
where therefore, the expression 

The second equation in the system (25) is associated 
with the first. We shall now expand Eq. (19) up to k2 
and sum again over i; next, we shall multiply the ob- 
tained equation by u*, and use the second equation in the 
system (25). Then, simple transformations carried 
out on the assumption that p,= c2&) give the following 
expression for p,: 

Bearing in mind that in the case of a positive definite 
matrix any form obeys (cp*i?cp)>O, we find from Eq. (26) 
that the second sum in that equation is positive and, 

represents an upper limit of p,. This upper limit is 
identical with that obtained by Halperin and S a s l ~ w . ~  
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Properties of superfluid 3He-A near the transition into the 
A, phase 
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Some characteristic singularities of the behavior of superfluid 'He-A in the presence of a strong magnetic 
field are observed in the immediate vicinity of the transition into the A,  phase. It is shown that in narrow 
gaps of width L L 5, the texture of the anisotropy vector 1 should change abruptly when the temperature 
of the A-A, transition is approached, leading to a considerable variation of the spectrum of the NMR 
frequencies. Coupled oscillations of the density and of the longitudinal magnetization near the A+A, 
transition are investigated. These oscillations merge in the A,  phase with the magnetosonic mode typical 
of triplet pairing in the state with a single spin projection. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION described by a real (unit) vector d, along which the 
projection of the summary spin of the pair i s  equal to 

It i s  presently customary to identify the superfluid zero. 
A phase of liquid 3 ~ e  with the Anderson-Brinkman- It must be recognized, however, that in the pre- 
Morel state (see, e.g., Ref. 1). For this anisotropic sence of a sufficiently strong magnetic field, and 
state, the nine-component complex order parameter close enough to the temperature of the transition to 
that describes the coherent phase with triplet spin the normal phase, the pairing amplitudes of the quasi- 
pairing in the j5 wave has a relatively simple multi- particles in states with summary-spin projection S, 
plicative structure =*I are not equal (A, #A,) (Ref. 2). It i s  then no 

A,r=Ad,u,, longer possible to describe the spin part of the order 
parameter by a single real vector, and the vector d 

where A=A(T) specifies the amplitude of the order in (1) must be represented by a linear superposition 
parameter, and the complex vector u=(u, + i u , ) a  
describes an orbital state whose of the rela- d=c+d,+c,d,, (2) 
tive angular momentum of the Cooper pairs along the 
axis 1 =u, Xu, (u, and u, are  real orthogonal unit vec- where the complex vectors d, =(dl + i d , ) / a  and d, =d: 
tors) i s  equal to + l .  As for the spin part of the order describe states of pairs whose summary-spin projec- 
parameter, in the absence of a magnetic field it i s  tion on the direction s =dl xd, is equal to +1 or - 1, 
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respectively (dl and d, are real orthogonal unit vec- 
tors). In Eq. (2), the coefficients are  

and it  must be borne in mind here that in (1) we have 
A(T) =(A: + ~ 3 " ~ / f l .  It will be convenient in what 
follows to express the spin vector (2) in the form 

where CY,=(A, * A , ) / ~ A .  

It i s  easy to verify that at equilibrium the orthogonal 
pair of vectors (dl, d,) lies in a plane perpendicular to 
the direction of the external magnetic field. On the 
other hand, the dipole-dipole part of the free energy 
is given by 

where X, i s  the spin susceptibility of the normal phase 
of liquid 3 ~ e  and 51, i s  the characteristic dipole fre- 
quency proportional to A. If the orientation of the or- 
bital vector 1 i s  specified by polar and azimuthal an- 
gles (v, x), then, directing the polar axis along H, we 
find that 

FD=-'lr~.ElA2 {a+' cos' ~+a- '  sin' x}sin2 6, (6) 

and since L Y ~  2 a2 we have at equilibrium x =O (dl =y, d, 
=- x). The dipole-dipole forces tend at the same time 
to press the vector 1 towards the (dl, d,) plane, but 
near the vessel wall 1 prefers to assume an orienta- 
tion perpendicular to the wall, and in general the 
angle has an equilibrium value v # 0 as a result of the 
competition between the two aforementioned tenden- 
cies. We shall begin therefore with the expression 

where the parameter @(T) =A,A,/A2 characterizes the 
splitting of the spin states in the magnetic field 
(0 s B 1). In a weak field and f a r  from T, the split- 
ting can be neglected (A, =A,) and @ =l. On the other 
hand, as the temperature of the transition to the Al 
phase i s  approached, 0 decreases and vanishes at the 
transition point itself. In this region, the parameter 
@(T) varies strongly with temperature, and this can 
lead to a number of curious effects that are readily 
observable in experiment. 

