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Allowance for the quantum effects is used to explain the experimentally observed absence of faceting of 
helium crystals. It is shown that weakly damped melting and crystallization waves may be propagated 
along an He4-liquid interface. The temperature dependence of the surface tension is found at low 
temperatures. 
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According to the classical ideas (see, for  example, 
Ref. 1-2) a macroscopically homogeneous surface 
of a crystal which is in equilibrium with a liquid o r  
vapour can be atomically smooth or atomically rough. 
In the former case the crystal has a characteristic 
faceting with flat parts of the surface and in the other i t  
has a spherical shape. The quantitative criterion i s  
the absolute value of the transition entropy A 3  i.e., 
of the difference between the entropies of the two 
phases in contact calculated per  particle. The AS2 1 
case corresponds to an atomically smooth surface and 
ASS 1 to a rough one. In the case of conventional 
classical crystals the transition entropy increases 
without limit on reduction in temperature and, there- 
fore, a t  a sufficiently low temperature a crystal should 
have an atomically smooth surface. 

A characteristic situation appears in crystals of 
helium isotopes which may be in equilibrium with a 
liquid at any temperature no matter how low. Since 
a t  absolute zero the entropies of both phases vanish, 
the transition entropy i s  small. Formal application 
of the classical criterion predictsS an atomically rough 
helium surface. Although the available experimental 
 result^^'^ (absence of faceting and of significant super- 
cooling even a t  high growth rates) do confirm this 
conclusion, the use of the classical criterion is not 
permissible. A surface which is atomically rough in 
the classical sense cannot be in equilibrium a t  absolute 
zero because i t s  entropy i s  not equal to zero. The 
experimentally observed effects, like the very exist - 
ence of a crystal-liquid interface a t  absolute zero, 
can be explained only by a suitable allowance for the 
quantum effects. We shall show that the phase bound- 
ary between a quantum crystal  and a quantum liquid 
may be in a special state which i s  a quantum analog of 
an atomically rough surface. 

1. Delocalization of particles in a quantum crystal 
means that the microscopic structure of such a phase 
boundary cannot be represented in the same literal 
way a s  i s  done for classical crystals. However, such 
concepts as a surface step and a kink in the step (Fig. 
1) can also be introduced in the quantum case. It i s  
sufficient to use the general properties of a boundary 
which follow from the symmetry of phases in contact. 

For example, the surface step corresponds to such a 
state of the boundary in which i ts  positions a t  infinity 
(to the right and left in Fig. 1) a re  shifted by an ele- 
mentary translation vector of the crystal and the 
energy of the system has the lowest possible value. 
In view of the periodicity of the crystal and homo- 
geneity of the liquid, a shift by one translation vector 
transforms the boundary to an equivalent position and, 
therefore, a step i s  a linear defect on the surface and 
only this property of the step i s  important in our anal- 
ysis. 

Let us assume that @ i s  the energy of a step per 
unit length equal to an elementary translation vector. 
According to Landau,' if j3 i s  finite then the derivative 
atr/acp of the surface tension with respect to the angle 
cp between the normal to the boundary and the [001] 
direction exhibits a finite jump proportional to @ when 
cp= 0. This discontinuity of the function a a / a c p  nec- 
essarily gives r i se  to flat parts in the equilibrium . 
shape of a crystal and these par ts  incerase in size 
with the jump of the derivative atr/acp. Thus, the 
faceting of a crystal i s  connected directly to the finite 
value of j3. In the case of classical crystals a t  abso- 
lute zero the value of P i s  always finite and, therefore, 
a t  low temperatures such crystals a re  always faceted. 
This i s  also possible in the case of quantum crystals. 
However, i t  is  interesting to note that in the case of 
a quantum crystal the energy of a step may be exactly 
zero. 

The state of a step i s  governed by the configuration 
of the kinks in i t  and the kinks have two opposite 
"signs" (Fig. 1). .Each kink can be regarded as a point 
defect on a step. The kink energy does not change when 
it i s  displaced by a translation vector because such a .  

