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Collective oscillations of parametrically excited waves are investigated with allowance for their scattering 
on one another and on random inhomogeneities of the medium. It is shown that in addition to oscillations 
investigated earlier in the S theory (self-consistent field) approximation, there are also relatively low- 
frequency oscillations (according to the S theory their frequency is zero). It is shown that distributions of 
parametrically excited waves with singular frequencies are unstable when their spectrum is broadened. 

PACS numbers: 03.40.Kf 

Considerable attention is currently given to the phe- 
nomena which appear on parametric excitation of waves 
in fer r~magnets ,"~  ant i fer romagnet~,4 '~  plasma,G7 fer- 
roelectrics: and other nonlinear media. In some im-  
portant cases the wave dispersion law w, is of the non- 
decaying type and an external field (pump wave) can be 
regarded as spatially homogeneous and monochromatic: 

h(r, t) =h(t) =h exp (-iu,t). (1) 

A relatively simple theory, based on the self -consistent 
field approximation (S theory), is developed for this 
case in Refs. 1 and 9. This theory is in good qualitative 
and quantitative agreement with many experimental ob- 
servations on ferromagnets and antiferrornagnets (for 
details see the review in Ref. 1 and also Refs. 4 and 5). 
However, recent experiments require interpretation 
which goes beyond this theory. For example, measure- 
ments have been made of the spectral  density N, of pa- 
rametrically excited waves ,lo 

N.-- j nt. dk, (2) 

where n,, is the Fourier component of the correlation 
function n,(r) of the complex amplitudes a,@) of travel- 
ing waves: 

The experimental results  show that the N, line has a 
finite width Ao which depends in a certain way on the 
pump amplitude and other experimental conditions. 

However, the S theory, which describes correctly the 
integral characterist ics of parametrically excited 
waves (PW7s), predicts a singular distribution of PW's 
in the k-w space: 

where 3, is the frequency o, renormalized to the inter- 
action [see Eq. (1.13) below]. 

L7vov" used the diagram technique to formulate inte- 
gra l  equations for n,, generalizing the S-theory equa- 
tions by a systematic allowance for the Hamiltonian of 
the interaction of PW's given by Eq. (1.5). These equa- 
tions give rise to a finite width of the distribution n,, 
in respect of the modulus k: 

Here, y is the logarithmic decrement of PW's; N 
= $  n,,dkdw is the total number of PW's; k is the char-  
acteristic wave vector of PW's (23,= w,); v is the group 
velocity, 

The distribution of N, in respect of w is more com- 
plex. The generalized equations have, like the S -theory 
equations, a "single -frequencyJ' solution singular in a: 

which is investigated in Ref. 11. However, as shown 
earlier,'" this solution is not the only one. In addition 
to the central line of Eq. (6), the solution of N, may 
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yield satellites at frequencies w,/2 & m6w (m is  an in- 
teger and 6w cv2/y). The greatest interest lies in a 
single solution regular in w whose line profile i s  

Experimental studies of the parametric excitation of 
spin waves in YIG single  crystal^'^ have established 
that N ,  is close to the theoretical profile (7). This 
raises the question of why the regular distribution (7) 
is observed in this case and whether it is possible to 
alter the external conditions (magnetic field, tempera- 
ture, etc.) in such a way a s  to achieve the single-fre- 
quency solution (6). In addition to the purely theoretical 
interest, this question is also of practical importance. 
The point is  this: the finite width of the N ,  line results, 
for example, in an increase in the noise temperature of 
a nondegenerate magnetostatic ferrite amplifier, in 
stray modulation of the amplitude at the output of a 
ferrite limiter, etc. 

In § 4 we shall consider, by way of example, the pro- 
blem of parametric excitation of waves in the case of 
axial or spherical symmetry (typical of experiments on 
ferromagnets and antiferromagnets) and we shall cal- 
culate the instability growth rate of a single-frequency 
state (6) in the case of broadening of the N, line in the 
frequency space [Eqs. (4.6) and (4.12)]. The instability 
range [Eqs. (4.7) and (4.13)] is of the order of line width 
in the regular solution (7) and i s  independent of the 
nature of the coefficients in the Hamiltonian. Moreover, 
we can say that the origin of the instability under dis- 
cussion is  not affected by our assumption of the sym- 
metry of the problem and is  of general (model-inde- 
pendent) nature. Therefore, the single -frequency state 
cannot be realized experimentally. 

