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Linear and nonlinear theories of the modulation instability of media with dispersion of the 
o = oo(n)(l - a / k  ') type are considered. It is shown that small-scale modulation perturbations are excited 
in the linear regime and the smallest scale of these perturbations is set only by the limits of validity of the 
theory. Sawtooth waves with sharp peaks appear in the nonlinear regime. In the fud analysis, this results 
in the heating of thermal or almost thermal particles in a plasma. 

PACS numbers: 03.40.Kf, 52.35.Mw, 52.50.Gj 

§ 1. INTRODUCTION Before considering the theory, we shall note the fol- 

The modulation in~ tab i l i t y '~~  has been investigated so lowing possibilities i f  realization of the spectrum (2). 

far mainly for waves whose dispersion is Firstly, the heating of the fast particles by the Lang- 
muir oscillations of a plasma with the spectrum (1) 

o=o,(n) (l+g2k?), p2kwi (1) should automatically convert the spectrum (1) to the 

(n is the particle density). In the nonlinear stage this 
instability gives rise to relatively large solitons (in the 
one-dimensional case) or quasisolitons, called cavitons 
(in the three-dimensional case). Their subsequent 
evolution (dynamic or as  a result of collisions of soli- 
tons with one another) reduces the characteristic scales 
of nonlinear entities. In a plasma this gives rise to dif- 
fusion of the turbulence energy to high wave numbers 
where the energy flux is absorbed, because of the Lan- 
dau damping, by "tail" The evolutionary 
changes in the turtulent spectrum result in the transfer 
of the major part of the input energy to fast particles. 
This relatively common effect is important under astro- 
physical conditions6 and, in particular, it explains the 
high efficiency of generation of fast particles and cos- 
mic rays. 

spectrum (2) if the dispersion of the Langmuir waves is 
governed by fast particles. This occurs when the rela- 
tive number of the fast particles is small, n'/n<< 1, but 
their average energy i s  higher than the thermal value: 

nlT'BnT (3) 
(T' is the effective temperature of the fast particles and 
T is the temperature of the thermal particles). The 
necessary condition for the existence of the spectrum 
(2) is 

We then have 

Another example of the dispersion (2) are the so- 
called lower-hybrid waves currently used for plasma 

In an earlier paper7 we also drew attention to qualita- heating in tokamaks: 
tively new features of the so-far uninvestigated modula- 
tion instability in media with the dispersion 

which is called the inverse dispersion in Ref. 7. The 
present paper gives a detailed linear and nonlinear the- 
ory of this instability. A characteristic feature of the 
modulation instability of waves with the spectrum (2) is 
the excitation of a very wide spectra of k, whose maxi- 
mum value has an upper bound set only by the limits of 
validity of the theory. It is this circumstance which is 
physically respo,nsible for the heating of thermal or 
near-thermal particles by the modulation instability in 
question (in a plasma there may be direct excitation of 
oscillations with k close to k, =o,/v,). In the nonlinear 
regime the modulation instability of waves (2) gives 
rise to entities with electric field discontinuities and 
these are damped by thermal particles. This distin- 

For a given value of k,~<k,(m/m~)'/~, we have the dis- 
persion (2) for k,: 

For a given k,>> k,, we obtain 

The next examples are the ion-acoustic oscillations 
of frequencies close to o,,: 

The dispersion (2) is exhibited also by many branches 
of excitations in solids. 

guishes qualitatively our modulation instability from the 
modulation instability of the waves (1) when-in the lin- The starting equations in the theoretical analysis can 

ear state-a possible spectrum of k is limited from be, firstly, the equation for the complex amplitude E of 

above the k,,, [for the Langmuir waves we have k,, the field Ee-i wd : 

= k,( w/~T)'", where W is the energy density in the A ---2 -1no 6 n E  =aE 
waves (1) andnT is the thermal energy density]. (zaE (:n ') ) 
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and the standard equation for the density variations 
(v* = q / m  1: 