2. TEXTURE OF He-A IN  NARROW GAPS NEAR THE 
TRANSITION TO THE A ,  PHASE 

As one of the illustrations, we consider the superfluid 
A phase of liquid 3 ~ e  located in a gap between two 
parallel plates, in the presence of a strong magnetic 
field directed perpendicular to the planes of the plates. 
The described situation was considered theoretically 
many times (see, e.g., Ref. 3) and was investigated 
e~perimentally.~ These investigations were made 
however at @=I, when the equilibrium texture along 1 
does not vary with temperature if the magnetic field 
intensity i s  specified and the gap width L is fixed. As 
will be shown below, in the immediate vicinity of the 
transition to the At phase (where @ =0) the picture 
changes substantially with temperature, and this 
should manifest itself primarily in an unusual be- 

havior of the NMR signal. 

To determine the equilibrium orientation of the or- 
bital vector 1, we must add to the dipole part of the 
free energy (7) the inhomogeneity energy, given near 
T, by 

F~r.d='lr~.~:{31v~l=+l [ V X U I  1'+3lnxya"l'+l [uxVIdpl' 
+2Re[3(Vu') (nd,'V&)-1Vu.I Iud,'XV&II). (8) 

where c,, i s  the velocity of the spin wave propagating 
along 1 (c,, is proportional to A), and the interference 
term, which contains the vector d:~d,- a+a-V$, i s  the 
result of the splitting of the spin states of the Cooper 
pairs (the angle $ specifies the orientation of the unit 
vectors dl and d, in a plane with a normal s =dl 
xd,). Since V$=0 in our case, the interference term 
drops out. It must be borne in mine, however, that 
in more complicated situations (when VJI # 0) the inter- 
ference term in (8) plays an important role. An ex- 
ample of this situation will be considered in the next 
section (see also Refs. 5 and 6). 

It i s  easy to verify that for the one-dimensional 
problem considered below (the z axis is oriented along 
H) the inhomogeneity energy takes the following simple 
form: 

To determine the equilibrium value of the angle 9 
=9(z) we must combine expression (9) with (7) and 
minimize the functional 

where the temperature-independent dipole length i s  
5,  =c,,/S1,. The first  integral of this variational 
problem i s  of the form 

with 9, equal to the maximum deviation of the equili- 
brium value of the angle 9 from zero (attained at the 
center of the gap between two parallel walls of the 
vessel). It i s  easy to verify that the equation for the 
angle a0 i s  of the form (see Ref. 3) 

where K(x) and E(x) are complete elliptic integrals of 
the first  and second kind, respectively. 

FIG. 1. Plots of the equi- 
librium angle B0 against 
the parameter j3 (T) for 
different gap widths L. 
The numbers on the curves 
are the corresponding val- 
ues of the ratio L/ID.  
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Numerical solution of (12) for different values of the 
ratio L/[, leads to the plot of 8, against the parameter 
j3 shown in the figure. F a r  from the transition into the 
A, phase (i.e., in the region where P=l ) ,  after the 
critical gap width L,=- is reached, the angle 8, 
begins to increase from zero to the value i7/2 character- 
istic of open geometry (L >> [,). At L < LC a decrease 
of p to zero does not change the homogeneous texture 
with 9 10 ,  for in this case the dipole energy is in- 
capable of counteracting the orienting influence of the 
vessel walls. At L >LC, however, the picture changes 
substantially. As seen from an examination of the 
figure, the angle 9, has a strong temperature depen- 
dence a t  L/{,=4. As the transition to the A, phase 
is approached, 9, decreases rapidly and vanishes at 
j3 50.85; this corresponds to a transition into a state 
that is homogeneous along 1, since the effectiveness 
of the dipole-dipole forces decreases with decreasing 
j3. A similar situation is observed also a t  L/[,=5. 
At L/{,=6 the homogeneous state is no longer reached, 
but the angle 8, still has a noticeable dependence on P. 
With further increase of the gap width L, the tempera- 
ture dependence of weakens and at L/[,=10 the 
angle 8, is close to n/2 independently of P. 

