
to evaluate an integral of the form in the upper half-plane. Similarly, evaluating 1;' for 

m t ( t ) - ( Z ' - I ) ' h ~ L ( z a - I ) ' h ~ i z .  
We shall use the fact that the functions m,(x) have no 
zeros for Im x 2 0, respectively. " 

We also take into account the fact that the two-valued 
function g(e)= (e2 - 1)'' has a regular branch assuming 
positive values on the positive axis outside the inter- 
val (- 1, 1). We begin by considering integrals with 
finite limits - R, R along the real axis, including the 
&-intervals of the singular points 

We have 

Substituting R= [I + 9 ( k +  i)2/L2]'r2, we consider the 
contour of integration for I;, in the complex plane, 
which includes the semicircle of radius R for Imz 3 0, 
semicircles of small radius & around the first-order 
poles z, and z,, and the segment [- R, R] along the 
real axis without the &-intervals of the singular points 
a, and e,. If 

is  satisfied on this contour, where M = const, the 
evaluation of I:, reduces to the summation of the poles 
a, and a, subject to the condition that f (z) has no poles 

Im e < 0 and taking &-- 0, R - 0 0 ,  we obtain 

This formula was used in evaluating (21) and (22) with 
the function f given by (20). 
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Structure of the field near a singularity arising from self- 
focusing in a cubically nonlinear medium 
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The structure of the field is studied near a singularity that arises in the propagation of intense light beams 
in a nonlinear (cubic) medium. The structure near the focus is determined by a method of numerical 
integration of a parabolic equation with the step of the transverse coordinate changed automatically as the 
singularity is approached. Methods of analyzing this solution, based on extension of the scales and the use 
of functional relations which are invariant with respect to the exact position of the focus, make it possible 
to develop an idea of the formation of the field near the singularity by a bell-shaped beam with a Townes 
protile with adjacent weakly focusing wings, which converges to a point. On the basis of this concept the 
analytic form of the field near the singularity is described by the function E -WZ$ - zX/(z$ - z)]"~, 
which is in complete agreement with the numerical results. 

PACS numbers: 42.65.J~ 

In the propagation of an intense light beam in a medi- at a focus has been discussed in the approximation of a 
um with a cubic nonlinearity [& = &,(I + &' I E 12)] there can parabolic equation 
be regions where the amplitude increases without lim- 
i t - fo~i?*~ The character of the singularity of the field 2i aE/az=A,E+ I E12E (1) 
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has been discussed in a number of but the re- 
sults given are highly contradictory. There are various 
reasons for the discrepancies; either the calculations 
were not carried to very large  amplitude^,^^^ or the pro- 
cedures used were not accurate enough owing to errors  
in determining the position of the focus z,,,~'" or, final- 
ly, the analytic approaches were based on extremely 
disputable a priori idease6" 

It seems most likely that a locally self-similar field 
structure with a singularity E - (z,, - z)'lf2 is formed in 
the vicinity of- the focus.ge10 In the Third School on Non- 
linear Vibrations in Distributed Systems (Gorkii, 
March, 1975), the authors of the present paper were in- 
formed about numerical results indicating that the 
structure of the field near the focus was very nearly 
self-similar with a singularity (z,, - z)'lf2. Gorbushina, 
Degtyarev, and ~ r y l o v ~ ~ * "  have arrived at the same con- 
clusion by applying the method of Lagrangian coordin- 
ates to the numerical integration of Eq. (1). 

The treatment described in the present paper is  based 
on an intuitive interpretation of the results of the nu- 
merical experiment mentioned above, by which we de- 
rive an improved formula for the field at the focus. 

E=[ 1 ln(z,,-z) 1 /(z,,-z) ]'", 

which is in good agreement with the numerical data. 

The numerical integration of Eq. (1) was carried out 
on a BESM-6 computer, with the initial condition 
E = E in e'r2f2 and using for the transverse coordinate a 
nonuniform mesh, which changed in accordance with the 
structure of the function E. As the amplitude increased 
the size of the steps near the axis was reduced and that 
far from the axis was increased, keeping the total num- 
ber of steps the same. The steps were varied automa- 
tically during the calculation, depending on the magni- 
tude of the difference between the values of the ampli- 
tude on the axis and at the point of the mesh closest to 
it. The accuracy of the calculations of E was lom4, a 
satisfactory result. as  determined from the number of 
digits that were the same in different calculations of 
the same case, and was obtained if the total number of 
points along r was at least 300. The results of the cal- 
culations are given below. 