FIG. 1. 
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displacement involves the transfer of matter from one 
phase to another without a contribution to the energy 
since the chemical potentials of the phases in equili- 
brium a r e  equal. Therefore, like other point defects,' 
a kink on the surface of a quantum crystal behaves as 
a delocalized quasiparticle whose state i s  governed by 
the quasimomentum. Here, we encounter the following 
circumstance which i s  important in the subsequent 
treatment. Let p, be the value of the quasimomentum 
corresponding to the bottom of an energy band. At 
absolute zero this state is stationary (and ground) for  
an isolated kink and the velocity of the kink is zero. 
Stationary states of similar energies (p  -pd corre- 
spond to a finite kink velocity. Thus, an isolated 
kink i s  an example of a system which has states whose 
energies can be a s  close a s  we please to the ground 
state and which a re  characterized by a continuous flux 
of matter from one phase to the other. 

If the width of the energy band of kinks A is suffi- 
ciently great (A/2 >c0, where E,, i s  the energy of a 
localized kink), the energy near the band bottom be- 
comes negative. Then, the total energy of a step 
decreases on appearance of kinks with p=po  and the 
structure of the ground state of a step can be found only 
if allowance is made for the interaction between kinks. 

Collision of two kinks of any sign results in exchange 
of their quasimomenta (Fig. 2a). In the case of kinks 
of one sign this is  the only possible elastic process; 
however, if the signs of the kinks a r e  opposite, there 
is also a possibility of a "jump" to the next row, in 
which each kink retains its quasimomentum (Fig. 2b). 
Moreover, bearing in mind that over long distances 
the interaction i s  of the van der  Waals type, we can 
easily see that the kinks interact over long distances 
in accordance with the law U(r) c , ( a / ~ ) ~ ,  where a i s  
the interatomic distance, and that kinks of opposite 
sign become attracted, whereas those of the same 
sign repel. It i s  therefore clear that the interaction 
between kinks i s  important only over atomic distances. 

An increase in the concentration of kinks in a step 
thus reduces the energy of the latter until the con- 
centration becomes of the atomic order. The minimum 
energy i s  then 

where $ i s  the energy of a rectilinear "bare" step 
without kinks. 

In the case of classical crystals the quantities Po 
and E, a r e  of the order of the difference between the 

FIG. 2. 
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energies of two phases in contact taken per one atomic 
bond.' In the case of helium, such an estimate gives 
,!lo= E, = 0.1 OK. However, the value of A i s  expected to 
be of the order of 1 OK. Therefore, it seems very 
likely that the energy of the ground state of an isolated 
step i s  negative. Moreover, i t  follows from the above 
discussion of the motion of an isolated kink and of the 
nature of the possible interactions of kinks with one 
another that there a re  states of a step which a r e  close 
in energy to the ground state and that these states 
correspond to continuous motion of a step, accompan- 
ied by the transfer of particles between the phases. 

If the energy of an isolated step i s  negative, then an 
atomically smooth surface of a crystal  i s  unstable in 
respect of step creation. As a result, an equilibrium 
surface should become a type of two-dimensional liquid 
consisting of delocalized steps of various configura- 
tions, including closed steps of finite length It i s  
important to note that the number of steps of each 
kind in such liquid i s  not fixed and i s  governed by the 
condition of minimal energy. Therefore, the energy 
of a step @, which is the derivative of the total energy 
with respect to the number of steps, vanishes in 
equilibrium. 

This vanishing of the step energy means that the sur- 
face tension o! i s  a smooth function of the orientation 
of the normal for directions described by small Miller 
indices (as  mentioned above, the discontinuity of the 
derivative a a / a q  is proportional to the step energy B). 
For (011) type faces, where 1 i s  a large number, the 
discontinuity in ao!/aq i s  due to5 the appearance of 
superstructures in the positions of steps on faces of 
the (0, L ,  L1 i 1) type which can be as close as we 
please to a (011) face. This mechanism i s  clearly 
possible only in the case of localized steps. In the 
case under discussion the quantum-mechanical de- 
localization makes superstructure steps impossible 
and the derivative acu/aq is continuous also for these 
faces. Thus, crystals with a surface of the type con- 
sidered here a r e  always characterized by a smooth 
a ( q )  function and, therefore, they do not become 
faceted." 