The described behavior of the texture of the vector 1 
in narrow gaps in the immediate vicinity of the A 
-A, transition can be investigated by observing the 
singularities of the NMR signal. An analysis of the 
tensor d2 with components 

which enters in NMR theory for  a superfluid Fermi 
liquid,' shows that a t  L< Lc(9, - - = 0, 1 = z) we have 

This leads to a transverse resonance with 

Far  from the transition to the A, phase we have P =l 
and we arrive a t  the negative frequency shift predicted 
in Ref. 8 and observed in e ~ p e r i r n e n t . ~  It follows from 
(15) that near the A-A, transition there should be ob- 
served an additional negative shift of the resonance fre- 
quency. At the same time, since (d2),(fi2),,#0 at 
j3 < I ,  a new transverse low-frequency resonance ap- 
pears a t  

Unfortunately, i t s  intensity is limited by the smallness 
of ( 5 2 , / ~ , ) ~  (see Ref. 7). 

An even more pronounced manifestation of the split- 
ting of the spin states near the transition into the Al 
phase should be expected in the case L 2 Lo, when the 
texture of the vector 1 changes rapidly with decreasing 
j3 (see the figure). In this region, the spectrum of the 
NMR signal should have an unusually strong tempera- 
ture dependence, which would be easy to investigate 
in experiment. 

In the limit of open geometry with L >> LC, the effect 
of the vessel walls is negligible and a state with 9 =n/2 

(1 =y) sets  in over practically the entire volume. In 
this case we have9*10 wf,=wi +$(l +p)O:, and the 
frequency of the longitudinal resonance i s  w ,  =j3"20,; 
these anomalous temperature dependences of the 
resonant frequencies in the vicinity of the A -Al tran- 
sition have already been observed in experiment.9 
However, as shown above, the behavior of 3 ~ e - ~  in 
narrow gaps (L 2 LC) should exhibit a number of new 
singularities, due to the temperature depeidence of the 
texture in the immediate vicinity of the transition into 
the A, phase. 

3. COUPLED OSCILLATIONS OF THE DENSITY AND OF 
THE MAGNETIZATION IN THE VICINITY OF THE 
TRANSITION INTO THE A ,  PHASE 

We turn now to an investigation of the collective 
oscillations of the density and magnetization of super- 
fluid 3 ~ e - ~  in the immediate vicinity of the transition 
into the A, phase. In this region, an important role is 
played by the interference term in the inhomogeneity 
energy [see (8)1, which describes the effects of the 
entanglement of the spin and orbital degrees of freedom 
in the presence of a strong magnetic field. 

To study the influence of the foregoing effects on 
the character of the collective oscillations of the 
magnetization (spin waves) we can s t a r t  from the gen- 
eralized Leggett equation, which takes the form of a 
hydrodynamic equation for the fluctuations of the 
magnetization m(r,  t)  (we consider below a situation 
wherein the motion of the normal component is 
blocked): 

Here y is the gyromagnetic ratio for the ' ~ e  nuclei, 
H, is the external static magnetic field, and J, is the. 
density of the superfluid flux of the p-th component of 
the spin, with 

Equation (17) contains the anisotropy tensor a,, 
=26,,- 1,2,, and Q, is the phase shift of the orbital part 
of the order parameter and describes the rotation of 
the pair of unit vectors (u,, q) around the direction 1 
(it is assumed below that 1 is constant). The pre- 
sence of a term with V* in the equation for the spin 
flux is a reflection of the aforementioned mixing of the 
spin and orbital degrees of freedom, which increases 
with splitting of the spin states; at A , # A ,  the mass 
transport i s  connected with a magnetization flux. 

