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A development is given of the theory of Vavilov-Cerenkov emission in cholesteric liquid crystals (CLC) 
under the conditions of diffraction scattering (in higher orders) by the periodic structure of the CLC. 
Analytic expressions are obtained for the angular, frequency, and polarization characteristics of the 
radiation in the case of finite CLC specimens. The corresponding expression for radiation losses is also 
established. It is shown that under the conditions of diffraction scattering, the differential (with respect to 
angle and frequency) characteristics of the Vavilov-Cerenkov radiation in CLC are very different from the 
corresponding characteristics in a homogeneous medium although the integrated characteristics, for 
example, radiation losses, are the same as the corresponding quantities for a homogeneous medium whose 
permittivity is identical with the permittivity of the CLC. 

PACS numbers: 61.30. - v, 78.70. - g 

INTRODUCTION 

It is well known that the unusual optical properties 
of cholesteric liquid crystals (CLC) a r e  due to their 
complicated spatial periodic structure. Naturally, 
the optical properties related to the structure of CLC 
a r e  also seen in the coherent radiation emitted by fast 
charged particles. The coherent radiation emitted 
by uniformly moving charged particles in CLC has 
been considered theoretically by a number of work- 
ers .  3'5 It has been shown that, generally speaking, 
the character of the coherent radiation emitted by fast  
particles in CLC is similar to that due to  particles 
in media with a simple type of p e r i ~ d i c i t y , ~ . ~  for ex- 
ample, layered media o r  media whose permittivity 
varies periodically in space and i s  a point function of 
position. In particular, in addition to the Vavilov- 
Cerenkov radiation, the condition for which i s  that the 
velocity v of the particle must be  greater than the 
phase velocity c,, of light in the medium, cholesteric 
liquid crystals emit another coherent radiation which 
is due to the spatial periodicity of the crystal4 and is 
occasionally referred to a s  the structural Vavilov- 
Cerenkov radiation, the quasi-Cerenkov o r  the para- 
metric Cerenkov radiation. The Vavilov-Cerenkov 
radiation emitted in a CLC i s  diffracted by i t s  periodic 
structure, s o  that i t  emerges not only along the gen- 
erator of the well-known ~ e r e n k o v  cone, whose &is 
lies along the velocity v and has an aperture angle I) 
given by cos$= c,Jv, but also along the generator of 
the so-called diffraction cone, the axis of which i s  
not parallel to the particle velocity. 

In addition, the emission of Vavilov-Cerenkov radi- 
ation in the case of the CLC exhibits a number of speci- 
fic features due to the complicated (helicoidal) spatial 
structure of the medium. These features a r e  seen, 
above all, in the polarization properties of the radia- 
tion and in some of the details of i ts  angular distribu- 
tion. Kats3 was the f i rs t  to analyze the loss of energy 
by a particle through radiation in the CLC. The po- 
larization of the Vavilov-Cerenkov radiation in the 
CLC is, in general, elliptic, and the emission cones 

(Cerenkov and diffraction) have a fine structure, s o  
that there a r e  several slightly different cone angles, 
each of which has its own polarization. These proper- 
ties of the Vavilov-Cerenkov radiation in the CLC 
have been established on the basis of a qualitative 
analysis of the corresponding equations for f irst-order 
diffraction scattering of the radiation. '* An analytic 
description of the Vavilov-Cerenkov emission was ob- 
tained for this case only for  one direction, namely, 
the direction of the optic axis of the CLC. 

For a more detailed and qualitative analysis of the 
question, it is therefore interesting to examine the 
emission of Vavilov-Cerenkov radiation in a case for 
which an analytic solution can be obtained. This prob- 
lem is tackled in the present paper in which a theo- 
retical analysis i s  given of the emission of Vavilov- 
Cerenkov radiation in a CLC under conditions corres- 
ponding to higher-order diffraction scattering of the 
radiation emitted by the particle. Analytic expres- 
sions a r e  obtained for the angular polarization and 
frequency characteristics of the Vavilov-Cerenkov 
radiation in the CLC under these conditions. The 
physical reason why relatively simple analytic ex- 
pressions a r e  obtained is that the anisotropy in the 
dielectric properties of the CLC i s  small and typical 
values of 8 (see below) a r e  of the order of 0.1-0.01. 