The growth of a crystal with such a surface takes 
place both by an increase in the surface bounded by 
each step and by formation of new atomic layers on 
collision of two steps (this process i s  analogous to a 
jump into the next row on collision of two kinks). It i s  
important to  note that these and reverse  processes 
give r i se  to stationary states of the system, which can 
be as close as we please to  the ground stateand that con- 
tinuous growth o r  melting of a crystal  occurs via 
these states. The motion of a phase boundary a t  
absolute zero thus occurs without disturbi& the phase 
equilibrium. In other words, the kinetic growth co- 
efficient K-defined by the formula V=KAp, where 
V i s  the velocity of the boundary and Ap i s  the dif- 
ference between the chemical potentials of the phases 
in contact-becomes infinite a t  absolute zero for a 
crystal with this type of surface. 

At finite temperatures the motion of a phase bound- 
ary is accompanied by dissipation due to the interac- 
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tion with thermal phonons. The energy dissipated per 
unit time and per unit surface a rea  i s  of the order of 
%&V/c)V, where c i s  the velocity of sound, E,, 
anT4/e5  i s  the phonon energy, n i s  the number of 
atoms per unit volume, and 8 is  the Debye tempera- 
ture. On the other hand, the same dissipated energy 
i s  equal to AwV, where N - n V  i s  the number of atoms 
transferred per unit time from one face to the other. 
Hence, we find that 

We can thus see  that the growth coefficient becomes 
infinite in the limit T - 0 which i t  approaches propor- 
tionally to Te4. 

It should be noted that the ranges of validity of Eq. 
(1) a re  very different for crystals of the helium 
isotopes He3 and He4. 

In the case of He4 the validity of Eq. (1) requires 
simply that phonons be the main type of thermal 
excitation in the liquid phase. As i s  known, this con- 
dition i s  satisfied at temperatures below approximate- 
ly 0.6"K. At high temperatures, instead of the power 
law, we now have the exponential dependence K a exp 
x(A,/T), where A, i s  the roton gap. 

In the case of HeS crystals, Eq. (1) can be applied 
only a t  extermely low temperatures, much lower than 
the temperature of transition to the superfluid state. 
At higher temperatures, when liquid He3 behaves a s  
a Fermi liquid, the main dissipation mechanism i s  
the interaction of a moving boundary with Fermi 
excitations. The energy dissipation is of the order of 
p,nV.V, where #,is the momentum on the Fermi 
surface, which corresponds to a temperature-indepen- 
dent growth coefficient K = 1/p p. 

2. We shall show that weakly damped oscillations, 
similar to capillary waves at a liquid-vapor inter- 
face, may propagate along an interface between a quan- 
tum crystal and liquid. However, they a r e  different 
because capillary waves correspond to the motion of 
matter near the surface in the absence of evaporation 
and condensation processes. Our waves a re  entirely 
due to periodic melting and crystallization. 

Let u s  assume that a flat surface z = 0 undergoes a 
displacement g(x, t)= gOe'Lr-'wt in the direction of i t s  
normal. The motion which appears in a liquid i s  
described by the potential v =  V$, where J ,  = $,e"x~h*-'Wt. 
The liquid can be regarded a s  incompressible because, 
as we shall see later, the phase velocity of the oscilla- - 
tions under discussion i s  much less  than the velocity of 
sound. The boundary conditions a t  z = 0 a r e  

Here, P i s  the variable part of the pressure; p i s  the 
density; cp i s  the angle between the normal to the 
desplaced surface and the z axis; the indices 1 and 2 
refer to the solid and liquid phases, respectively. 

Since 

where m i s  the mass of an atom, we find that the 
oscillation spectrum i s  

If the gravity g i s  allowed for, an additional term 
p,gk/(p,-&) appears on the right-hand side of Eq. (3). 

Like the conventional capillary waves, the oscilla- 
tions described by Eq. (3) are, unstable in respect of 
dissociation of one quantum into two of lower energy. 
Therefore, the oscillations in question a re  character- 
ized by finite damping even at T=  0. The order of 
magnitude of the damping coefficient y (reciprocal of 
the lifetime) is given by y" iik5/p (see Ref. 7, where 
the problem is solved for  the conventional capillary 
waves). 