Substituting (17) in (16) we get for the magnetization 

We must now use the dynamic equation for  the order 
parameter A,,(r, t ) .  Since we a re  considering a situa- 
tion in which the magnetization oscillations- must be 
accompanied be density oscillations 6n(r,  t ) ,  the adia- 
batic Hamiltonian must include the term (6n)'/2x, 
where x is the compressibility of liquid 3 ~ e .  As a 
result we arrive at the following Leggett-Josephson 
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equation: (j3 =0) into a zero-gap magnetosonic mode of the fourth- 
sound type1' with modified velocity 

which reduces to two independent relations 
au 2i a* --- - 
at 6 4  (20a) 

where l$ and a re  respectively the zeroth harmonic 
of the non-exchange (symmetrical) and exchange (anti- 
symmetrical) parts of the Fermi-liquid Landau para- 
meters. 

whose structure is insensitive to the splitting of the 
spin states of the Cooper pairs. Differentiating (18) 
with respect to time and taking relations (20) into 

It is easy to verify that excitation of the longitudinal 
magnetization is accompanied by density fluctuations, 
with 

account, we verify that in the approximation linear 
in m and 6n 

It can be shown similarly (by perturbing the density 
with an external source) that near the trmsition to the . 
A, phase the dynamic susceptibility is where 

and the speed of fourth sound is c, =2(XJx)1'2c,,. 

and excitation of density oscillations is accompanied 
by oscillation of the longitudinal magnetization, with 
amplitude 

On the other hand, using the continuity equation 
Bn/Bt =- V j  and noting that the density of the super- 
fluid particle flux is 

~ ~ = ~ ~ . c ~ ' ~ ~ ( V ~ @ + I ~ ~ V ~ ) ,  

we easily obtain the equation 

8n/at'-c?D%-4a+a-~yf [did,] DWY=O, 
In conclusion, a few words on transverse spin-wave 

(23) modes that do not mix with density oscillations. 

which forms together with (21) a closed system that Turning to (21), we easily verify that under conditions 
describes the coupled oscillations of the density and of splitting of the spin states there exist two trans- 

the magnetization. verse modes. One has a gap equal to the frequency of - 

As seen from an examination of (21) and (23), in the 
immediate vicinity of the transition to the A, phase 
(where a,a- # 0) the density fluctuation 6n is "hooked" 
to the fluctuation of the longitudinal magnetization m,. 
Changing to Fourier components and turning on a 
weak alternating field with amplitude h,(qw), we arrive 
a t  the following system of linear inhomogeneous equa- 
tions for m,(qw) and 6n(qw): 

the transverse NMR 

and is characterized by a dispersion ((q[,)2 << 1) 

a+' (q) = o , / + ~ + ~ q ~ a ,  

where 

(o.'(q) -o2)rn,(qo)+a+a-yor'(q)6n(qo) --y?.o.'(q)h, (qo), 

(oIa(q!-02)6n(qo)+ba+a- ( - z: )' ob'(q)m2(qo) =a+a-yxor' (q) hz(qo), 
7 

(24) 
where the bare spectra of the longitudinal spin waves 
and of the fourth sound a re  given by 

~. ' (q)  -pnAa+c,'q'~ (q/q), ot (q) =c?q2a(q1q), (25) 

The second zero-gap spin-wave mode is due t o  the 
splitting effect, and f o r  i t  we have w?(cl) =ck2a, and a 
corresponding propagation velocity 

c_ = 1/20 - ,92P'*(n,/w,)c,, . 
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the anisotropy coefficient being a(e) =2 - (e . I ) ~ .  

By solving the system (24) we readily find that the 
longitudinal dynamic spin susceptibility is 

where the eigenfrequencies w,(q) of the coupled mag- 
netosonic oscillations a re  given by 

o,z(q) -1/2{~.z+o?*[ (o.l+0~)~-4$(Q~'+$~~q~a)~~'l'~). (27) 

It is easy to verify that the upper branch with fre- 
quency w,(q) is transformed in the Al phase itself Translated by J. G. Adashko 
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