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The mechanism by which charged states disappear and a hadron spectrum appears is studied in the 
unitarity condition of two-dimensional quantum electrodynamics of massless charges. The confinement of a 
massless charge is not a necessary consequence of the linear growth of the two-dimensional Coulomb 
potential but is due to the phase transition from the system in which the free screened charge exists. 
Calculations of physical quantities by perturbation theory under these conditions become erroneous as 
soon as it becomes necessary to take into account the contributions of the vacuum reconstruction 
diagrams. 

PACS numbers: 11.10. - z, 12.20.D~ 

1. INTRODUCTION scalar,  be studied: 

As has often been noted, in two-dimensional gauge 
models charge confinement is an automatic consequence 
of the linear growth of the Coulomb potential between 
the charges with distance. This conclusion directly 
applies only to infinitely heavy classical charges and 
does not in any way explain what happens with light 
charged particles under conditions when quantum cor- 
rections a r e  important. Furthermore, the above con- 

which i s  the analog of the quantity determining e'e- 
annihilation in hadrons. In the present study we shall 
construct a diagram solution for S ( x )  in that variant 
of QED, in which the vacuum of the diagram solution 
(the absence of electrons and massive photons1)) i s  the 
physical vacuum of the model and we shall study the 
changeover from this model to the Schwinger model. 

siderations a r e  simply inapplicable in the case of The changes which occur in the spectrum when 
massless charges. The vacuum current induced by changing from one model to the other appear in the 
these particles screens the Coulomb field at even calculation of the imaginary part  of the Fourier com- 
small distances.' The screened field of a massless ponent of S ( x )  in the form of a spectral  sum over all  
particle contracts to a point in two-dimensional space- 

the states of the model: 
time and there is no obvious physical obstacle to the - - 
emission of a screened charge. o ( ~ ) = Y  (OliIn)<nlj10>6~2)(q-9,). 

4 
(2 

Therefore the confinement of a massless charge is 
not the only variant of two-dimensional gauge theories. 
It is possible to view confinement a s  the result of the 
passage to the limit from the model in which the f ree  
charge exists. In two-dimensional quantum electro- 
dynamics (QED,, the Schwinger model') this passage 
to the limit is  the phase transition from the phase which 
is  symmetric under the chiral transformation to the 
spontaneously broken phase (Sec. 4). 

Although the importance of chiral symmetry for the 
characteristics of the spectrum in the Schwinger model 
and for the nature of the phenomena oceuring in this 
model has been stressed repeatedly (see, for example, 
Refs. 2 and 3), the formal nature of the solution to the 

has hindered its understanding. It has not 
made possible the study of the appearance of the 
asymmetric vacuum state in the symmetric phase of 
perturbation theory and assessment of its properties. 

In addition to the mathematical complexity of this 
problem, the difficulty in interpreting the spectrum of. 
states in an invariant gauge, which we shall use, is  due 
to the double role played by the e'e- pairs produced by 
electromagnetic (EM) means. On the mass shell, 
pairs e*e' of particles moving to one side (e,eR or 
eLeL, according to the terminology of Sec. 3) a r e  
equivalent to the gauge photons of quantum electrody- 
namics: they do not participate in the interaction and 
require an indefinite metric (Secs, 2 and 3).  Mean- 
while, their presence in the intermediate states of the 
unitarity condition (2), when they interfere with eReL 
pair produced by the scalar current (Sec. 4), does not 
change the properties of the states themselves but does 
determine the transition probabilities (01 jln) and is an 
important dynamical effect. It is precisely this that 
ensures the transition to confinement in the invariant 
gauge. 

It is  difficult to find indications of confinement within As the model with charge confinement we shall con- 
the framework of pure electrodynamics, even by ex- sider QED, with N massless electrons of charges g,, 
actly summing the perturbation ~ e r i e s . ~  The charged- interacting via the EM field A,. Then the interaction 
particle amplitudes exist on the mass shell and do not of the charges is determined by the parameter 
indicate the presence of any anomalies, Casher, a,-g,2/2nM2, (3 
Kogut, and Susskind3 proposed that in studying charge where 
confinement in two-dimensional models, the properties 

N 

of the vacuum expectation value of the product of non- M I  -- J-' g,l/n 
electromagnetic currents ("flavor") which a r e  usually d 
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is the vector-particle mass. This model becomes the 
Schwinger QED, when a, is changed (a, - 8) .  