In solids, in addition to the striction forces we have 
to allow also for other nonlinearities. In terms of di- 
mensionless variables the system (10)-(11) becomes We note also that we can introduce a dimensionless po- 

tential difference 

Then, 
A dimensionless field E and dimensionless variations of 
the density v, time 7, and coordinate E are given by 

We shall now define the field frequency by 

$j 2. SOME GENERAL RELATIONSHIPS 
Then, 

The system (12) has a series of integralsl?,. They 
can be found most simply directly from Ra. (12) if the 
relevant laws of conservation are written in the differ- 
ential form 

We find from Eq. (16) that 

and, consequently, 

where w, i s  the flux of the conserved quantity R,. 
Equating to zero the flux w, across an infinitely distant 
surface ensures conservation of 

The meaning of the above integral i s  very simple. In 
the linear approximation, the effective frequency S l  in- 
troduced by Eq. (20) describes linear dispersion. In the 
nonlinear case it also includes nonlinear frequency 
shifts, i.e., it corresponds to the total frequency. 
Thus, according to Eq. (21), the total energy consists 
of the energy of the oscillations under consideration . 

(equal to the density of the number of quanta lei2 multi- 
plied by their frequency a)  and of the energy of defor- 
mation and motion of the medium, including the emitted 
acoustic oscillations. 

. where p, i s  the density of the relevant quantity. 

For simplicity, we shall consider the one-dimension- 
a1 case when the system (12) can be written in the fol- 
lowing form by introducing two new quantities g and v :  

It should be pointed out that the first  two integrals N 
and P have the same form as for the dispersion de- 
scribed by Eq. (1). The negative sign of H may result 
not only from v<O (lowering of the density) but also 
from a fairly high value of lq l 2  in the (DO case. 

From Eq. (15) we can easily obtain, in the differential 
form of Eq. (14), the law of conservation of the number 
of quanta: 

p,=le lamN(e) ,  (17) 

the law of conservation of momentum: 
93. LINEAR THEORY OF THE MODULATION 

INSTABILITY 

We shall use the .system (12) in terms of the dimen- 
sionless variables 7- and 6. We shall consider the sta- 
bility of a monochromatic wave in the case 

E-eo e s p  ( i k , t , - iw .~ ) ,  oo=- l lkO2-  1 e0 1 2 ,  
To'- I E 0  I '. (22) 

Here, w, and k, k e  naturally also dimensionless quan- 
tities. We shall find perturbations of the amplitude e' 
and density v' in the form 

and the law of conservation of energy: 

e'=eOr ~ s p  ( i k , , 6 - i w , ~ + i k E - i ~ ~ ) .  Y ' = V ~ '  e s p  ( i k t - i w z ) ,  

e1'=e,". exp  ( - ik ,b+io ,z+ikE-ioz) ,  e,"'#e/', 
(23) In the three-dimensional case the laws of conserva- 

tion (15) have the form 

817 Sov. Phys. JETP 48(5), Nov. 1978 L. I. Rudakov and V. N. Tystovich 817 



i.e., we shall assume that the perturbation E' i s  a modu- 
lation of Eq. (22) with the wave number k and frequency 
W. 

This gives the dispersion equation (a>O): 

It should be stressed that Eq. (24) i s  obtained from 
the system (12) without any additional assumptions. 
Therefore, it i s  desirable to consider the dispersion 
equation (24) without imposing any restrictions on k and 
h. In specific cases the system (12) i s  valid when cer- 
tain inequalities are satisfied, so that we have to use 
those growth rates y (given below) which correspond to 
these inequalities [see, for example, Eq. (4) etc.]. 

In the case of subsonic growth rates subject to the 
condition I wl <<k, we have 

If k>>k,, we find that 

2(&) 1 o= - z t - ( 1 -2koz l~o12 )" .  
k' k,' 

Clearly, the instability occurs if 

(eo('> 1 / 2 k , ~ .  (27) 

This criterion corresponds to the condition when the 
nonlinear frequency shift exceeds the linear effect. 