FIG. 1. Beam structure for various values of E/E in with 
P=13.5 P,: a) ~ / ~ , , = 1 . 4 . 1 0 ~ ;  b) E/E,= (4-14).10~; d) 
Townes-profile beam; c) parabola. Solid curve is  amplitude; 
dashed curve i s  phase. 

' / f i n  

FIG. 2. Dependence of the phase difference AF on the ratio 
E/Ein: a) P/P,=l .  09; b) P/P,=13.5; c) P/Pc,=109. 

1. Figure 1 shows the structure of the function I E  ( 
near the axis for a beam power P = 13.5 PC,, where Po, 
is  the critical power for self-focusing. The amplitude 
E in Fig. 1 is  normalized to the value of the function 
E(r,z) at r= 0, and the transverse scale i s  increased by 
a factor E (0, z) [P=rE(O, z)]. The structure of a uniform 
beam is  also shown for comparison. Figure 1 shows 
that near the axis a self-similar structure, 

E-E (0, Z)E{E (0, ~ ) r ) e ~ ' " ~ ,  (2) 

is  formed as the focal point is  approached, which is  
close to that of a uniform beam with the self-similarity 
coefficient E(0,z). However, the wings of this beam are 
not self-similar and fall off much more slowly than for 
a uniform beam.') The difference in height and extent 
of the wings is determined by the initial structure of the 
beam and its power. The phase distribution in the beam 
is  parabolic near the axis and varies slowly in coordin- 
ates E/Ei, for large values of E/Ein. 

The degree of approximation of the solution to the 
form (2) can be assessed from the phase difference A F  
in the beam between the point r= 0 and the point r,. , at 
which the amplitude is  half as large. Figure 2 shows 
the phase difference AF as a function of the field ampli- 
tude on the axis, r = O  for three values of the beam 
power. In all cases A F  does not change much at large 
amplitudes. 

?'------J ' f.42 LYP.:'? 
f l r i , ,  

FIG. 3. Dependences of the quantities B ,  B', and Eo on the 
ratio E/Ein for P=13 .5Pm.  
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FIG. 4. Dependence of the power flux on r in a beam with P 
=13 .5P  and various values of E/Ein: a) E/Ei,=l, b) E/Ein Y =1.4.10. 

It follows from Eq. (2) that the radius of curvature of 
the wave front varies as 1 /  ( E  1 2 .  Since a ( E  1 / a z  - ( E  ( / R ,  
the field E  increases near the focus z , ,  approximately as 
E  - (z , ,  - z)-'/'. The agreement with this law can be 
tested more precisely by analyzing the quantity 
B = I E  I , I E  1 ; .  This quantity is constant for  any power 
law E  - (z , ,  - z)' a, and its  value is uniquely related to 
the exponent a ,  B = (a + l ) / a .  Figure 3 ,  in which B is 
plotted as a function of E / E , ,  for P/P,= 13.5, shows 
that B monotonically approaches the value 3 ,  so that a, 
approaches 4. This shows that the function E(z , ,  - z) 
is close to a power law with exponent a = 9. 

The calculations have also confirmed that a power of 
the order of the critical power is concentrated near the 
focus. This is illustrated in Fig. 4, which shows the 
quantity 

as a function of the coordinate r for a total beam power 
P = 1 3 . 5 P C ,  and E/Ei ,=1 .4*103 .  

The solutions of Eq. ( 1 )  found numerically a re  not 
self-similar for z - z,, for all values of r. The absence 
of self-similarity on the wings of the beam is very im- 
portant, a s  we shall now show, in the formation of the 
field near the focus in bounded beams, and must neces- 
sarily be taken into account in attempts to determine 
the nature of the singularity analytically. 

To interpret this numerical solution intuitively, i t  is 
convenient to put Eq. ( 1 )  in the form 

-2iaA/ar+A,A+ 1 A 1 = A + ~ ~ A / Q  ( T )  -0, (3 )  

by using the generalized lens t ran~format ion '~- '~  

1 ip' a 
A ( P , T ) = - E ( T , z ) ~ x ~ ( - - -  o p ( t )  2  a~ 1.0.) ; 

r=p /o , ( r ) ,  z -zsf=o,  ( s ) / o , ( r ) ,  (4) 

where up ( T )  and us(7) are  two linearly independent solu- 
tions of the equation 

with the Wronskian u J u p  - u,u j=  1 .  

Using the transformation ( 4 ) ,  we make the function 
A ( p ,  7 )  regular and nonvanishing for all T: including 

FIG. 5 .  Structure of di- 
d~ 1 electric waveguide for two 

E ( c 2 ~  values of r. 