The model with N electrons was proposed by Segre 
and W e i ~ b e r g e r . ~  The expression for S(x) in this model 
(see Sec. 2) indicates the presence of massless states 
in its spectrum. In Ref. 4 they were arbitrarily iden- 
tified with the neutral massless scalar bosons @' 
( ~ , , ~ a ~ @ '  = J,', I = 1,2, . . . , N - 1) and it was not noticed 
that the states produced by these bosons cannot appear 
a s  intermediate states in (2) because of the chiral 
properties of the scalar current. However, a s  N- m 

the model proposed in Ref. 4 permits a smooth transi- 
tion to a perturbation theory in a,, in which the 
presence in (2) of states of massless charged de' pairs 
with opposite chiralities is obvious. When a, is 
changed (the part gi - 0) all the quantities which de- 
termine the features of the model change smoothly up 
to a, = i. The state produced remains the state of a 
pair of massless charged fermions (Sec. 4). The fact 
that their wave function contains e,eR o r  eLeL gauge 
pairs expresses in the invariant gauge, a s  mentioned 
above, the dynamical effect of the change of the prob- 
ability for producing this state. 

For a, - the continuous spectrum of the system in 
Ref. 4 changes into the chirally noninvariant vacuum 
state of Schwinger QED,. Its structure remains un- 
known within the scope of the investigation of the 
spectral formula (2).') The appearance of a new 
physical vacuum and the phase transition indicate that 
for a, = i the delta function d2)(q) corresponding to the 
discrete state with q, = O  appears in (2), The quantity 
S(x), obtained by summing the diagrams, ceases at 
a, = i to describe the physical process of particle pro- 
duction, since it was defined in the chirally symmetric 
vacuum, which a t  a, = is  not the physical vacuum of 
the system. The S(x) of perturbation theory calculated 
in this manner can be compared to the physical matrix 
element S ( x )  for the Schwinger model, which was 
formally defined in Ref. 5. The massive vector boson 
in the model of Ref. 4, which in the diagrammatic ap- 
proach is the gluon of Schwinger QED, (at a, = i), dis- 
appears a t  a, = from the spectrum of states together 
with the charged states. The "hadron" of the Schwinger 
model, defined relative to the new vacuum, turns out 
to be p s e u d ~ s c a l a r . ~  The corrections to the perturba- 
tion-theory calculations which a r e  due to confinement 
a re  given by the vacuum-reconstruction diagrams. 
The f i rs t  of these diagrams gives a contribution 
"x41& (the theory with a dimensional coupling con- 
stant). Therefore for large qZ both expressions for 
S(x) coincide up to terms "l/q4. 

Direct calculation of the spectral formula (2) (Secs. 
3 and 4) permits study of the mechanism of replacing 
the "gluon-quark" states in the unitarity condition by 
"hadron" states, which is interesting in itself. In 
QED2 with massless electrons this mechanism i s  
ensured by the presence of gauge e'e' pairs in the state 
of the produced charged particle. The interference 
of these pairs with the particles created by the scalar 
current describes the change in the probability of pro- 
ducing the state a s  a, is changed. The destructive 

nature of the interference i s  given by the Fermi sta- 
tistics for electrons. 

The difference between our study and those of Refs. 
2-5 lies in the use of the diagrammatic solution and 
the construction of the spectral expansion (2) using 
only the on-shell amplitudes. It is  this approach that 
allows us to exhibit the physical situation which ar ises  
in the model. 

2. DIAGRAMMATIC DERIVATION OF THE 
EXPRESSION FOR S(xl 

The simplicity of QED, with a massless electron is 
due to the following property of the two-dimensional 
Dirac matrices y,(y, and y,): 

This relation and gauge invariance decrease consider- 
ably the number of possible diagrams and allow us to 
obtain a number of the exact properties of the quan- 
tities in QED, (Ref. 6). 

1. The exact function for the electron propagator dif- 
fers  from the free propagator of the massless elec- 
tron only because of the longitudinal part of the 
photon Green's function (see also Ref. 1): 

In the following we shall consider closed electron loops 
or amplitudes on the mass shell. In these cases it can 
be assumed that the exact electron propagator is  equal 
to (5). 

2. The photon polarization operator i s  described by 
the single divergent diagram of Fig, 1. Calculation of 
its imaginary part, which is the contribution of a 
massless eie' pair, gives the expression 

s o  that the regularized polarization operator is  

The transverse part of the photon Green's function 
acquires a mass. In an arbitrary invariant gauge ( a )  
the exact photon Green's function has the form 

The longitudinal parts in (8) can, of course, be omitted 
in calculating any gauge-invariant quantities. 