We shall consider in greater detail two cases without 
assuming in advance that k >> k,: 

a) the case corresponding to inequality 

b) the case corresponding to the opposite inequality. 

We shall begin with the case when the inequality (28) 
i s  obeyed. Then, Eq. (26) gives the growth rate of the 
modulation instability: 

i.e., the growth rate i s  governed by the geometric mean 
of the linear and nonlinear frequency dispersions. The 
rate i s  constant and, consequently, any values of k may 
be excited, no matter how large and their maximum 
values are bounded from above by the limits of validity 
of the system (12). The growth rate (29) i s  obtained 
subject to the condition y <<k, i.e., 

We shall also introduce 

Since l&012k,2 >>I, we have k,, <<k*. Let u s  assume that 
k, >>k,,>>k, or 

J e o l z k o 8 ~ 1 .  (32) 

Then, for k<<k,, we now have y >>k and the subsonic 
solution i s  inappropriate. In the range 

we obtain 

i.e., the growth rate decreases as  k'" on reduction of 
k. In addition to the purely imaginary solution W =  i i y ,  
there are also two completely real solutions w=iy,  
which describe the second sound in the problem under 
discussion. The real component of the frequency i s  ob- 
tained also for k>>k,:~eo=2kdr/k~; however, it i s  al- 
ways a factor of (k,,/k)2((glak i )-IE2 smaller than the 
imaginary component. Finally, if kck,,, the growth 
rate i s  a linear function of k: 

k  k  
y = k ( 2 ! ~ l z k o 2 ) V = 7 m ~  (--)"'> k ,  k .  k.. 

i.e., an aperiodically growing second sound i s  obtained 
and it i s  characterized by a linear dependence of the 
frequency on the wave number, as  well a s  by a velocity 
(2(&,I2k 20 )'I2 much higher than the velocity of sound. In 
the region adjoining k-k,,, all four solutions can be de- 
scribed by 

For k of the order of .k,<<k,*, we obtain the following 
angular dependence of the growth rate: 

For k c  k,, the angular dependence is retained and only 
the waves with cost? >$ remain unstable. 

We shall next consider the case k**<<k,<<k,, when 
the inequality opposite to Eq. (32) i s  satisfied. Then, 
the solution of Eq. (34) i s  retained to a value of k of the 
order of k,. If k <<k, then 

Finally, if k,>>k*, i.e., if 1 ~ ~ 1 ~  << k:, the growth rate 
(29) i s  retained only up to k=k, and for kek, only the 
perturbations with cost? >$ are unstable. 

We shall now consider the case (&,I2k; <<I. Then, the 
instability disappears for k>>k,. If k i s  of the order of 
k,, the instability is possible in a narrow range A 0  of 
the order of ( ( ~ , l ~ k  g)lE2<<1 near the angle P, equal to 
cost?,=$(l+k2/k E), i.e., for k<ak,.  If kek, we obtain 
weakly growing (for t?>60°) second sound: 

However, we must bear in mind that this growth occurs 
only within the framework of the system (12). If we al- 
low for the damping, which occurs in the examples giv- 
en above but i s  ignored in the derivation of the system 
(12), a s  well a s  for the scatter of k, in respect to the 
magnitude and direction, we find there is no instability 
for I~,(~k;<<l. Thus, in the case of sufficiently wide 
spectra the instability appears in fact for ( ~ , ( ~ k  > 1. 