At finite temperatures and for low-frequency oscil- 
lations the second damping mechanism associated 
with the finite growth coefficient K i s  the more impor- 
tant. We can calculate the corresponding damping 
coefficient by including the quantity- S / K  on the right- 
hand side of the second condition in Eq. (2). If we 
assume that the damping i s  weak, we find that 

In the case of He3, within the range of validity of 
the theory of Fermi liquids, the application of the . 
above estimate of K leads to the conclusion that the 
oscillations in question a re  strongly damped at all 
frequencies. In the case of ~e~ a t  low temperatures, 
the substitution of Eq. (1) into Eq. (4) shows that there 
i s  a wide range of wave vectors ka >> (T/8)' in which 
the wave damping i s  weak Experimental observation 
of these waves will give a direct proof that ~ e '  crystals 
have a boundary of the type discussed above. 

3. Oscillations with the spectrum (3) a r e  elementary 
excitations of the ~e~ crystal-liquid interface a t  low 
temperatures. They a r e  responsible for the tempera- 
ture dependence of the surface tension. Since accord- 
ing to Eq. (3) the frequency is, a s  in the case of capill- 
a ry  waves at a liquid-vapor interface, propotimal 
to kSf2, the temperature dependence of the surface ten- 
sion i s  the same for crystal-liquid and liquid-vapor 
interfaces. The temperature-dependent component of 
the surface tension i s  proportional to T"' (see Ref. 8). 

A similar situation occurs also in the case of Hes in 
the range of applicability of the theory of Fermi liquids 
to the liquid form of this isotope. The temperature 
dependence of the surface tension a t  crystal-liquid 
and liquid-vapor interfaces in then mainly due to the 
contribution of Fermi excitations. The temperature- 
dependent component of the surface tension i s  now 
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proportional to p, which i s  clear from the following 
simple considerations. The f ree  energy of a Fermi 
system always varies proportionally to the square of 
temperature and level density near the Fermi surface. 
The presence of the surface affects only the density of 
levels which can be represented a s  the sum of the 
volume and surface components. The surface tension 
coefficient, which is the surface part of the free 
energy, varies proportionally to the surface com- 
ponent of the level density and to the square of temper- 
ature. 

The authors a r e  grateful to A. I. Shal'nikov who has 
acquainted us  on many occasions with the unpublished 
results of his investigations and has thus greatly 
stimulated our work 
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The temperature dependence of the intensity of the optical radiation at which a superconductor undergoes 
a transition to a spatially inhomogeneous state is determined. The experimental results are compared with 
theoretical models predicting such a transition. It is found that only the theory of F. V. Elesin [Sov. 
Phys. JETP 44, 780 (197611 is in qualitative agreement with these results. 
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1. It has been shown1 that homogeneous laser  illum- 
ination transforms a superconductor to a spatially in- 
homogeneous state. In the case of a homogeneous dis- 
tribution of excitations, the resistance R of a super- 
conducting film remains zero on increase in the exci- 
tation density n as long a s  n<no (here, no is the critical 
concentration of excitations for a transition to a homo- 
geneous normal state). When n is increased to the 
value no, the film resistance should suddenly change to 
i ts  full value in the normal state R,. 

erature dependence of W,. 

2. We investigated P b  and V3Si films prepared by 
vacuum evaporation on polished sapphire substrates. 
The film properties (thickness d, critical temperature 
T,, and width of the superconducting transition AT,) 
a r e  listed in Table I. 

Films of P b  were prepared by thermal evaporation 
from a tantalum boat. Samples of V3Si were produced 
by electron-beam evaporation of the alloy V3Si, pre-  

The experimental results give a different picture: 
the resistance appears a t  some pump power W and T ABLE-I. 
r ises  smoothly to R, on increase in W. The same re -  
sult is reported by Sai-Halasz et ~ 1 . ~  The power at F h  I d . 1  1 T=.OK 1 
which the resistance appears is known a s  the critical 12 1 "Or 
value W,. We shall report an investigation of the temp- visi 16.4 0.6 
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