3. The amplitudes for the interactions of photons with 
each other a r e  identically equal to  zero.' This result 
is  a consequence of the transverse character of these 
amplitudes 

kt$fpvr ... (kt, k,, . . .) =O (9) 

FIG. 1. The photon polari- 
zation operator. 
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and of the relations which follow from (4): 

M~A.. .  ( k t ,  ka, . .) -0. 

The only solution of (9) and (10) is  Mu,, . . . =O.  

Formula (6) and property 3 show that on-shell e'e' I b c 

pairs created by purely EM means a r e  gauge pairs. 
Therefore, closed EM loops cannot give a contribution + ... 
to the imaginary parts of the amplitudes of processes; 
this, a s  usual, can be described by the introduction of ... 
an indefinite metric for e'e' pairs of this kind. How- d 

ever, a s  we shall see  below, these pairs play a role FIG, 2 .  Diagram for S(x ) .  The dashed lines show the contribu- 
in the unitarity condition (2), a s  they interfere with tion of the massive photon propagator (8). 
electrons created by nonelectromagnetic means. 

All these features can be directly generalized to 
include QED, with N electrons.* In this model each 
electron interacts independently with a photon via A,. 
The only difference from QED, with a single electron 
is that the photon mass changes from g2 /n  to the 
value . 

These features of QED, cause the vacuum expectation 
value of the product of the scalar  currents j ,  of one of 
the electrons (for example, with 1 = 0) 

sion for S,(x) a s  follows: 

where 

f (2) =*O(Z) 90 (t) (11) and y2(ki,x+, x.) = y , ( k i ,  -x., -x+). Calculation of the 
to be expressed a s  the sum of the contribution of the integral in (16) gives (see Appendix 1): 
diagrams in Fig. 2. The vacuum state of this solution 

1 " e x p ( i l , . x ) - i  
is obvious. It was given in the Introduction. Y.= --n ,,+ 

2nx+ ' = I  

(17) 

Let us write the quantity Substituting (17) and the corresponding expression for 
y, into formula (15), after some simple transforma- 

(I2) tions we find 

a s  an integral over the momenta p, and p, of the elec- 
trons that close the loop of Fig, 2 a t  the point x :  2ni  k2(ka-M') (18) 

(13) Letting A ~ ~ ( x )  denote the integral 

cPk e ' l  1 
Then, after calculating the trace of the y matrices the Axa(") = jmiw = ?;l KO ( M  ( - z z+ ie )")  , (19) 
contribution to Q from the sum of the graphs in Fig. 2 

the sum of all the diagrams of Fig. 2 gives the following with n photons with all  possible permutations of photon 
expression for S (x): lines i s  esual to 

1 1 
X 

( p l - k , )  ++ie ( p , - k t )  --' " ' ( p , - B k , )  + f i e  ( p , - Z k i )  --' 1 Using the properties of the MacDonald functions KO, ex- 
pression (20) can be rewritten a s  

1 1 
p2-+ie (p2-k t )+- '  (p2-k , ) -+ ie (pz -k t )+- '  

perm l 
"e'hc e x p ( 8 n a o A x ~ ( z ) } ,  (21) 

where C is the Euler constant. 

Formulas (20) and (21) coincide, apart from a co- 
ao=g ," /2nW.  (14) efficient, with the solution obtained formally by Segr8 

and Weisberger4 and a t  a, = they become the corre- 
We have symmetrized the integrand with respect to the sponding expressions for Schwinger QED, (Ref. 3). The 
photon momenta k,, k,, . . . , k ,  and have divided the sym- 

singularity a t  2 = O  in (21) indicates that the spectrum 
metrized expression by nl The sums over the permu- of the model in Ref, 4 contains massless excitations 
tations in (14) denote permutations of the photon lines together with the massive vector particle M. At a,= 4 
k,, k,, . . . , k, along the electron lines p, and p,. the singularity a t  9 = 0 disappears and the spectrum of 

Substituting (14) into (13), we can write the expres- the Schwinger model consists only of massive neutral 
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excitations, which the authors of Ref. 3 interpreted as 
charge confinement. However, f a r  a, = 8 expression 
(21) has an important defect: S ( x )  # 0  for x - -  (Ref. 5). 
This forces us to assume that the vacuum of the dia- 
grammatic solution, which ensures that for a,< 
quantities have the normal properties, cannot be the 
physical vacuum for Schwinger QED, (Ref. 2).4) This 
situation occurs if a phase transition occurs in the 
system. In the following sections we shall study the 
spectrum u(q) (2) for  the model of Ref. 4 and its depen- 
dence on the parameter a, and show that this actually 
does occur in massless QED,. 