8 4. ASYMPTOTIC (IN TIME) SOLUTIONS AND 
TURBULENCE SPECTRA 

The problem of the turbulence spectrum i s  frequently 
solved together with a source and sink. In considering 
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an inertial interval i t  is important from which end (the 
one corresponding to high or low wave numbers) the en- 
ergy is arriving. We shall begin from some guiding 
ideas on the inertial-interval turbulence ignoring the 
effects of maintenance of oscillations from the side of 
high or low values of k. We shall assume that initially 
there is a spatially localized, in a distance L, packet of 
the oscillations in question with a characteristic value of 
k 3 k0 of Sufficiently high amplitude IcJ2k o2 >> 1, so that 
modulation creation of short-wavelength harmonics is 
possible in a time much shorter than the packet spread- 
ing time [see Eqs. (22) and (2911: 

The deformation of )812 and v in the course of develop- 
ment of the instability results in the emission of acous- 
tic oscillations in accordance with the system (12) and 
these can carry away energy and momentum to "infinity" 
at the velocity of sound assumed to be much higher than 
the group velocity of the packet. 

We shall consider three possible situations. In the 
first case the development of a modulation instability 
of scale L produces quasihomogeneous plane-wave tur- 
bulence with a certain spectral distribution of \ E , ( ~ .  In 
this situation we can always expect generation of acous- 
tic oscillations carrying away the energy and momentum 
and the energy of the oscillations in question remains 
negative but increases in the absolute sense. However, 
since lcI2 cannot change greatly because of the first  in- 
tegral in Eq. (15') and homogeneity of such turbulence, 
i t  follows that only ( ( p ( 2  = )q,Iz/k can increase, i.e., 
only the main scale of the turbulence can increase up to 

kz <l. Consequently, in the final analysis, the modu- 
lation instability described in Eq. (26) is suppressed and 
short-wavelength modes with k >ko-l/Co are absent from 
the oscillation spectrum. This apparently terminates 
the whole process. This is the feature that distinguish- 
e s  the turbulence of the waves described by Eq. (2) from 
the turbulence of the waves described by Eq. (1). In the 
latter case we can also expect the emission of sound 
which can reduce the wave numbers and restore the 
modulation instability. 

The second possible situation is represented by solu- 
tions in the form of quasisteady standing nonlinear 
waves. Such waves do not create a force - 4cl2/ax 
which alternates with times, and, consequently, they 
cannot emit acoustic waves. 

The third possibility is analogous to the modulation 
instability of the Langmuir waves and it represents 
self-contraction of packets with the main instability 
scale l/ko for k leal%-> 1; these packets are converted 
into solitons in which energy is localized with a high 
density in narrow regions. This is permitted by the 
laws of conservation of N and H. In fact, in the case of 
packet contraction we have c2-I/[ and such contraction 
is favored because of reduction in the potential to the 
scale kof 2 k  From this scale the evolution of ( c ( ~  
may proceed in the two ways described above. In the 
case of the first way we again return to the turbulence 
scale k i  (6,,12<l. 

It thus follows from the above considerations that both 
strong turbulence and small scale J d 2 k  >> 1 may char- 
acterize quasisteady nonlinear waves. The quasisteady 
condition is understood to bef' 

8 5. QUASISTEADY NONLINEAR WAVES 
We shall begin by considering the problem of com- 

pletely steady (standing) waves and then find more gen- 
eral  relationships which can be used to deduce the lim- 
i t s  of validity of the solutions when they are applied to 
quasisteady waves. We shall turn to the solution of the 
system (12). In the case of standing waves the second 
equation in the system (12) is integrated, v =  - \ & I 2 ,  and 
we then have one equation (m>O) 

We shall find i ts  solution in the form 

We shall be interested in solutions with 82~0. It fol- 
lows from Eq. (44) that 

Equation (43) has an integral which can be represented 
in the form 

(46) 
where a and k i  are the constants of integration. The ex- 
pression 

(4 7) 
is simply the square of the modulus of the difference 
between the potentials, which occurs in the energy in- 
tegral. 

It follows from the above that the problem reduces to 
finding a bounded solution of Eq. (46). Consequently, we 
shall be interested in the solutions that minimize the 
energy integral 

for a given value of the integral ?q2df in the interval 
L >> 1 >>[d(ln+)/d[]-'. The variational parameters are ko 
anda. 