Another series of experiments whose interpretation 
requires going beyond the S-theory approximation is 
concerned with the parametric excitation of spin waves 
in ferromagnets and antiferromagnets that have random 
inh~mogeneities.'~'~ These inhomogeneities-crystal 
defects, impurities, pores, etc.-result in additional 
scattering of PW's (known a s  the two-magnon scatter- 
ing in magnetically ordered materials), characterized 
by the frequency y,,,. The scattering does not alter the 
PW frequency and makes no contribution to the dissip- 
ation of the PW energy. Therefore, the expressions for 
the parametric excitation threshold, damping of collec - 
tive oscillations, relaxation times of various types of 
perturbations in a PW system, etc., do not necessarily 
have to include y,,, a s  an additive term together with 
the contributions of the remaining damping mechanisms. 

We are thus faced with the problem of the influence of 
inhomogeneities, present in all real crystals, on the 
behavior of a system of PW's. Their influence on the 
stationary state of PW's has been and, 
in particular, it has been shown that the scattering by 
inhomogeneities results in smearing of the angular dis- 
tribution function of PW's: 

in violation of the phase correlation in pairs: 

Iuklln,a [ y / ( y i  yrVnp) I"* , (9) 

and in an increase of the threshold of parametric exci- 
tation of waves: 

h,,Va l y ( y + y  n,p) 1%. (10) 

In § 3 we shall investigate the influence of inhomo- 
geneities on collective excitations of a PW system. The 
spectrum of collective excitations Q(x) of the single - 
frequency state has been investigated earlier in the S- 
theory approximation1: see Eq. (2.1) in § 2 for cubic 
ferromagnets. This spectrum has two notable features. 
Firstly, for a certain relationship between the interac- 
tion Hamiltonian coefficients S, and T, [namely for 
S,(2Tp+ S,)> 01 the collective oscillations of a mode of 
number p (6% a edP', where q is the azimuthal angle) 
are  stable and their logarithmic decrement is equal to 
the corresponding decrement y of PW's deduced from 
the parametric excitation threshold: h,V = y. Secondly, 
i f  S,(2T,+ S,)< 0, the collective oscillations (spontaneous 
oscillations of PW's) become unstable for h>- h,,, i.e., 
the instability sets in immediately at the parametric 
excitation threshold. Our calculation of the spectrum 
of 51, for an inhomogeneous medium [see Eqs. (3.9)- 
(3.11) below] shows that the PW scattering by inhomo- 
geneities alters considerably the behavior of the col- 
lective oscillations and particularly increases their 
stability. Thus, even weak scattering by inhomogenei- 
ties (i.e., the scattering corresponding to y,,,<< y) sup- 
presses spontaneous oscillations of an isotropic mode 
( p  = 0) in the range of supercriticalities h< h,, where 

and spontaneous oscillations of anisotropic modes 
(p  # 0) in the range 

h/hc,- l ~ y j m n / y .  (12) 

In the strong scattering case (y,,,>> y), it follows from 
Eqs. (3.9)-(3.11) that spontaneous oscillations may not 
appear at all and the damping of the collective oscilla- 
tions is of the order of y,,,, which exceeds the value 
(yyi,,)1/2 that determines, in accordance with Eq. (lo), 
the threshold of parametric excitation of waves. 

In § 2 we shall consider the stability of a multifre- 
quency stationary state in a spatially homogeneous sit- 
uation and we shall use the complete Hamiltonian of 
the problem. The point is that in the S-theory approxi- 
mation some of the collective motion modes a re  neu- 
trally stable and inclusion of small frequency correc- 
tions associated with the scattering of PW's on one 
another may be important. We shall show that in the 
case of cubic ferromagnets 

so that for S,(2TP+ S,)> 0, when the collective oscilla- 
tions a re  stable in the S-theory [Eq. (2.1)], the mode 
described by Eq. (13) i s  also stable. 