The Vavilov-Cerenkov emission problem i s  solved 
for an infinite CLC and for a specimen in the form of 
a plane-parallel plate of finite thickness with the optic 
axis perpendicular to the faces but arbitrary direction 
of the particle velocity. A detailed analysis is given 
of the emission of this radiation when the particle 
moves in a direction parallel to the CLC optic axis. 

The character of the Vavilov-Cerenkov radiation 
under the conditions of high-order diffraction scat- 
tering is such that the total intensity of the Vavilov- 
Cerenkov radiation turns out to  be the same to within 
8 a s  the intensity in the homogeneous medium with 
permittivity equal to the mean permittivity of the CLC. 
The presence of periodicity in the CLC manifests itself 
in the angular and frequency redistribution of the 
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Vavilov-Cerenkov radiation intensity and it i t s  polar- 
ization properties which will be considered below. 

EMISSION IN AN INFINITE CLC 

Basic se t  of equations. Consider the radiation emit- 
ted by a charged particle moving in an unbounded cho- 
lesteric crystal with constant velocity exceeding the 
phase velocity c,, of light in the CLC. 

The Maxwell equations for the electric field E(r, t)  
in the CLC, due to a particle moving through it, yield 
the following equation: 

1 -  a'E 4 * a j  
- ro t ro tE- -e ( r )  -+-- 

ca atz ra t '  
where c is the velocity of light; j=  ev8(vt - z )  is the par- 
ticle current, e and v a r e  the charge and velocity of the 
particle, z i s  the particle coordinate a t  time t (the z 
axis l ies along the particle velocity), and &(r) i s  the 
permittivity of the CLC, which is given by1 

r(+ticor Zp1 hsin?ql 0 1 

where cp'= 2nz1/p, p i s  the pitch of the cholesteric 
spiral, the z' axis l ies along the optic axis of the CLC, 
E,,  c,= C, a r e  the principal values of the permittivity 
tensor, and 6 = (El - E ,)/ (&, + s), 

We shall seek the solutions of the above equations in 
the form of a superposition of Bloch waves: 

E (r ,  I)  - r-i('"-krldtdw 2 E. (k.) srp (i1.r). 
,--= 

(2) 

where the reciprocal-lattice vectors 7, a r e  defined by 
T,= SZ' X 4n/p, and s is an integer. Equations (1) and 
(2) lead to  the following infinite se t  of linear equations 
for E,: 

iewv 
-k:E. + $ c i,-&+k, (LE.) =- - G(w-kov), 

I 
2nQZ 

where k, = k,-, + 7, and &, a r e  the Fourier components 
of the permittivity tensor of the CLC. 

It i s  well known that analysis of (3) will show that, 
when 8 is small, one o r  more of the amplitudes E, 
in (2) a r e  greater than all  the others by a factor of a t  
least 8". Apart from the wave amplitude se t  by the 
source, which we shall denote by E,, for which (3) 
shows that 

the only other large amplitudes will be the amplitudes 
E ,  for which the following Bragg condition i s  satisfied 
(see Fig. 1): 

It is therefore possible to obtain an approximate solu- 
tion of (3) by replacing i t  with a finite se t  of equations 
containing only the large amplitudes E,. This method 
of solving the Vavilov-Cerenkov problem for the CLC 
was used previously5 in the special case where (3) 
could be replaced by a se t  of two equations for the 

FIG. 1. Angular distribution of Vavilov-Cerenkov radiation 
in a cholesteric liquid crystal ( k o  and k z  are wave vectors 
corresponding to radiation on the Cerenkov and diffraction 
cones, respectively, and T defines the orientation of the optic 
axis of the CLC). 

amplitudes of two waves (this i s  the so-called two- 
wave approximation). Here, we shall consider the 
situation in which Eo and, in general, n further am- 
plitudes must be  assumed to  be nonzero. To be  speci- 
fic, we shall examine in detail the three-wave case 
(n= 2) and then reproduce the results  generalized to  
the case of arbitrary n. 