In order to study the spectrum it is  necessary to cal- 
culate the imaginary part of the Fourier transform of 
(21) and interpret its spectral properties after expand- 
ing in intermediate states (2). The simple mathemati- 
cal calculation then leads to a complicated and very 
indirect process of constructing the intermediate 
states in (2). Therefore, we shall arrive a t  the same 
result via a different route: we shall directly calculate 
the arbitrary transition amplitudes (01 j ( n )  and sum 
them in u(q). The great mathematical complexity leads 
here directly to the construction of intermediate states. 
Only in this way is it possible to study the mechanism 
of the disappearance of the "quark" states in the uni- 
tarity condition. 

3. THE TRANSITION AMPLITUDE (Ol j ln )  

In the invariant gauge and using the selected vacuum 
of the diagrammatic solution (see Sec. I), the produc- 
tion of physical states (for example, vector particles 
like q, in Fig. 3c) by the scalar current (11) is  ac- 
companied by an arbitrary number of EM e'e' pairs. 
In this section we shall find the amplitudes (01 jln) for 
transitions to these pairs, s o  that in the following sec- 
tion we can sum over all the states of the pairs. 

The assignment of the electron to the mass shell 

eR: p-'0, 7-u-=0, r-v-=O; 

e,: p+=O, r+u+=O, r+v+--0 

uniquely determines the matrix structure of the ampli- 
tude and the kinematics of the electron pairs: pairs 
created by the EM current contain e* and e- moving to 
one side while those created by the scalar current move 

FIG. 3. Diagrams for the on-shell production amplitudes 
( 0  Ij In). 

in opposite directions. Different kinematical variants 
give identical contributions. Therefore we shall study 
only the variant shown in Fig. 3: particle 1 travels 
in the direction of e,. 

Since we a r e  studying only on-shell amplitudes, we do 
not have to take into account the longitudinal terms in 
the propagators. Because of the nature of QED, (Sec. 
2), for ( ~ ( j l n )  we have only diagrams of the type shown 
in Fig. 3. Furthermore, the interaction between 
different pairs (Fig. 3d) is  absent because the sum of 
the contributions from diagrams with interchange of the 
photon (1 in Fig. 3d) is  zero. A considerable simplifi- 
cation appears because the dependence on the momen- 
tum (1) of the created e*e- pairs or  vector particles (q,) 
factorizes with the dependence of the amplitude on the 
momenta of pair created directly by the scalar current 
( p ,  and p, in Fig. 3). This is because the propagator 
(5) of the massless electron is linear: 

G+-I(p) -p++iep--I ( a ) ,  G--' (p) =p-+iep+-I ( b )  (23) 

for momenta p+(a) o r  p-(b) not equal to zero. For ex- 
ample, for the two diagrams of Fig. 3b the factors from 
the upper electron line give the expression (p,, =0)  

The factorization (24) appears if the poles in k ,  and 1, 
do not contribute simultaneously, that is, if a t  least 
one of the momenta k ,  or  1, is nonzero. However, the 
emitted particles a r e  integrated in (2) over the phase 
space of the unitarity condition, so  that their momenta 
can be assumed to be nonzero: the phase space of the 
state with 1, = 1, = 0  is zero. For  more complicated 
diagrams the factorization of the type (24) is demon- 
strated using the standard eikonal procedure (see, for 
example, Ref. 8 and Appendix 1). 

Therefore, the general expression for the amplitude 
of producing n,  pairs with If, = O  and n, pairs with If+ = O  
is written a s  

The function F(p,,p,) is a scalar form factor equal to 
the sum of the contribution of all the diagrams of Fig. 
4a, as follows from (24), 

T ( P ,  P') --A ( P .  P') l (P+P') (26) 

and A(p.pl) is  the exact amplitude for pair production 

(I b 

FIG. 4. Diagrams for F(q2) .  
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FIG. 5. The amplitude for 
producing a pair of virtual 
particles (thick arrow). 

w . . . ~  ' n , r t  

2 , -p*+-O 

by a virtual charge (Fig. 5). The quantities F(p,,p2) 
and A(p,,p2) a re  difficult to calculate because for 
virtual photons there is  no factorization like (24), 
since the coincidence of the poles of the electron lines 
plays an important role in this case.5) 

A. Calculation of F (  P ,  . P,)  

Henceforth we shall call F(p,,p2) the invariant co- 
efficient of the factor H(p,)v(-p,). When calculated in 
the variables k+ and k,, the integral for the single- 
photon contribution to F(p,,p2) (Fig. 4b) is infrared 
divergent. This divergence is  accidental; it is due to 
the fact that when these variables a r e  used, the double 
integral over the momentum of the photon line does 
not converge uniformly. The fact that this divergence 
is accidental is obvious because the diagram of Fig. 2b, 
whose imaginary part  contains the form factor of 
Fig. 4b is infrared divergent. The correct  result for 
the single-photon contribution, 

F,=-a, In (-qZ/W), (27) 

is obtained by an invariant calculation of the integral 
without changing to the variables k, and k,. 