8 1. PRINCIPAL EQUATIONS 
In developing a new theory we can begin from the 

classical Hamiltonian equations of motion for complex 

823 Sov. Phys. JETP 48(5), Nov. 1978 V. S. L'vov and V. B. Cherepanov 823 



amplitudes of traveling waves 4: 

i aatlat =6H/6ak'. 

The Hamiltonian of the problem' 

includes the interaction of waves with the pump field 
(1): 

their interaction with static inhomogeneities (impuri- 
ties, defects)'': 

~ i , p - -  J grt-atak.'bk-6 (k-k'-kl')dk dk' dk", (1.4) 

and their interaction with one another: 

1 
Himi = rJ Tk,t,,k.t.at,'at,'at,at,6 (k,+k,-k,-k,)dk, dk, dk, dk,. (1.5) 

The spectrum of the collective oscillations of a sys - 
tem of PW's can be found in the diagram technique 
framework" by summing the rows for the renormali- 
zation of the vertices describing the scattering accom- 
panied by small momentum transfer. Another way, 
which makes it possible to restrict the treatment to 
the Dyson equations with unrenormalized vertices, in- 
volves allowance for spatially inhomogeneous and non- 
stationary states right from the beginning. This is 
done by dropping the assumption that in the Wyld di- 
agramatic technique14 the correlation function of a ran- 
dom force (faf8*) is proportional to 64(q-q'), and by in- 
troducing the green functions Gad and L,. a s  well a s  the 
pair averages nad and 6,& by means of the relationships 

Here, q = (k, w ) .  Summing, a s  usual, the reducible 
graphs, we obtain the Dyson system of equations for 
the quantities defined in Eqs. (1.6) and (1.7): 

Gq,~=G~[6'(q-q')+(ZG+IIL')qqP], 

Lqq,'=G,O' (IIaG+Z'L') ,,; (1.8) 

nqqr= (G@G'+LY'G'+L@'L'+GY) , , ' ,  

a,,,= (G@L+LYeL+L@'G+GY G),,'. 
(1.9) 

Here, Ca8, IIaa.@,,., *,,. a r e  the sums of the irreducible 
graphs: I: and @ a r e  the normal graphs (i.e., those 
which conserve the arrow directions); II and * are  the 
anomalous irreducible graphs. The iP and ?! graphs 
can, in contrast to the graphs for C and II, be cut in- 
to two parts only along the wavy lines. Integration has 
to be carried out over the internal indices in Eqs. (1.8) 
and (1.9). For example, 

As shown earlier ," for moderately large supercritica- 
lities 

h/h.,< ( k u / y )  " , 
the graphs for C , TI, @, and * can be simplified by ig- 
noring the vertex renormalization. Then, 

Here, 

where c is the impurity concentration. The expressions 
(1.10) and (1.11) represent a closed system of integral 
equations for the quantities Gad, Lad, na8, cad. This 
system has a partial solution of the type 

corresponding to a stationary and spatially homogen- 
eous state of PW's which, for brevity, we shall call the 
ground state. In particular, the Green functions in Eq. 
(1.12) arel1 

Gq= (ap-a-@,- irq)A,- ' ,  L;=II;A,-', 
A,= (up-a-@,-iI',) (a-@,+ir , )  - I n,12, (1.13) 

@,=or+Re Z,, r,=-Im Z,. 