The value of kg characterizes the modulation ampli- 
tude I~,,,-~,,l/lllr,,l and, as  shownbelow, if k2,=&s,lnI, 
this amplitude vanishes, whereas for ki-0, we have 
#,,-0, i.e., the maximum modulation corresponds to 
k2,(nl<<l. The larger the parameter a ,  the greater the 
value of ~1,,,/(t21. However, a has an upper bound. In 
fact, if J ,  is to be finite throughout the interval e, the 
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derivative @ / d t  should vanish at two values JI,, and 
Jlmhf. Let us  assume that $a,,< lS21/3. The point q2= /91/3 
i s  singular. It cannot be crossed without violating the 
condition of continuity of the quantities J ,  and 
(101 -311r2)&/dg, which follow from the equation for JI. 
Therefore, we have to satisfy the requirement $iaX 
<I01/3. It follows from Eq. (46) that this can be done 
if a < 27/4. Consequently, (we are assuming that a 
= 27/4 - a2), 

We shall consider two limiting cases which can be 
solved completely. We shall first assume that k1,1SZ(<<1, 
i.e., that the modulation is strong. We then have 

At the points $00, v-1521/3 we have infinite "potential 
barriers" corresponding to the "forcew2' 

The lower the values of k, and k&, the less frequent i s  
the reflection of a "freely moving particle" at the points 
J,=O and f =ICtl/3. In the vicinity of these points we 
have 

lp'=6ko'Q'+fz/6, (53) 
[g- ( I  Q 1 /3)"']'=6k,2a2Q'+ ( f  -Eo)'/6. (54) 

Between these points, we find that 

We shall now consider the second limiting case when 
the modulation is weak: I$,,,,,- #minl/JI,x<<l. The term 
kt in Eq. (47) for (dJ,/dE)' has a minimum at @ = (52(/3 
and in the vicinity of this minimum we have 

Hence, it follows that 

and we obtain 

dlp p2 1 39' 1 a' 
= 7 - - - : ( j  -m) -z ( l - 3 $ 2 / l Q , ) z  

In the last equation in the limit a -0 the quantity @ lies 
between the value on the wall characterized by +iax 
= (521 /3 and the value given by J,kh = + I  521 (1 - p2/3), where 

i.e., the solution represents segments of concave para- 
bolas which are matched at the points separated by go 
=%/a and the depth of the parabolas is AJI =$EL The 
energy integral per unit length is then H, = - SO2. 

Among possible steady-state solutions of the system 
(12) we shall select one with discontinuities (peaks). In 
addition to these solutions, there are analogous solu- 
tions with amplitudes in the range ISZl/3 < <\SZl .  For 

all these solutions the peaks are responsible for short- 
wavelength harmonics in the spectrum (we shall use the 
familiar expression for a sawtooth wave): 

We must s t ress  that a kink at @ =1511/3 in these solu- 
tions minimizes - 1qI2 and the energy integral [see Eq. 
(49)l. 

We shall now consider the limits of validity of our 
solutions within the framework of the original system 
(12). In the general case of a wave whose envelope 
moves at a constant velocity u, we have 

=@'" 9 $=$(GI =*(&-uz), 

Substituting Eq. (61) into the system (12) and separating 
the real and imaginary components, we obtain the inte- 
gral generalizing Eq. (46): 

We can obtain Eq. (46) if we make the following sim- 
plifications. Firstly, inR and V of Eq. (65) we drop 
ku, which is small compared with the other terms. 
Since @ i s  either of the order of SZ or much smaller 
than SZ, the relevant criterion i s  

Secondly, we have to neglect the left-hand side in Eq. 
(64), i.e., we have to assume that M =  - JlkV [the sub- 
sitution of this relationship in Eq. (63) gives Eq. (45)]. 
This means that our solution i s  valid if 

k ~ u l f o ' l Q l .  (67) 

Thirdly (this is not so important), we have to assume 
tha tue l ,  i.e., we have to postulate that the motion i s  
subsonic. 