PC! PC2 " 

7 -  00. To do this i t  is  sufficient to find a function 
@ ( 7 ) >  0  such that the solution u,(T) of Eq. ( 5 )  has the 
same type of singularity as 7 -  00 as E ( 0  z )  has a s  z - z , , ,  
and such that u s ( ~ ) / u p ( 7 ) - 0  as 7 - 0 .  On the other hand, 
for a solution A  ( p ,  7 )  of Eq. (3) to exist which is finite 
for all T i t  is necessary that the coefficient @(T)-' of p2 
fall off sufficiently rapidly that for 7 -  m the structure 
of a uniform beam can be formed. 

Equation ( 3 )  describes the propagation of bounded 
beams of waves in a nonlinear dielectric in which the 
linear part of the dielectric constant has a defocusing 
profile. We assume that for  sufficiently small @ (7)" 
there exists near the axis p= 0  a solution in the form of 
a quasilocalizable beam of nearly uniform structure 
which is propagated along 7 with an almost constant 
phase velocity and a weak radiative damping y .  The 
condition for such a beam to emerge a t  infinity is that 
the integral l C y d 7  converge. The profile of the total 
dielectric constant A&- (A  1 %  + p2 /@(7)  in the field of 
such a beam is shown schematically in Fig. 5 .  In this 
profile there a re  two caustic surfaces for the beam, de- 
fined by the approximate condition I A  )'A + $ / @ ( 7 ) =  1 ,  
an inner surface p, and an outer surface p,. Between the 
caustics the amplitude of the beam falls rapidly to a 
value proportional to the exponentially small factor 
exp (-Mp,), where the numerical coefficient M  i s  deter- 
mined by the form of the function AE in the strip 
Po<P<Pc. 

The numerical calculations show that for z,, - z - 0  the 
field changes only in a narrow region 0  < r  < A(z  - z, ,) ,  
in which a power of the order of P, is localized and 
there are  large transverse of E .  From the 
power-localization condition we have the estimate 
A-0,". Under the transformation (4) the range of val- 
ues r >  0  goes over into the range p  >p , .  In this range 
we immediately have from Eq. ( 4 )   that^ - E,/up, where 
E ,  is the limiting value of the field in the region r > A  
for z  - z , , .  Since for p- p, the nonlinear component of 
A& is small, we have approximately p,.: [ @ ( ~ ) 1 " ~  and 
the magnitude of the field amplitude at the outer caustic 
is A  - e l rp{ -~[@(7)1 ' /~ ) / [@(~)1 ' /~ .  Equating this value of 
the amplitude to E, /a ,  in the region p  >p, ,  we get the 
relation 

which together with Eq. ( 5 )  enables us to find the law of 
variation of @(7)  a s  7 - 00. 

Analyzing the asymptotic behavior of the solution of 
( 5 )  
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for T- - in the case2) 1/@ > 1/r2 we get from the condi- 
tion (6) the equation 

which can be satisfied by the function @ = ~ T / M .  

The running value of the radiative damping coefficient 
of the quasilocalized beam is  proportional to the square 
of the amplitude of the field on the outer caustic, i.e., 
exp [ -2 (2~~) ' /~ ] .  Since 

converges, the total damping constant will be bounded, 
which corresponds to the formation at T- m of a uni- 
form beam with finite power. 

Returning by means of Eq. (4) from the variables p, T 

to r, z and using the asymptotic form of uJT),  we find 
that 

and the structure of the field in the neighborhood of the 
focus is of the form 

(10) 
where E, is the field of the uniform beam. 

3. Let us compare the data from the numerical calcu- 
lations with the asymptotic formula (9). In Fig. 3 we 
have constructured the quantity B' = I E  I , I E  I / I E 1; as 
determined from Eq. (9). For large E/E,, it agrees 
well with the function B(E/E,,) found from the numerical 
calculations. In the same diagram we show the value of 
E, calculated by Eq. (8) from the numerical data.3' For 
large amplitudes this quantity is constant to a high de- 
gree of accuracy and depends weakly on the power of the 
Gaussian beam, decreasing from E,-0.88 for P = 13.5 PC, 
to E,-0.78 for P= 109P,,. The speed of approach to the 
asymptotic form (9) is  found from the calculations to 
decrease with increasing beam power. 