The n= 2 case enables us to take into account the 
effect of second-order diffraction scattering in the 
CLC on Vavilov-Cerenkov emission [Is I =  2 in (5)]. 
The form of the permittivity tensor of the CLC given 
by (1) turns out to be very important for the ensuing 
analysis. It follows from this expression that the only 
nonzero harmonics in the Fourier expansion of the per- 
mittivity a re  those corresponding to s = 0, * 1. The 
fact that the Fourier harmonics a r e  suppressed for 

I s l z/ 1 means that direct diffraction scattering of E, 
into E, (and, in general, into other waves with l s 1 2). 
is absent, s o  that the two-wave approximation in which 
only E, and E,  a r e  nonzero cannot be used. The f i rs t  
approximation in which second-order diffraction scat- 
tering can be  taken into account, and to which we shall 
now confine our attention, is the three-wave approxi- 
mation. 

If we retain in (3) only those equations that contain 
the amplitudes E,, E,, and E,, and then eliminate the 
amplitude El from the resulting se t  of equations, a s  
was done in our previous paper,8 we obtain the follow- 
ing se t  of equations for E ,  and E,: 

where 28 i s  the angle between k, and k,. 

Separation of polarizations. Next, we perform 
the separation of polarizationss in (6), i. e. , we use 
the fact that, for the n and a polarizations of E, and 
E,, the se t  of equations given by (6) splits into two 
uncoupled second-order systems in the scalar ampli- 
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tudes E$ and E:, where p and q are  the polarization 
indices (p, q= n, o) in which R-polarization i s  the linear 
polarization in the plane containing the optic axis of 
the CLC and the direction of emission, and the o-po- 
larization is perpendicular to this plane. The corres- 
ponding unit vectors will be denoted by n and o. 

This yields the following set  of equations 

\ . I  

Fs.='/46z cos2 0, F,.='/,6' ctgZ 8, F.,=F,=8' cosz 8 /4  sin 8, 

This set  of equations describes the following four 
cases of polarization of E, and E,: 1) n-polarization 
of Eo and o-polarization of E,; 2) n-polarization of 
both waves; 3) o-polarization of both waves, and 4) 
o-polarization of Eo and r-polarization of E,. The 
Bragg frequencies o, and wave vectors ko and k, in 
the neighborhood of which E, and E, a r e  not small, 
and the Vavilov-Cerenkov emission is described by 
(7), must simultaneously satisfy (4) and (5). The 
corresponding angular and frequency intervals a re  de- 
termined by the coefficients F in (7), i.e., they a r e  of 
the order of b2. This indicates, in particular, that, 
for a fixed frequency, the change in the wave vector k, 
due to diffraction radiation is of the order of bZk0 a s  
compared with i ts  value at the same frequency in a 
homogeneous medium with permittivity E. This change 
turns out to be smaller than the difference due to  bi- 
refringence between waves of different polarization, 
which is of the order of bk,. Hence, i t  follows that 
the intrinsic polarizations of the waves E, (which a re  
the n- and a-polarizations in the case of propagation 
at an angle to  the optic axis of the CLC) a re  not mixed 
by the diffraction scattering process we a re  consider- 
ing. This i s  the physical reason for the separation of 
polarizations in (7). 

If the dependence of E on polarization is explicitly 
taken into account in (4) and (5), i. e., if we take into 
account the fact that the aperture angle of the Cerenkov 
cone and the Bragg frequencies o, (or the angles a t  
a fixed frequency) a re  different for the n- and o-po- 
larized radiations, it turns out that the above four 
combinations of polarizations correspond to four some- 
what different angles of the diffraction cone (Fig. 2). 

The corresponding Bragg frequencies w, and their 
dependence on k, on the Cerenkov cone (if we neglect 

FIG. 2. Fine structure (polarization splitting) of Cerenkov 
and diffraction cones. 

the frequency dispersion of e) a r e  given by the following 
formulas : 

oBpq=oB+AoBPqt O ~ = T C / & ' "  sin 9, 

AoBU"=O, AoB0"='/s 6 c t g V o s ,  

6 cos2 9 sin 0 - cos $ cos go - 
(8) 

0 5 ,  
2 sin 8 sin'rp. 