The last condition is not so  important because for u -1 
and even for u >> 1, an integral of the (46) type i s  easily 
obtained. We shall analyze the criteria (66) and (67). 
Outside the peaks of a sawtooth wave we have k-k, 
[:-I521 and, consequently, the solutions found above are 
valid if 

In the region of the teeth we have k - kdk352 1,  E t -kv ,  
i.e., 

k o ~ ~ / ~ Z .  (69) 

Thus, the condition (68) is sufficient to satisfy the cri- 
teria (66) and (67). Finally, the condition k:)SZ1<<1, to- 
gether with Eq. (68), gives again u <<15219h. The last 
inequality is easily satisfied if a ,- IS2 I 1 not only in 
the subsonic but also in the supersonic range, where our 
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solutions are no longer valid. 

For supersonic waves we can also find the solution 
when (68) is satisfied and for k <<u/f12. 

8 6. HEATING OF PARTICLES BY OSCILLATIONS IN 
THE CASE OF A DEVELOPED STRONG TURBULENCE 
OF OSCILLATIONS WITH INVERSION DISPERSION 

We shall now follow our earlier treatment.' The ap- 
pearance of short-wavelength harmonics during the 
growth of the modulation instability of oscillations, de- 
scribed by Eq. (2) and characterized by k ~ l t o 1 2 > l ,  re- 
sults, in the same way as in the asymptotic solutions, 
in possible transfer of energy from a source pumping 
the energy to the main scale k, of the oscillations (the 
pumping is by light beams and particles in the case of 
the modified Langmuir waves, and by the current in the 
case of the short-wavelength ionic Langmuir oscilla- 
tions), via the Landau absorption in the short-wave- 
length part of the oscillation spectrum, to thermal or 
near-thermal particles. The last qualification is needed 
because Eq. (2) is usually invalid for w/k= v,. Thus, 
for the ionic Langmuir oscillations (2) we have to in- 
clude the term k2v,2,/w, SO that the theory developed 
above is valid if 

- e .  

~ V T I / O ~ <  (TIIT.)"! (70) 

Substituting the spectral expansion (60) into the quasi- 
linear equation for the particles, we obtain 

Hence, it follows that 

We shall now list some of the phenomena in which the 
above modulations of oscillations and of the plasma den- 
density can be important: 

1) the runaway electrons in tokamaks may build up 
the modified electron Langmuir waves and heat the ma- 
jority of electrons; 

2) the high-current electron beams can heat a plasma 
during the last stage of the quasilinear relaxation if 
n,mv:> n ~ ;  

3) the nature of turbulence may change a s  a result of 
formation of the energetic component in the excitation 
of the Langmuir turbulence by electron and optical 
beams when the condition n'T'> nT is satisfied; 

4) the majority of ions may be heated if the current 
excites a strong ion-acoustic turbulence. 

We shall show how to estimate the current velocity u 
in the turbulent heating case. It follows from the mo- 
mentum balance for ions that 

Since &Jdt =eu&,,, it follows that T,/T~ =vTi/u or u/vs 

= (TJT,)'". Damping of the nonlinear oscillations by 
ions should be balanced out by pumping with the current. 
Hence, 

Combining these relationships, we obtain 

u/vT,= (m/m,f"li0rd. (74) 

§ 7. CONCLUSIONS 
The criteria of the modulation instability have been 

established for the system (10)-(11) [or, in terms of di- 
mensionless variables, for the system (12)] and saw- 
tooth solutions have been found: these are standing 
oscillations of modulated amplitude with the basic tooth 
scale to= c and a radius of rounding of the tooth peaks 
governed by the limit of the validity of the theory. A 
solution of this kind minimizes the energy integral (21) 
so that, in accordance with the above considerations, 
we may expect evolution of an extended wave packet and 
asymptotic establishment of such solutions. 