The contribution of the two diagrams in the next 
highest order (Fig. 4c) is written a s  an integral: 

Taking into account the fact that they a r e  not factor- 
izable, let us separate the correlators 2, from the 
G-function products: 

and substitute them in the integral (28). The integral of 
the product Z(Z )  is zero  and the product of the inde- 
pendent G gives the square of Fl (27); the combined 
terms a r e  independent of the momenta and a r e  easily 
calculated. The integral over one of the variables (k-) 
is equal to 

In calculating (30), the photon propagators under the 
integral can be replaced by (-I)', because the residues 
a t  the poles k2 = M 2  a r e  equal to zero  (see also Ap- 
pendix 2). 

The integral of (30) over dki+ is  

Therefore we find (P,, =q+,P2- = 9 - ,  q2=29+ 9-1: 

The summation of the contributions of a l l  the diagrams 
in Fig. 4 is  given in Appendix 2. It is based on factor- 
ing the correlators 2:'") out of arbitrary products of the 
G functions and leads to the following expression for 
F(q2 1: 

B. Calculation of A (  p , p l )  (Fig. 5) 

Let us again factor out the trivial spinor coefficient. 
The principal difference between the calculation of 
A(p,p') and of the form factor is related to the con- 
servation law 

k,+k,+. . . +k,+,=p+pf. (34) 

Because of (34) the total amplitude for the transition 
of the n + 1 photons into the pair (p,pl) ,  that is, the 
sum of the contributions of all  diagrams within the 
photons permuted, is  zero  if a t  least one of the photon 
momenta (the component k i ,  for the kinematics of 
Fig. 5) is  nonzero. Then the photon propagators direct- 
ly in the integral with respect to ki can be  replaced 
by (-1)"". 

Integration of the conservation law (34) over k,,,, 
that is, the substitutions 

in all  the expressions, leaves the sum of the contribu- 
tions of all  diagrams with n + 1 photons symmetric under 
permutations of k,, k,, . . . , k,. This allows the product. 
of the electron propagators to be symmetrized along the 
p2+ line of Fig. 5 (P2+ = 0): 

1 
'k,'(k,+k,)'. . .(kt+. . .k,)+ 

(-1)'' 1 1 1 =- =- 

I ~ '  perm 
k,+(k,+k,)+ ...( kl+ ...+ k,)C nl k,+k2+ ... k.+ 

1.2. .. n 
(36) 

In (36) we have neglected terms with ic in the propaga- 
tors ,  since only ki>O a r e  significant in the integrals 
over dki+. As a result the sum of diagrams with n + 1 
photon lines is  written a s  

(Here we a r e  considering only electrons of charge e,). 
We have factored out the correlators in the products of 
G,(p'. . . )  and G-(-PI+. . - )  just a s  in (A2.2) (see Ap- 
pendix 2). In this case A,,, turns out to be the sum of 
the products of the integrals of the correlators y, 
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(A2.4) by the integrals of the independent products of 
G,(p + k t ) .  The latter a r e  the powers of the contribu- 
tion to A(p,pl)  from diagrams with two photons: 

(38) 

The integrals y, do not depend on the momenta p and p'. 
A simple combinatorial calculation of the summation of 
identical contributions in (37) due to  the symmetry of 
the correlators (as in (A2.3)) causes (37) to reduce to 
the double sum 

Summation over n and calculations s imi la r to  those a t  
the end of Appendix 2 give the following for A(p,pt): 

zhewe-5.~ sin naa 
= - z " . ,  z,p+ 

A ( p . p ' ) E - a o  r ( i + a . )  r l i - a o )  7 P +  
. (40) 

The correlator technique can also be used for calcu- 
lating other on-shell amplitudes. For example, sum- 
mation of all the diagrams for e'e' and e'e- scattering 
gives 

T.&.*=2e'"~ sin m , ,  Tc&.~=2e-fnas sin m o ,  (41) 

i f  the particles move to different sides [the eReL states 
(2211 and T = O  for the eReR or  eLeL states. The mo- 
mentum transfer is always zero in the scattering. 
These properties a r e  due to pointlike nature of the in- 
teraction between two-dimensional massless particles 
[(41) is independent of the energy] and to the two- 
dimensional kinematics. Expression (41) is in com- 
plete agreement with the two-particle unitarity condi- 
tion, which for the amplitudes T++ and T+, (the invariant 
amplitudes without the spinor coefficients) is written 
as 

These amplitudes have the correct crossing proper- 
ties and therefore the correct analytic properties. 