- 
6 c t 8 e [ ~ +  .. 

2 sin 8 (cos $ cos 90- sin 0) 
8 

] a ,  * ,C/W-~, 
sin2 go 

where B is the angle between v and 7 ;  the f i rs t  super- 
script of o, represents the polarization of the wave 
on the Cerenkov cone and the second on the diffraction 
cone. 

Within the frequency (and angle) intervals Aw/w, -6' 
around the Bragg frequencies or given by (8) and 
separated from one another by bo,, a description of 
the Vavilov-Cerenkov emission in the CLC must be 
obtained by solving (7) with the corresponding coef - 
ficients F,. The amplitude E, can be neglected out- 
side these regions in comparison with Eo, i. e. ,  the 
Vavilov-Cerenkov radiation in the CLC is described 
by analogy with the case of homogeneous birefringent 
media. 

Angular and frequency characteristics of the radia- 
tion. To be specific, we shall pursue our analysis 
further by taking the example of the r-polarization of 
Eo and E, but will omit the polarization indices on the 
various symbols. Other cases can be examined in an 
analogous fashion, and the corresponding expressions 
can be obtained by substituting parameters with the 
appropriate polarization indices into the final formulas. 

If we let  qo= 1 - %/n2, qZ= 1 - PJn2, D= q 0% - F2, 
we find that the solution of (7) can be written in the 
form 

f e m  i e m  ,yo-- - qZD-'6 ( a - b v ) ,  E,=- ---1--FD-'6(a-kov). (9) 
2nzoe 2n o e  

To find the solutions in the form of explicit functions 
of frequency and ko, let us express q, in terms of qc. 
This can conveniently be done by writing the frequency 
in the form 

where h o / w ,  is a small quantity, w, i s  defined by 
(8), and we use the fact that k, and k, a re  related by 
the Bragg condition (5), and their projections onto the 
velocity v of the particle a r e  determined by (4) and 
k, v= o + 27 V, respectively. 

In view of the foregoing, we obtain 

where s is the normal to v in the k,, v plane. We now 
use (10) and write D in the form 

where the roots of the equation D(q,)= 0 a r e  given by 

Substituting the expression for D obtained in this way 
in (lo), we obtain 
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iearv bqo+a 
Eo---- 6(0-bv), 

2nzoe b(qo-q+) (qo-q-) 
ienv - F 

6(o-tv). 
2nboe b(qo-rl+) (qo-q-) 

From this, we can easily show that, for any azimuth 
of ko that is fixed relative to  v, the amplitude of the 
wave radiated into the diffraction cone in the frequency 
region Aw/w, - 6 is of the order of the amplitude of 
the wave emitted into the Cerenkov cone. When AW/ 
w, >> b2, the amplitude E, decreases in proportion to 
(Aw/w,)", and Eo tends to the usual expression for 
the Vavilov-Cerenkov amplitude. 

Next, let  us consider the spectral density of the en- 
ergy lost by the particle by radiation in the CLC. As 
usua1,'O this can be  done by calculating the force due 
to the reaction exerted by the radiation field on the 
particle: 

S = vve (E, exp(ihr)+E2 exp(ikzd] e-"' dk, do, 

which is equal to the total radiative loss per unit length 
of the particle trajectory. Similarly, using (2) and 
(12), we find that the ra te  of radiative loss in the di- 
rection with given azimuth cp (Fig. 1) i s  given by 

(13) 
where dudz is the spectral density of the energy loss 
through the Vavilov-Cerenkov emission per unit length 
of the particle path in a homogeneous medium and 4 is 
the polarization factor. For the above case of n-po- 
larization of the radiation on the Cerenkov cone, 

and for the u-polarization 

where V is a unit vector. 