It is natural to consider the question of validity of the 
above conclusions in the case of a real three-dimension- 
al system. In the case of the Langmuir waves with the 
usual dispersion (1) it is found that the one-dimensional 
solutions become unstable in respect of packet contrac- 
tion when applied in two and three dimensions. The 
physical reason for this is that the modulations size I 
and the amplitude of a Langmuir wave E are related by 
I d - ' ,  and an increase in the amplitude increases the 
depth of the well in accordance with Eq. (11) as  well as  
reduces the frequency and energy integral (21), i.e., the 
process of "collapse" is favored by the energy consid- 
e r  ations. In the case of waves with negative dispersion 
there is no reason for the collapse because the rela- 
tionship between the modulation size and amplitude ICE 
is opposite to that required in the dynamic collapse 
process. Therefore, the solutions found above should 
apply to real three-dimensional systems. 

The limits of validity of the representation (2) in the 
cases known to u s  are limited on the short-wavelength 
side of the spectrum by the effects of thermal motion 
of particles, which can be allowed for by additional 
terms in Eq. (2) of the type 

The imaginary part of the above expression corre- 
sponds to weak damping of oscillations by particles al- 
lowed for in 9 6. h e  real part limits the radius of 
rounding of the teeth in our solutions. For example, 
in the case of the ionic Langmuir oscillations i t  cannot 
be less than Y,,(T,/T,)''*. 

The authors are grateful to V. V. Gorev, A. S. King- 
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Collective oscillations of parametrically excited waves are investigated with allowance for their scattering 
on one another and on random inhomogeneities of the medium. It is shown that in addition to oscillations 
investigated earlier in the S theory (self-consistent field) approximation, there are also relatively low- 
frequency oscillations (according to the S theory their frequency is zero). It is shown that distributions of 
parametrically excited waves with singular frequencies are unstable when their spectrum is broadened. 

PACS numbers: 03.40.Kf 

Considerable attention is currently given to the phe- 
nomena which appear on parametric excitation of waves 
in fer r~magnets ,"~  ant i fer romagnet~,4 '~  plasma,G7 fer- 
roelectrics: and other nonlinear media. In some im-  
portant cases the wave dispersion law w, is of the non- 
decaying type and an external field (pump wave) can be 
regarded as spatially homogeneous and monochromatic: 

h(r, t) =h(t) =h exp (-iu,t). (1) 

A relatively simple theory, based on the self -consistent 
field approximation (S theory), is developed for this 
case in Refs. 1 and 9. This theory is in good qualitative 
and quantitative agreement with many experimental ob- 
servations on ferromagnets and antiferrornagnets (for 
details see the review in Ref. 1 and also Refs. 4 and 5). 
However, recent experiments require interpretation 
which goes beyond this theory. For example, measure- 
ments have been made of the spectral  density N, of pa- 
rametrically excited waves ,lo 

N.-- j nt. dk, (2) 

where n,, is the Fourier component of the correlation 
function n,(r) of the complex amplitudes a,@) of travel- 
ing waves: 

The experimental results  show that the N, line has a 
finite width Ao which depends in a certain way on the 
pump amplitude and other experimental conditions. 

However, the S theory, which describes correctly the 
integral characterist ics of parametrically excited 
waves (PW7s), predicts a singular distribution of PW's 
in the k-w space: 

where 3, is the frequency o, renormalized to the inter- 
action [see Eq. (1.13) below]. 

L7vov" used the diagram technique to formulate inte- 
gra l  equations for n,, generalizing the S-theory equa- 
tions by a systematic allowance for the Hamiltonian of 
the interaction of PW's given by Eq. (1.5). These equa- 
tions give rise to a finite width of the distribution n,, 
in respect of the modulus k: 

Here, y is the logarithmic decrement of PW's; N 
= $  n,,dkdw is the total number of PW's; k is the char-  
acteristic wave vector of PW's (23,= w,); v is the group 
velocity, 

The distribution of N, in respect of w is more com- 
plex. The generalized equations have, like the S -theory 
equations, a "single -frequencyJ' solution singular in a: 

which is investigated in Ref. 11. However, as shown 
earlier,'" this solution is not the only one. In addition 
to the central line of Eq. (6), the solution of N, may 
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