The existence of only two-particle unitarity for the 
fermion amplitudes is  explained by the fact that the 
amplitudes for the interaction of fermions on the mass 
shell with photons of nonzero momentum a r e  equal to 
zero. Therefore, the only possible fermion ampli- 
tudes of the model a r e  T++ and T+, (41). The addition 
of an arbitrary number of eReR (eLeL) pairs to an elec- 
tron eR (or eL) does not change the physical eR (eL) 
state since e'e' pairs moving to one side a r e  equivalent 
to gauge photons. Direct calculation of the amplitudes 
for the scattering of these states 

by each other leads to formula (41). An important con- 
sequence of (41) and (42) is the absence of bound states 
in any of the on-shell e,eL amplitudes. The off-shell 
eReR (eLeL) amplitude has a boson pole s = M 2  (the 
eLeL mass shell the invariant s = 0). 

In conclusion we note that formulas (33) and (40) 
agree in their analytic and unitary properties with ex- 
pression (41) and with the two-particle unitarity con- 
dition for  F and A. The amplitude A depends on the two 
invariants s =p2p and s' =p2pr and the variable is 
x =p:/p+ =st/s. 

4. THE UNlTARlTY CONDITION (2) 

The substitution of (25), (33), and (40) into (2) for the 
current (11) permits us to sum over the contributions 
of "gauge" EM e'e' pairs. For  q2 < M2 vector particles 
a r e  not created and, a s  we shall see,  this summation 
leads to a contribution of charged fermion states to (2). 

In relation to the discussion in Sec. 2, EM e'e- 
pairs (eReR or  e,eL) must have an indefinite metric 
of states in order that intermediate states like those in 
Fig. 6a, which correspond to the cutting of closed EM 
loops, not contribute to the unitarity condition. There- 
fore the only effect in which EM e+e' pairs participate 
is their exchange interference with electrons created by 
the scalar current (Fig. 6b). In this interference, of 
course, only pairs of charge e, participate. The inter- 
ference graphs a r e  obtained from graphs like those of 
Fig. 6a by interchanging the electron lines. There- 
fore, their contribution to o(q) is of alternating sign 
and is equal to 

exp (4a0C) 
a&)= 

2 r 4 ( i - ~ )  q+q- 

Here A =(sin2ncu,)/n2 from (40), the f i rs t  term in the 
sum (n =0)  is equal to unity, and is the usual factor 
of the unitarity condition. The summation over the 
spins of the intermediate states (the trace of the 
matrices) yields a factor of $, which is cancelled by 
the doubled contribution of the diagrams of Fig. 6b to 
allow for the kinematical situation wherein the anti- 
particle moves in the direction p,, =O(eR). The square 
of the sum in the curly brackets is a consequence of 
the fact that the summations over the contributions 
of pairs interfering with the electron e i  and with the 

FIG. 6. Diagrams for summing the contributions of gauge pairs 
to the unitarity condition (2). The wavy line denotes A(p,pl) 
(40). 
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positron e', a r e  independent. Therefore the integra- 
tion in each sum is  over only the momentapi, o r  only 
the Pi+. Finally, in (44) the dimensionless variables 
xi =pi+/q+ o r  xi =pi, /q, a r e  introduced in each sum. 

The calculation of the sum in (44) i s  quite laborious 
(Appendix 3), but the result i s  simple: 

Consequently, for  q2 < M 2  

exp (4czoC) ( M' ) " 
a o ( q ) -  

2r2( l -2ao)  q+q- ' 

which coincides with the answer which is  easily obtained 
from (21). 

Thus the physical contribution to the unitarity condi- 
tion (46) can be written a s  (44), in which the factorized 
separation of the intermediate state into states of 
particles moving in the direction of eR and particles 
moving in the direction of et i s  obvious, This shows 
that here the intermediate states a r e  determined by the 
massless particles and coincide with (43). Consequent- 
ly, these a r e  states of massless charged electrons. 
This becomes obvious for a,& 0, when the contribution 
of "gauge" e'e- pairs i s  decreased. 