Evaluation of the integrals in (13) shows that, when 
b>O, the radiative loss a t  given frequency (and given 
azimuth) is equal to within - 8  t o  the corresponding 
loss by radiation in a homogeneous medium with per- 
mittivity c. 

When b<O,  the above differential radiative energy 
loss in the CLC differs from the corresponding loss 
in a homogeneous medium with permittivity z. Evalu- 
ation of the integrals in (13) now leads to the following 
expressions : 

This means that, for frequencies I v l c 1, the particle 
does not, in general, emit Vavilov-Cerenkov radia- 
tion, i. e., there is a forbidden frequency band. Out- 
side thls band, the above radiative energy losses a re  
greater than in a uniform medium, whereas, on the 
boundary of the forbidden band, there is a frequency 

singularity. 4 4  However, i t  follows from (14) that the 
energy loss  integrated with respect to frequency (or 
angle cp) i s  equal to the energy loss in the uniform 
medium, as before. 

Thus, to within -8, the total radiative energy loss 
in the CLC is equal to the energy loss in the uniform 
medium with permittivity x, but there is an angular 
redistribution of the radiation whilst, for  b < 0, there 
is also a frequency redistribution of the radiative en- 
ergy loss. 

The above solutions can also be  used to obtain an 
idea about the maximum intensity of the Vavilov- 
Cerenkov radiation that can escape from the CLC in 
the direction of the diffraction and Cerenkov cones. 
To obtain this estimate, we must take into account the 
presence of absorption in the CLC. In a nonabsorbing 
CLC, the intensity of the radiation leaving the speci- 
men i s  equal to  the total energy lost by the particle 
by radiation, and increases in proportion to the path 
traversed by the particle in the CLC, s o  that i t  be- 
comes infinite for an infinite specimen. 

If we now take into account the imaginary part  of E, 
and use the corresponding modifications of the above 
formulas, we can write down the expressions for  the 
radiative energy flux through a plane cutting the par- 
ticle trajectory in the direction of the diffraction and . 

Cerenkov cones: 

W d2WW. lbl+l)/4lbl Ivl k2n = -  -- 
avaw acpao V ~ + ( I ~ I - I ) ~ I ~ I ~ I +  ( ~ ~ - 1 ) ~ ~ ~  Lon' 

be0, l v l> i ,  (15') 

where n is the normal to the plane through which 
the energy flux i s  evaluated and a2wdacpaw is the flux 
of the Vavilov-Cerenkov radiation in the uniform medi- 
um: 

A 

azW. eZd'*(nv)'eosb 
_f= 
acph 2ncuz (Im ~)cos $ ' 

The above expressions determine the intensity of 
radiation leaving the specimen whose linear dimen- 
sions a r e  greater than the absorption lengths for light 
in the CLC and a r e  equal to the corresponding limits 
of the expressions obtained for  finite CLC specimens 
by solving the boundary value problem (see below). 

It i s  clear from (15) that, when b > 0, the radiation 
intensity in the diffraction cone near o, is of the same 
order a s  in the Cerenkov cone, whilst the intensity in 
the Cerenkov direction i s  lower than in the case of the 
homogeneous medium. 

It follows from the foregoing that the polarization of 
the radiation on the diffraction and Cerenkov cones i s  
either n o r  u, depending on the particular case [see 
(8)]. For the diffraction cone, there i s  a meaningful 
expression for the polarization characteristics aver- 
aged with respect to frequency (over four cones) for 
a fixed azimuthal angle cp. The result of this aver- 
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aging for the diffraction cone corresponds to a partially 
o-polarized radiation with polarization 

SOLUTION OF BOUNDARY VALUE PROBLEM 

Field amplitudes. Let us now consider the Vavilov- 
Cerenkov radiation in a plane-parallel plate of the CLC 
of thickness I (Fig. 1). The radiation field in the CLC 
is now the superposition of the above solutions in the 
case of the inhomogeneous system (7) and the solutions 
for the homogeneous system obtained from (7) by 
equating to zero the right-hand sides: 

A 

(r, t) =E (r, t) + cizi  (r, t )  . 