Linearizing the system (1.8)-(1.9), we obtain the fol- 
lowing-syem of linear integral equations for the quan- 
tities G, L ,  A ,  and 5, representing the deviations of 
G , L, n ,  and o from their values (1.12) in the ground 
state: 

The quantities A, 5, 6 ,  and i) can be expressed in 
terms of 2 ,  f i ,  6, and \k, which a r e  deviations of the 
mass operators C, 11, iP, and * from their values in 
the ground state (1.12). The expressions for them a r e  
obtained by linearization of the graphs (1.10) and (1.11): 
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+C J gk.k,gk,k~k,,k,..6 (k+k,-k'-k,) dk, dk2 + graphs 3-7, 

(1.16) 
Gqp=2 Tkk,.k,kBq,nb(q+qi-q1-qa)dqi dqr 

6,,-=c Jgkk,g~~k,fik,.,k,,~~(k-k,-k~+k,)~, dk, + graphs, 2, 3, 
(1.17) 

Y,,.=c~ g~t,g~,t~~t,.,t,.~6(k+k~-k,'-k~)dk, dk, -+ graphs 2, 3 . 

Assuming that kt- k =  x , w'-w = Sl in the quantities 
cad and R,, and that k t + k = x ,  w'+ w-w,=Q in Lad and 
7r,#, we can obtain the condition for solubility of the li- 
near system of equations (1.14)-(1.15) in the form of 
the dependence of S1 on x ,  i.e., the spectrum of the 
collective oscillations of a system of PW's relative to 
the ground state. The stability of the ground state is  
ensured if  IM S2(x)< 0 for all values of % . 

8 2. STABILITY CONDITION FOR A 
MULTIFREQ~ENCY'STATE OF. 
PARAMETRICALLY EXCITED WAVES 

In this section we shall consider the collective exci- 
tations of PW'S in media without random inhomogenei- 
ties and we shall do this by analyzing, a s  an example, 
the parametric excitation of spin waves in cubic ferro- 
magnets which has been subjected to quite thorough ex- 
perimental investigations (for details see Ref. 1). For 
Mll [loo] and MI1 [ I l l ]  the problem i s  axially symmetric 
and can be considered in detail. In this case, PW's are 
localized in the k space near the equator of the reso- 
nance surface a,= w,/2. The collective excitations of 
PW's have been analyzed1*' in terms of the S theory 
(i.e., allowing only for self-consistent graphs in Z and 
II: 1 u, 1 = n,, 1 IIk 1 = y,). The frequencies of spatially 
homogeneous ( x  = 0) collective excitations S1: a r e  found 
to be given by the simple expression 

Here, p is the number of a collective oscillation mode 
6, edPV, cp is  the azimuthal angle, 

T ~ = J  T ( ( P - ( P ' ) ~ X P [ - ~ P ( ( P - - $ )  I ~ ( ( P - - ( P ' ) ,  
-n 

I 

sp- j ~(cp-cp')exp[-i(p-2) (9-cp') ld(cp-cp0, 
-ii 

and N is  the integral amplitude of PW's. This result, 
like the initial equations of the S theory, is  insensitive 
to details of the distribution of PW's in the k-w space 
and it applied to multifrequency and single-frequency 
states of PW's. The higher graphs in Eqs. (1.10) and 
(1.11), associated with the scattering of PW's by one 
another, introduce in Eq. (2.1) small corrections 
hS1 = y [ ( ~ ~ ) ~ y ' l ( k v ) ' ' ] ~ / ~  and are of no interest here. 
The oscillations described by Eq. (2.1) are stable 
(Im i2: < 0) if 

However, it should be pointed out that the linearized 
system (1.14) is of high order and, in the S-theory ap- 

proximation, it has not only the eigenvalues of Eq. 
(2.1) but also the trivial eigenvalue a,= 0. The oscilla- 
tions corresponding to the latter eigenvalue are the 
most interesting because a weak interaction of PW's 
(aT2) should destroy their neutral stability. 

We shall consider the following integral quantities in 
the frequency range w, w'<< y: 

H. = IJ [ nk'~k.(Q) +auk.+ (Q)  I k2 dk dm; 
7 

where the index "+" denotes the substitution k- -k, 
w- wp-w and complex conjugacy. The equations for 
3, , K, , and 5, are of the form: 

where v is  the width of the distribution of PW's in the 
k space given by Eq. (5). 