Although the presence of e'e' pa i rs  does not change 
the properties of the physical state created, it does 
determine the value of the probability for a transition 
into this state and has a direct dynamical meaning in 
(44). It is precisely the contribution of EM pairs and 
the destructive interference in (44) arising from the 
Fermi  statistics that cause the contribution (46) to dis- 
appear from the spectrum (2) a t  a, = $. In order to 
understand what happens a t  the point q+ =q, = 0 a s  
a,- 4, let us integrate (46) over some range of posi- 
tive q, and q,, that is, where a,(q) =ImS(q) +O. We 
then obtain the finite limit 

es=oc (,qp) Z=O ezcm' 
lim loo ( q )  dq+dq-= lim =- 

a , - ~  a,  -,,, 2[ (1 -2ao)  r ( l - 2 a o ) ] Z  2 ' 

mz=gt/n, (47) 
which indicates that the contribution d2)(q)  with the 
coefficient (47) i s  present in the sum (2) for the 
Schwinger model. 

Reduction of the contribution of the continuous spec- 
trum to the spectral  sum (2) to the form ~5(~)(q)  indicates 
that in the Schwinger model (at a, = a) a discrete state 
with q, = O  appears and is different from the vacuum of 
the diagrammatic solution. A perturbation transfers 
the system to this state even from the initial vacuum, 
s o  that the new state must be  a stable vacuum of 
Schwinger QED,. This in turn means that a s  a,- $ a 
phase transition occurs. In Schwinger QED2 charge 
confinement occurs only because of the appearance of 
this new vacuum and of the phase transition. 

The chiral properties of the vacuum wave function 
in (2) coincide with the properties of the continuum 
states of the model a t  a,= 5, that is ,  with the proper- 
ties of the states of the eReL pair of massless f e r -  
mions. This state is not invariant under the transfor- 
mation exp(i a y,), but acquires the coefficient exp(2ia). 

Consequently we a r e  dealing here with spontaneously 
broken chiral  invariance. The transition is from the 
chrially symmetric vacuum of the diagrammatic solu- 
tion to the spontaneously broken noninvariant vacuum. 

The interesting question of the structure of the 
spontaneously broken vacuum state, which appears 
in the intermediate s ta te  (44) a t  a, = f and q, = 0, needs 
more direct study. Since the on-shell fermion ampli- 
tudes (41) do not exhibit any anomalous features, this 
study must apparently be  concerned with quantities 
off the mass  shell. 

We can also consider the contributions of the vector 
states to (2). Since the sum over the contributions of 
gauge pairs becomes d2)(k)  a s  a,- 4 (here k i s  the 
momentum of al l  the electrons of a state), the entire 
momentum transferred by the current i s  concentrated 
in the massive particles. The corresponding ampli- 
tude (2) for the state with a single massive boson is  

a, ( q )  ='/zmze2cti (qZ--mz). (48) 

A transformation analogous to (44)-(46) shows that 
massive particles a r e  created in a new state with 
q, = 0, as must be  if this is the new stable vacuum of 
the system. 

5. CONCLUSION 

Since the physical vacuum for Schwinger QED, dif- 
f e r s  from the vacuum of the diagrammatic solution, the 
physical quantities of the model must be calculated 
relative to the t rue  vacuum of the system. The authors 
of Ref. 5 constructed such a solution for  (1) on the 
basis of one of the operator solutions of the Schwinger 
model found in Ref. 2. This yields a t  a,= $, instead 
of formula (21), 

The formal nature of the solution in Refs. 2 and 5 allows 
us  to verify only the fact that the solution (49) is de- 
fined in a chirally broken vacuum, such a s  we have con- 
structed in the present study. As (47) and the study of 
Ref. 2 show, the hadron of the Schwinger model has 
pseudoscalar properties relative to this vacuum. The 
differences between (49) and (21) a t  a, = 3 begin with 
the x41nx2 terms, which in fact coincides with the con- 
tribution of the f i rs t  vacuum-reconstruction diagram 
(Fig. 2c) of our. study. 

In conclusion we would like to thank Ya. I. Azimov, 
V. N. Gribov, G. S. Danilov, D. I. D'yakonov, and 
E. M. Levin for numerous discussions and extremely 
useful remarks. 

APPENDIX 1 

Let x,  > 0. Then, integrating over dp, in (16) we find 

(-1)'-*0 (k,,-+k,,--p-) exp (iki,+z-+ike+z-) + 
(k',++k,,+) k,+(ki,++k,,+) kt,+. . .( r, ki+) 

+...). (A1.1) 
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Using the well-known formula of Ref. 8, we sum in 
each term over those indices which a r e  not present 
in the numerator: 

We note that the integrals of the correlators over 
d2ki do not depend on p. 