The solutions of the homogeneous system, ,, have 
been investigated in sufficient detail: and the coeffi- 
cients c, in (16) a re  obtained f rom boundary conditions 
for the fields on the specimen surface. The intensity 
of the Vavilov-Cerenkov radiation escaping from the 
specimen is determined by the value of the expression 
given by (16) on the surface of the CLC, i. e. , for z 
= O  and z= I. If, a s  before, we express the radiation 
field in the specimen (solutions of the inhomogeneous 
and homogeneous systems) in-the form of a superposi- 
tion of the two waves go and 6, and ignore radiation 
on the boundary (transition radiation), we can reduce 
the boundary conditions to the form 

if the direct and the diffracted Vavilov-Cerenkov waves 
escape from the CLC through the same specimen sur- 
face, and 

if the direct and diffracted waves leave the CLC speci- 
men through opposite surfaces. 

Next, we confine our attention to the case in which 
the optic axis of the CLC is perpendicular to  the speci- 
men surfaces (Fig. 1) and the boundary conditions have 
the form given by (18). The field amplitudes for radi- 
ation escaping from the specimen a re  then 

+ (-qo+2y) (y2-F2)'h[cos a ( y L F )  "-exp(ia(y-qo)) I} 
X[ (7'-F)'" cos a (yZ-F2)"+i sin a (7'-Fa)"']-', 

( 
i(qo-y)sina(ya-P) "C(yl-P) "[ws a(yz-F) "-exp[ia(q,-y) I] 

(y2-Fz)'" cos a(?-P)"+isin a(y2-F)" 
,lo= (-2 sin 0 sin go) A$/cos p, a=x1/2 sin 8, A$-$-$., 

I* 
2 sin 0 Aa 

cos $.=c/ve,", - - (sin 0 cos 90-cos p) A$+ (2 sin' 8) - . 
sin $, 0 8  

The angular dependence of the field amplitudes of 

FIG. 3. Angular dependence of the amplitude of the wave 
emitted into the diffraction cone in an infinite CLC (broken 
curve) and in a finite specimen (solid curve). 

the radiation from the crystal (at fixed frequency; s e e  
Fig. 3) is, on the whole, analogous to the corresponding 
angular dependence in the case of the inhomogeneous 
solutions. However, finite specimens differ from the 
infinite medium by the fact that the field amplitudes 
in the former case exhibit beats a s  functions of 
the angle of observation, with periods depending on 
I, and the field amplitudes remain finite for finite I .  
Nevertheless, if the crystal i s  not too thin, the radia- 
tion on the Cerenkov cone is emitted in practically 
two directions, determined by the condition D(q,)= 0 
for each frequency, just a s  in the case of the infinite 
crystal. For  frequencies in the region Aw/wB- tj2, 
the radiation amplitudes on the Cerenkov and diffrac- 
tion cones may be of the same order. For  A W / W ~  >> 62, 
the radiation field on the diffraction cone falls off as 
(AW/W~)", whereas, on the Cerenkov cone, it tends to 
the value corresponding to the Vavilov-Cerenkov radi- 
ation in the homogeneous medium ( E J .  

Spectral and polarization properties. The frequency 
dependence of the Vavilov-Cerenkov radiation can be 
obtained by integrating with respect to A+ in (19) (see 
Appendix), and the total emitted radiation (for fixed 
azimuth cp) can be obtained by subsequently integrating 
with respect to v. For the diffraction cone, the total 
radiation intensity is, of course, proportion to 8' (L 
= aF): 

Ue'(ni)'oJ th L ! 4ihc cos p sin e d ~ .  

Direct evaluation will show that, with the adopted 
precision, 

i. e., the total intensity emitted into the Cerenkov and 
diffraction cones i s  equal to the intensity of the 
Vavilov-Cerenkov radiation in the homogeneous medi- 
um. 