We shall give an estimate of the limits of applicability 
of this asymptotic form. The dimensionless equation 
(1) is derived from the dimensional equation by intro- 
ducing the coordinates %/a, y/a, z/ka2 and the field 
Enew= k a ( ~ ' ) ' / ~ ~ , ~ ~  where a is a characteristic dimension 
of the beam at z =  0. Neglecting the vector character of 
the field, but including longitudinal diffusion of the am- 
plitude, near the focus we would have to examine the 
equation 

The condition for the last term in Eq. (11) to be negligi- 
ble in comparison with the nonlinear term will be the 
inequality 

kZaZE,2(z,-z) Iln (zSf-z) 1 )1 

in the case of the dependence (8), or in dimensional co- 
ordinates (assuming Eo- 1) 

2 -2 
~ ( Z , - Z )  I in+ a2 Iw. 

For ka >> 1 this inequality i s  satisfied for practically all 
values k(z,, - z )  > 1. 

These asymptotic formulas can be used to estimate 
the field strengths reached at the focus in the case when 
these are limited by multiphoton absorption and induced 
scattering. The estimates can be made approximately 
by assuming that the rates of increase of the field owing 
to self-focusing and of its decrease awing to the limiting 
effect are equal. We find the position and value of the 
maximum by equating these rates. In the case of K-pho- 
ton absorption, for which 

the field at the focus is  unbounded for K c 2  and finite for 
K>2: 

The field E; found in this way with three-photon absorp- 
tion (K = 3) is  in quantitative agreement with the numeri- 
cal results of Ref. 1. For two-photon absorption and in- 
duced scattering this procedure cannot be used to esti- 
mate the field in the focal region, since the region where 
the asymptotic form (10) holds can be reached only when 
the cubic nonlinearity predominates strongly over the 
nonlinearity from two-photon absorption or induced 
scattering, and this gives field values E:>> I/&, at the 
focus, which are beyond the range in which the original 
equation (1) can be applied. 

 he analysis shows that the wings fall off approximately as 
T - l / 2 *  

2 ) ~ o r  +(TI > r 2  Eq. (6) can be satisfied only for E,=O. This 
means that the entire power of the beam i s  contained in the 
localized part, i. e .  , P=P,, A localized beam with P . 
=PC, can exist only when'its structure i s  that of a uniform 
beam for all r. In this special case the variation of the 
beam near the focus follows the law E - ( z, - z)" (Ref. 10). 

3 ) ~ h e  quantities Eo and z,, were calculated from values of 
I E I and I E I taken from the numerical results. 

'v. N. ~ u ~ o v o i  and A. M. Prokhorov, Usp. Fiz. Nauk 111, 
203 (1973) [Sov. Phys. Uspekhi 16, 658 4974)l. 

2 ~ .  N. Vlasov, V. A. Petrishchev, andV. I. Talanov, Radio- 
fizika 14, 1353 6971). 

3 ~ .  L. Kelley, Phys. Rev. Lett. 15, 1005 (1965). 
'E. Dawes and J.  H.  Marburger, Phys. Rev. 179, 862 

(1 969). 
5 ~ .  E. Zakharov, V. V. Sobolev, and V.  S. Synakh, Pis'ma 

Zh. Eksp. Teor. Fiz. 14, 564 (1971) [JETP Lett. 14, 390 
(197111. 

%. E.  Zakharov and V. S. Synakh, Zh. Eksp. Teor. Fiz. 68, 
940 (1975) [Sov. Phys. JETP 41, 465 (1975)l. 

?v. V.  Svobolev, Nekotorye voprosy vzimodeistviya voln v 
nelineinykh sred (Topics in Wave Interaction in Nonlinear 
Media), author's abstract of dissertation, Novosibirsk, 
1973. 

8 ~ .  M. Fraiman, K korii nelineinogo vzaimodeistviya 
intensi~ykh elektromagnitnykh voln s besstohovitel'noi 
plasmoi (On the Theory of Nonlinear Interaction of Intense 
Electromagnetic Waves with a Collisionless Plasma), 
author's abstract of dissertation, Phys. Inst. Acad. Sci. 
U.S.S. R . ,  Moscow, 1976. 

%. I. Talanov, Pis'ma Zh. Eksp. Teor. Fiz. 2, 218 (1965) 

81 1 Sov. Phys. JETP 48(5), Nov. 1978 Vlasov et a/. 811 



i 

[JETP Lett. 2, 138 (1965)l. 
'v. I. Talanov, Izv. Vyssh. Uchebn. Zav. Radiofizika 9, 410 

(1966). 
"T. A. Gorbushina, L. M. Degtyarev, and V. V. Krylov, 

Met$ chislennogo resheniya zadach dinamiki volnovykh 
polei s osobennostyami (A Method for the Numerical Solu- 
tion of Problems of the Dynamics of Wave Fields with 
Singularities), Reprint No. 51, Inst. of Mechanics 
Problems, 1976. 