Introducing new variables given by Eq. (2.3), we aut - 
omatically limit the investigated class of oscillations 
to the motion that alters the integral amplitude of PW's. 
In addition to them, a system of PW's includes oscilla- 
tions of the distribution %, which do not alter the inte' 
gral characteristics. Such oscillations will not be con- 
sidered here. 

If SN>> v, an analysis of the system (2.4) shows that 
we can confine ourselves to the self -consistent graphs 
in 3 and fi and thus obtain 4 = * = 0. In this approxima- 
tion the system (2.4) is  closed and, since the equation 
for fi, has a small denominator, this system can be 
reduced to 5, = 0 or  

where 

Equation (2.5) gives finally the expression (13) for a,,. 
The amplitudes n, and I with a fixed phase of u, 
participate in these low-frequency, compared with Eq. 
(2.1)' oscillations. The difference between Sl,, and zero 
is due to the difference between 1 IIkl and y, and be- 
tween and %. It should be stressed that the condi- 
tion of stability of low-frequency oscillations (2.6) is 
identical with the stability condition (2.2) for a high-fre- 
quency mode. 
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S3. COLLECTIVE OSCILLATIONS OF 
PARAMETRICALLY EXCITED WAVES IN MEDIA WITH 
RANDOM INHOMOGENEITIES 
1. Principal equations 

In this section we shall study the influence of inhomo- 
geneities on the collective oscillations of a system of 
PW's. As in Ref. 13, we shall allow only for the self- 
consistent interaction and the scattering by random in- 
homogeneities in the lowest order in Him,: 

11, = hY,. + + a = hVk + ( ~ k k , ' J k ,  dk' + C \: gk-k*&?-kk,hdk', 

 oreo over, we shall confine ourselves to oscillations of 
not too low frequency 17, for which the multifrequency 
nature of the parametric turbulence is unimportant. 
This restriction allows us to regard the frequency dis- 
tribution of PW's to be singular and to represent, in 
accordance with Eqs. (1.14)-(1.17)' the quantities fie# 
and Tr,# a s  sums of two terms: 

where Eqs. (1.14) and (1.17) representing terms of the 
first and second kinds can be decoupled. 

In qualitative investigations we can consider only the 
axially symmetric case and made the following model 
assumptions : 

yt=r ,  g t t r=g,  V t =  Vf (cos 0)e2'P,  

Stt'=S(q-cp') f (COS 0 )  f (COS O'), 

Tkkz=T(cp-cp') f(C0S 0 )  f (COS e ' ) ,  

This makes it possible to reduce the initial integral 
equations (1.14) to a system of six algebraic equations 
for integral quantities: 

f i t  , xP=j  k 'dkdcos  0dcpe-'w-= - , 
2N P 

for each axial harmonic p = 0, p = * 1, etc. This gives: 

where A(O)=l, A(p)=O f o r p f  0; v ~ = I ? ~ - ~ I I ~ ~ ;  p2 
=~~-2ir&2-&2~. Here, the quantity v is governed by the 
scattering on inhomogeneities13: 

~ ~ m 7 ~ ~ ~  ( r m p + 2 ~ ) .  

The system (3.5) is different for isotropic ( p  = 0) and 
anisotropic ( p  # 0) oscillation modes. The scattering 
of PW's by inhomogeneities makes the distribution 
function of n, isotropic and, therefore, i t  has the great- 
est  influence on anisotropic modes by contributing ad- 
ditional damping. 

2. High-frequency collective oscillations 

When the scattering by inhomogeneities is weak 
(yim,<< y), the high-frequency branches of collective 
oscillations a r e  not greatly affected, and a r e  given 
by Eq. (2.1) to within y,,,. In the case of small super- 
criticalities Qf, we find from Eq. (2.1) that 

In the case of anisotropic modes the influence of in- 
homogeneities becomes important for 

when SZ, becomes comparable with y,,,. In the case of 
smaller supercriticalities, we find from Eq. (3.5) that 
instead of Eq. (3.6) we now have 

[see Eq. (3.10) for A,< v]. When 

we find from Eq. (3.6) that the collective oscillations 
become unstable. It is clear from Eq. (3.10) that in- 
homogeneities suppress this instability in the region 
(12). In high-frequency motion (a,>> y,,) the correla- 
tion functions of 4 and Ck play the dominant role and the 
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eigenvectors of these modes agree to within y,,,/y << 1  
with those calculated from the S theory. At low fre- 
quencies (51,-y,,,) the Green functions 6 and con- 
tribute also to the oscillations. In particular, their 
damping influences results in the instability suppres- 
sion mentioned above. 