For an arbitrary direction of motion of the particle 
in the specimen, the expressions for the intensity as 
a function of frequency a re  very unwieldy and a r e  
usually written in the form of series.  We shall there- 
fore reproduce the radiation intensity I ,  on the Ceren- 
kov cone and I ,  on the diffraction cone only in the case 
where the particle moves along the optic axis of the 
CLC, i. e., a t  right-angles to the specimen surface: 
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polarized whatever the dependence on cp, and the po- 
larization is 

FIG. 4. Frequency distribution of the density of Vavilov- 
Cerenkov radiation escaping from a thick CLC in the direction 
of the Cerenkov (upper curve) and diffraction (lower curve) 
cones, l o  and 1 2 ,  respectively, when the particle travels 
along the optic axis of the CLC : wBTw =wB(l  - 1/86 tg2$o), 
w ~ ~ ~ = w ~ ( ~  +1/86 t$b0). 

(1-v2)sh L+2v sin Lv 
s-I'{ ZLchL(l+v2)' 

(vs-l)sh L-2v sin Lv ' I ,  ez cz 
(21) 

* 2Lch L(l+v2)' v2+l ~ ~ = ~ ( i - ~ ) l a .  

These intensity distributions a r e  shown in Fig. 4 for 
the case of thick crystals. The intensity distribution 
on the diffraction cone in the case of thin crystals 
(L << 1)  is I, = 1&,/6, i. e., i t  is proportional to the 
cube of the specimen thickness and is much smaller 
than the intensity on the Cerenkov cone. For thick 
crystals (L >> I), the radiation intensity on the diffrac- 
tion cone is 

I,=I,12(vZ+i) I-', 

i. e., it is proportional to the specimen thickness and 
is comparable with the radiation intensity on the Ceren- 
kov cone. 

To be specific, we have confined our attention to r- 
polarization on the Cerenkov and diffraction cones 
(Fig. 2) and have omitted the polarization indices on 
all the quantities that were polarization-dependent. 
Since the expressions for other polarizations a r e  com- 
pletely analogous, the required expressions can be 
obtained by simply substituting the appropriate po- 
larization indices. As an example, we demonstrate 
this for the polarization characteristics. As already 
noted, the Cerenkov and diffraction cones in the CLC 
are  separated, and the polarization properties of the 
radiation a r e  completely definite in the immediate 
neighborhood (in angle) of each of the resulting cones. 
These are, in fact, the n- and a-polarizations (see 
Fig. 2). 

However, since the angular separation between these 
cones is small, the polarization characteristics a re  
usually averaged over angles and frequencies (for 
fixed azimuth cp )  under experimental conditions. The 
result of this averaging in the case of the diffraction 
cone corresponds to partially a-polarized radiation 
with polarization given by 

( o ~ ) ~ L . . t h  L , - ( ~ v ) ~ L ~ ~  th L. .+(n~)~L. . th  L,,-(nv)'L., th L., ' P= 
( ~ V ) ~ L . .  th L,+(W)~L,,  th L , + ( ~ V ) ~ L , .  th LI.+ (nv)'LI. ehL,. ' 

(22) 
In particular, when the particle travels along the 

optic axis of the CLC, the radiation is partially a- 

L.. th L,.-L,.th L.. P= 
L.. th L..+L,,th L,, 

(23) 

It follows from this expression that the degree of 
polarization decreases monotonically with crystal 
thickness. In particular, for an ultrarelativistic par- 
ticle, the polarization i s  determined only by the an- 
isotropy of the permittivity of the CLC, and is given 
by (clf  - l)/(zlf + 1)  for  thick crystals and by (x - 1)/ 
(E+ 1) for  thin crystals. 

CONCLUSIONS 
We have given a detailed discussion of the Vavilov- 

Cerenkov emission under the conditions corresponding 
to second-order diffraction scattering. A completely 
analogous solution can be given in the case of diffrac- 
tion scattering corresponding to higher orders since 
the corresponding sets  of equations differ from (7) 
only by the coefficients. Thus, in the n-th order, the 
diagonal coefficients a re  the same as in (7) whereas 
the off-diagonal coefficients contain the additional fac- 
tor 

