.35.T~ 

INTRODUCTION is the study of the structure of actuating shock waves in 
a completely ionized plasma with collisions, within the 

Those shock waves in magnetohydrodynamics in which framework of the hydrodynamic model with classical 
the magnetic field ahead of the wave front is directed transport coefficients.' A similar problem on a shock 
alongthenormal totheplaneof thefront ,  whilebehind waveinaplasmawithoutamagneticfieldandfora 
the shock-wave front there is a component of the mag- transverse shock wave was solved in Refs. 2 and 3. 
netic field parallel to the plane of the front, are  called' Some partial solutions for  actuating shock waves were 
actuating shock waves. The purpose of the present work obtained in Refs. 4-8. 
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