For an isotropic mode ( p  = 0 )  for y,,, << y  we can ob- 
tain from the system ( 3 . 5 )  the expression (3 .9 )  which 
generalizes Eq. ( 2 . 1 ) .  

When S0(2T,+ So) < 0 ,  the collective oscillations be - 
come unstable and the threshold is given by Eq. ( 1 1 ) .  
Strong scattering by inhomogeneities (y,,, >> y )  modi- 
fies greatly the collective oscillation pattern. A study 
of high-frequency modes (a2 y,,,) can be carried out 
using the inequalities 1' 2 v 2  >> I l II2 simplifying the 
system (3 .5 )  to 

Hence, the following formulas a re  obtained for the fre- 
quency a:: if y,,, << y ,  then 

whereas for y,,, >> y  , we obtain 

Here, v 2 =  2yy,,,. The formula (3 .10)  provides inter- 
polation in the region of v -  A,. 

It is clear from the system ( 3 . 8 )  that only the anoma- 
lous correlation functions of a,  and a,* participate in the 
motion a t  these frequencies; the quantities n, do not os-  
cillate. 

3. Low-frequency collective oscillations 

We shall consider the oscillation modes whose fre- 
quencies vanish in the S-theory approximation. It is 
shown in 8 2  that allowance for the scattering of PW's 
by one another gives r ise  to a finite oscillation fre- 
quency of these modes. We shall show here that the 
same effect is produced by the scattering of PW's by 
inhomogeneities. In the case of low-frequency modes 
a characteristic feature is a large amplitude of oscilla- 
tions of the sum R,+ E; and a relatively small amplitude 
of oscillations of II *a,-UC;. In the approximation of 
Eq. ( 3 . 3 ) ,  the condition II *5#+ lIC;= 0  gives for p  # 0  the 
following dispersion equations applicable to different 
limiting cases: 

p (E,+E,+) -0 (3.12) 

for ( h - h , ) / h , < ~ , , , / ~ ,  ~ , , , < < y ,  

h 
=O for - - - i > k ,  y l n i p < ~ ,  (3.13) 

her Y 
p ( G p + E p + )  =O (3.14) 

for y  ,,, >> y  . The corresponding frequencies of collec - 
tive oscillations are :  for p = 0  subject to y,,, << y  . 

Q,=-8iv(hlh,,-I), ( S , N ) Z < ~ y ,  (3.15) 
9,=-4iyrmP ( K ~ ~ - - K ~ ) ,  (SoN)'>vy, (3.16) 

whereas in the range y  ,,, >> y  , 

For y  Z 0  in the range y,,, << Y , we have 

whereas in the range y,,, >> Y , we obtain 

Here, 

It should be noted that oscillations of the frequency 
given by Eq. (3 .19)  a r e  unstable if the following two in- 
equalities a r e  satisfied: 

which agrees [see Eq. ( 1 2 ) ]  with the condition of insta- 
bility of high-frequency mode (3 .10) .  Thus, isotropiza- 
tion of the distribution of n, occurs in a time y;:, [nat- 
urally, if the stability conditions ( 2 . 2 )  and (12) a r e  sa t -  
isfied]. 