A. Gorbushina, L. M. Degtyarev, and V. V. Krylov, 
Ob asimptotike resheniya zadach samofokusovki aveta v 
kubichnoi srede (Asymptotic form of solutions of dynamical 

problems of light focusing in cubic media), preprint, Inst. 
of Mech. Problems, No. 122, 1977. 

13s. N. Vlasov and S. N. Gurbatov, Radiofizika 19, 1149 
(1976). 

14v. I. Talanov, Pis'ma Zh. Eksp. Teor. Fiz. 11, 303 
(197l) DETP Lett. 11, 199 (197111. 

I. Talanov, Volnovye puchki v ling- i nelinehykh 
kvaziopticheskikh sistemakh wave Beams in Linear and 
Nonlinear Quasioptical systems), Dissertation, Res. Inst. 
of Radiophysics, 1967. 

Translated by W. H. Furry 

Electron-electron collisions in a weakly ionized plasma 
B. L. Al'tshuler and A. G. Aronov 
B. P. Konstantinou Leningmd Institute of Nuclear Physics, USSR Academy of Sciences 
(Submitted 19 May 1978) 
Zh. Eksp. Teor. Fiz. 75, 1610-1617 (November 1978) 

Electron-electron collisions in a weakly ionized plasma are studied in the case when relaxation in 
momentum occurs on neutral atoms. It is shown that if the electron mean free path becomes less than the 
Debye length, the fonh of the diffusion coefficient in energy space changes: the Coulomb logarithm is cut 
off at the mean free path and, in addition, a nonlogarithmic contribution from large impact parameters 
appears. The results of the work are applicable also to semiconductors when momentum diffusion occurs, 
for example, in acoustic phonons and the energy relaxation is the result of electron-electron collisions. 

PACS numbers: 52.20.F~ 

1. INTRODUCTION 

It is well known that in a rather highly ionized plasma 
the relaxation of the electrons in energy is determined 
by electron-electron collisions, while the relaxation of 
nonequilibrium electrons in momentum occurs both on 
electrons and on ions. Since these collisions occur at 
large impact parameters,  i.e., in each event there is 
a small  transfer of energy and momentum, the operator 
of these collisions can be represented in differential 
form as was done by Landau.' 

In a weakly ionized plasma the relaxation of the elec - 
trons in momentum occurs in collisions with neutral 
atoms, while electron-electron collisions continue to 
remain important for energy relaxation even in this 
case. The question arises of how the finite electron 
mean free path affects the form of the Landau operator. 
It is clear that as long as the electron mean free path 
I is much greatet. than the Debye screening radius X- ' ,  
collisions with neutral atoms do not affect the nature of 
electron-electron collisions. In the present work we in- 
vestigate the opposite limiting case: x 1 << 1, and derive 
the Landau operator for energy relaxation. 

The principal result  is that the electron-electron col- 
lision operator has the usual form 

where v(c )=  ( 2 m 3 ~ ) 1 / 2 / l r 2 p  is the density of electron 
states and n, is the electron distribution function. How- 

ever,  D(c,  &') differs from the standard expression.' 
It turns out that 

~ ( e ,  e l )  =a/le'(vuf) "f (v'Iv) ,  (2) 

where v =  ( 2 ~ / r n ) ~ / ~  is the electron velocity. The func - 
tion f (v l / v )  has the obvious property f(v'/v)= f (v /v t )  and 
for v ' s  v  we have the form 

Here p, is of the order  of the electron wavelength for 
e2/iiv << 1, and in the reverse  case  it is equal to the val- 
ue of the impact parameter of the Coulomb scattering 
problem, at which the scattering angle becomes of the 
order of T . ~  

A plot of the function p ( v l / v )  is shown in Fig. 1. It 
is important to note that in the case considered p  does 
not depend on the parameter I / p ,  (with accuracy to 
t e rms  of order p,/l). For smal l  v'/v we have 

It is evident from Eqs. ( 2 )  and (3 )  that, in contrast to 
the usual case,  the Coulomb integral is cut off at the 
mean f ree  path I and not at the Debye length. In addi- 
tion, D(c , c') contains a nonlogarithmic contribution 
which for a sufficiently high velocity rat io becomes 
greater than the logarithmic contribution. Physically 
the presence of the two t e rms  in Eq. ( 3 )  is due to the 
fact that as long a s  the impact distances are smal l  in 
comparison with the mean f ree  path I, Coulomb colli- 
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