Study of the integrals (A2.4) and (A2.5) shows that 
the integration in (A2.4) is over the region in which 
the integral remains finite. This region is determined 
by the correlator R,, which is equal to  

(A1.2) 
We next substitute (A1.2) into (Al .1)  and use the 
formula 

dP- 1 f - ~ X P  ( ip-z+)  0  (a-p-) 9- - exp(iaz+) .  
J 2r i  2nz+ (A1.3) 

The series ( A l . l )  now takes the form (k * x  =k+x, +k,x+)  
The correlators 2, = O  if a t  least one of the momenta 
k , ,  # 0 .  Then in calculating (A2.5) (or (30))  we can di- 
rectly replace the product of the photon propagators 
by (-1)" under the integral in (A2.5). Summation over 
n in (A2.3) gives the expression 

Summing each term over permutations of the indices 
as in (A1.2), we find 

The coefficient r can be calculated if i t  is noticed that 
the sum of finite integrals 

(A1.5) 
which reduces to formula (17): can be reduced to a sum analogous to (A2.7) by sep- 

arating the factorizable contribution in terms of the 
correlators R,: 

For x ,  <O the result does not change. 

APPENDIX 2 Here y,(y) is the integral of (A2.4) in which the de- 
nominators kt a r e  replaced by kt". The contribution to F,(q2) of diagrams with n photon 

lines is  given by an integral similar to (28): Using the formulag 
I d z ,  dz ,  dz" r"(7)  
j ~ ( i - ~ r - ~ r - - .  .z") F=...F=- r ( l + n y )  (A2.10) 
0 2 

and the representation for the inverse I? function 

f 
r- l ( l+nr)---S (- t ) - l+nle- ldt ,  

2nc 

we sum over n in (A2.8). Then 
As in (29), we introduce the correlators 

r  = lim r ( r )  = lim P ( T ) ~ " J ' = ~ ' ~ / I ' ( ~ - a , ) .  (A2.12) 
1-0 1-0 

Expressions (A2.7) and (A2.12) give (33).  

APPENDIX 3 
and, taking into account the symmetry of Z,(k,, . . . , k,), 
we find Let us  transform the n-th term of the ser ies  in (44),  

by substituting in i t  the formula for the 6 function 

and the representation 
where F, denotes the contribution (25) and the numbers 
y,, which a r e  independent of q+ and q, ,  a r e  equal to  

After integrating over xi, rotating the contours of inte- 
gration with respect to t i  (ti  - iky*) ,  and integrating over 
over dk, the n-th term becomes 
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We now use the formulag 

and integrate over odd y, in ( ~ 3 . 3 ) .  The problem of 
finding the sum (44) immediately reduces to solving 
the integral equation 

1 nh dx' I f z  
I (x) = + - - - I [  1- ( )  , (A3.5) 

(l+x) '- '*o sin 2na, x-r I +x 

and the sum (44) is equal to 

Solution of (A3.5) by the standard Wiener-Hopf method 
gives the answer 

The contour in (A3.7) is drawn to  the left of all  the 
poles of the integrand: 

Substituting (A3.7) into (A3.6) and integrating over y, 
after using (A3.8) (the lower limit of the integration 
over y, can be replaced by -I), we find that the con- 
tour integral is  the well known9 representation of the 
hypergeometric function. This reduces the latter 
integration to the tabulated integral9: - 

2.. .=(I-2ao) j F ( a , a o ,  1, -y,)dyll(l+yr)L-'g. (A3.9) 
0 

"1n two-dimensional models with mass less  electrons this vac- 
uum state is  completely analogous to the vacuumofperturba- 
tion theory. The "diagrammatic" solution differs fromper- 
turbation theory in that it takes the 'bhoton" mass  into ac- 
count exactly. 

2 ) ~ h e  sum (2) acquires a component of the physical vacuum of 
the model with chirality *2  (Refs. 2 and 5). 

3 '~n this art icle we a r e  using the light cone variables 

The calculations of two-dimensional models a r e  simplified 
considerably when these variables a r e  used. 

4 ) ~ h e  physical vacuum of the model proves to be  a superposi- 
tion of states with different chirality (0 ,  i 2, * 4 ,  . . . (Ref. 
2) ; s e e  a lso  Ref. 7). 

5 ' ~ h e  neglect of these facts led to a number of e r r o r s  in Ref. 6. 
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