If p  = 0 ,  then the isotropization mechanism of the dis- 
tribution of n, is no longer applicable and, moreover, 
the Green functions Go participate, in addition to Eo 
+ ii', in the collective oscillations. Calculations carried 
out bearing these points in mind give the frequencies of 
isotropic oscillations [see Eqs. (3 .15)  - (3 .18) ] .  The in- 
stability range of this mode 

again is identical with the instability range of the cor- 
responding high-frequency mode (3 .12) .  The fact that 
the inequality S,(2T,+ S,)< 0  is the instability condition 
for low-frequency oscillations in homogeneous and ran- 
domly inhomogeneous ferromagnets [Eqs. (3 .16)  and 
(3 .19) ]  is due to the identical nature of oscillations in 
the corresponding ranges of the parameters. 

We shall conclude by noting that the qualitative nature 
of the results obtained in the present section applies 
also when 51 5 q.  

3 4. INSTABILITY OF SINGLE-FREQUENCY 
TURBULENCE OF PARAMETRICALLY EXCITED 
WAVES 

As pointed out earlier,  integral equations describing 
a stationary state of a PW system have a particular 
solution of the type 

In the present section we shall show that this "single- 
frequency state" is unstable in the case of broadening 
of the spectrum of n,, along the frequency scale. 

In the initial equations (1 .14) - (1 .17)  this instability 
corresponds to 

which a r e  quantities describing the exponential r ise of 
the initial perturbations n,, and a,,  in the range of 
frequencies w satisfying the condition Im SZ(w)> 0 .  For 
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perturbations of the (4.1) type the frequencies w, and 
w,'are not equal to w,/2, which simplifies greatly the 
system (1.14) so  that it consists only of the terms con- 
taining 6 and \E , i.e., two equations for Fiala, and Eala2 
a r e  obtained. Analysis of these equations shows that, 
to within terms of the order of (q/r)<< 1, we have 

which allows us  to eliminate TO. Integrating the equation 
for fi,,(Q) along the normal to the resonance surface, 
we obtain 

nk' &+a+ = - 
u 

(4.3) 
In contrast to O 2, we now have 

1. We shall consider f irst  an axially symmetric case 
which is encountered in cubic ferromagnets when MI1 
[loo] o r  Mil [ I l l ] .  For small  supercriticalities and in 
the absence of random inhomogeneities , parametric 
waves a r e  excited only on the resonance surface equa- 
tor. Then, 

where 0 is the polar angle and the quantities r = y,  v, 
and v, a r e  indepe_ndent _of the azimuthal angle cp. In the 
expressions for @ and ?Ir we have to use the relationship 
(4.2) and bear in mind that in our geometry the quanti- 
ties k ,  k,, k,, and k3 in these integrals l ie in the same 
plane and, to within terms of the order of v/kv << 1 have 
the same lengths. Consequently, either k+ k, = k,+ k3 
= O  o r  k=kz,  k,=k3 o r  k=k3, k,=k,. 

We finally obtain 

R=6v2iVlv+r- (v++v-) ,  X= j N. diq. (4.5) 
-2, 

The above equation is derived using Eq. (32) of Ref. 11 
for v3 expressed in terms of T,,,, and N2, which follows 
from 

Equations (4.4) and (4.5) yield the dispersion relation- 
ship which gives the frequency 

Here, the characteristic frequency is q =  v2/2y. We can 
thus see that the most stable waves a r e  those with 
w - w,/2: 

The instability range [Im Q(w)> 01 is given by 

and is of the same order of magnitude a s  the width of a 
regular (in respect of the frequency) stationary state 
(7). 

2. We shall now consider a medium with random in- 
homogeneities and we shall confine our attention to the 
most interesting limiting case when y ,,, >> y. As in  
Ref. 10, we shall analyze Eq. (4.3) including not only 
higher terms but also those of the first  order in y/y,,, 
<< 1 and we shall assume that w and 52 a r e  smaller 
than r. We must also bear in mind that for y,,, >> y the 
distribution of n, on the resonance surface is isotropic. 
Consequently, the quantity 

is described by the equation 

where l?, = ytm,/y and (T2) is the average value of the 
square of the modulus of the matrix element T,,,,, (for 
details see  Ref. 10). These averages occur in the equa- 
tion which describes the structure of the distribution in 
a stationary state: 

x j N.,N,JeN.,G(o+oI-o2-oS)dol do2 do,. (4.9) 