As a result, the Vavilov-Cerenkov picture remains 
qualitatively the same a s  in the case of the second- 
order scattering, but the angular and frequency inter- 
vals within which diffraction i s  seen a r e  of the order 
of 6". This means that the Cerenkov cone splits into 
two, the cone angles differing by an amount of the or- 
der of 8 and the radiation being linearly polarized so 
that, on one of the cones, the radiation is n-polarized 
and, on the other, i t  is  u-polarized. The diffraction 
cone splits into four with cone angles differing by an 
amount again of the order 6. On each of these cones, 
the emitted radiation l ies  within the frequency band 

' 

AW/W, - 6" near the corresponding Bragg frequency. 
On two of these cones, the radiation is polarized in 
the plane containing the optic axis of the CLC and the 
direction of emission (n-polarization), and on the other 
two the polarization i s  a t  right-angles to this plane 
(0-polarization). The polarization characteristics a re  
obtained by averaging over all the four cones and cor- 
respond, in the case of the diffraction cone, to par- 
tially a-polarized radiation. 

It i s  important to note that the above results may be 
useful for describing coherent radiation emitted by 
charged particles in media with scalar permittivity 
that i s  a periodic function of position. The various 
effects in the Vavilov-Cerenkov radiation in choles- 
teric liquid crystals a r e  usually small because 6 i s  
small, so  that experimental verification i s  best carried 
out with cholesteric liquid crystals with maximum pos- 
sible permittivity. 

The authors a re  indebted to V. E. Dmitrienko and 
V. P. Orlov for useful discussions. 

APPENDIX 

To determine the frequency distribution of the radia- 
tion leaving the CLC specimen of finite size we have 
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to evaluate an integral of the form in the upper half-plane. Similarly, evaluating 1;' for 

m t ( t ) - ( Z ' - I ) ' h ~ L ( z a - I ) ' h ~ i z .  
We shall use the fact that the functions m,(x) have no 
zeros for Im x 2 0, respectively. " 

We also take into account the fact that the two-valued 
function g(e)= (e2 - 1)'' has a regular branch assuming 
positive values on the positive axis outside the inter- 
val (- 1, 1). We begin by considering integrals with 
finite limits - R, R along the real axis, including the 
&-intervals of the singular points 

We have 

Substituting R= [I + 9 ( k +  i)2/L2]'r2, we consider the 
contour of integration for I;, in the complex plane, 
which includes the semicircle of radius R for Imz 3 0, 
semicircles of small radius & around the first-order 
poles z, and z,, and the segment [- R, R] along the 
real axis without the &-intervals of the singular points 
a, and e,. If 

is  satisfied on this contour, where M = const, the 
evaluation of I:, reduces to the summation of the poles 
a, and a, subject to the condition that f (z) has no poles 

Im e < 0 and taking &-- 0, R - 0 0 ,  we obtain 

This formula was used in evaluating (21) and (22) with 
the function f given by (20). 
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Structure of the field near a singularity arising from self- 
focusing in a cubically nonlinear medium 

S. N. Vlasov, L. V. Piskunova, and V. I. Talanov 
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2%. Eksp. Teor. Fin. 75, 1602-1609 (November 1978) 

The structure of the field is studied near a singularity that arises in the propagation of intense light beams 
in a nonlinear (cubic) medium. The structure near the focus is determined by a method of numerical 
integration of a parabolic equation with the step of the transverse coordinate changed automatically as the 
singularity is approached. Methods of analyzing this solution, based on extension of the scales and the use 
of functional relations which are invariant with respect to the exact position of the focus, make it possible 
to develop an idea of the formation of the field near the singularity by a bell-shaped beam with a Townes 
protile with adjacent weakly focusing wings, which converges to a point. On the basis of this concept the 
analytic form of the field near the singularity is described by the function E -WZ$ - zX/(z$ - z)]"~, 
which is in complete agreement with the numerical results. 

PACS numbers: 42.65.J~ 

In the propagation of an intense light beam in a medi- at a focus has been discussed in the approximation of a 
um with a cubic nonlinearity [& = &,(I + &' I E 12)] there can parabolic equation 
be regions where the amplitude increases without lim- 
i t - fo~i?*~ The character of the singularity of the field 2i aE/az=A,E+ I E12E (1) 
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