The coefficient q, which occurs in Eq. (4.8) is found 
from Eq. (4.9) on substitution of the single-frequency 
solution (6): 

Equations (4.8) and (4.10) lead to the dispersion equa- 
tion 

As in the case of a homogeneous ferromagnet, the max- 
imum instability increment corresponds to waves with 
w - w,/2: 

The instability range where Im 52> 0, is now 

)a-a,/2 1 <2"q,. (4.13) 

The limit of the instability range Aw = 2112q0 is identical 
with the position of the first  satellite of a stationary 
state in the range (E-Em,,)< Em,, [a more detailed des- 
cription of stationary solutions of Eq. (4.9) can be 
found in Ref. 101 and is of the same order of magnitude 
a s  the width of the regular solution (7) of Eq. (4.9). 

The instability of the single-frequency solution (6) 
can be deduced from Eq. (4.9). We shall do this by 
finding the linear response of a stationary state to ther- 
mal noise, which gives r ise  to an additive correction 
6 @ ,  to @: 

Q=Qini+GQ,, 

which is independent of w. Assuming that 

we obtain from Eq. (4.9) in the linear approximation 
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and hence it follows that 6 N ,  is not small when Aw 
< 2lJ2r], and, consequently, the single -frequency solu- 
tion is unstable. Moreover, we can show that even 
the multisatellite solutions of Eq. (4.9) obtained in Ref. 
10 are  also unstable. In fact, Eq. (4.9) linearized 
against the background of the multisatellite solution 
transforms into a system of linear algebraic equations 
and has neutrally stable solutions, corresponding to a 
small change in the parameter E (see Ref. 10). The 
determinant of the linearized system vanishes a t  the 
points w, where the satellites a re  located. Since this 
determinant changes sign near the first  satellite for 
E = Em,, (i.e., against the background of the single-fre- 
quency solution), we may expect it to change the sign 
also near satellites for any value of E. It thus follows 
that there is a range of frequencies w in which the de- 
terminant is negative and perturbations grow. 

It follows from the above analysis that the instability 
of single-frequency and multisatellite states is related 
to the nonlinear nature of the interaction of PW's: 
+,,, a Na , cr > 1 and, in spite of the fact that we have 
proved this only for specific situations, i t  is generally 
true. Therefore, the only stable (in the case of f re-  
quency broadening) state of the system is a multifre- 
quency turbulence of PW's with a continuous frequency 
distribution. 
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Fluctuations in a nonstationary nonequilibrium system near 
its instability threshold 
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The example of electrostatic oscillations is used in considering the growth of fluctuations in a 
nonequilibrium system in which transition from a stable state (characterized by a small-perturbation 
logarithmic decrement y-,) to a stable state occurs in a finite time T. In contrast to a stationary system, 
fluctuations at the instability threshold are bounded even in the linear approximation. If the eigen- 
frequency of weakly damped fluctuations is a simple root of the permittivity (or a root of the 
corresponding generalized susceptibility in the case of other fluctuations), the ratio of the intensity of 
fluctuations at the instability threshold to the intensity in the stable region is (rry-,~)"~ before the onset 
of the transition. 

PACS numbers: 41.10.Dq 

1. INTRODUCTION 

It is well known that when a system is not in thermo- 
dynamic equilibrium and when the small-perturbation 
logarithmic decrement y tends to zero as the charac- 
teristic parameter of the system a approaches a ce r -  
tain value a,, the level of fluctuations considered in the 
linear approximation can rise without limit for a -  a,. 
In this case the fluctuation level is restricted only by 

nonlinear effects. This situation occurs, in particular, 
on approach to an instability threshold where y changes 
its sign. However, strictly speaking, this result ap- 
plies to the case when the system is stationary. In 
reality, the system becomes unstable only after a finite 
time !and it then cannot exist in a stationary state). Al- 
lowance for the nonstationary state results in limitation 
of fluctuations even in the linear approximation1' and, 
a s  shown below, there is a simple relationship between 
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