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Microscopic equations describing small deviations of spins from an equilibrium state in a spin glass a? 
derived. It is shown that, in the long-wavelength limit, these equations give solutions in the form of spin 
waves. A formula is obtained for the velocity of the waves. 

PACS numbers: 75.30.D~ 

1. INTRODUCTION 

A macroscopic theory of spin waves in strongly dis- 
ordered magnets has been developed re~ently. ' '~ This 
theory shows, in particular, that well-defined spin 
waves with a linear dispersion law should exist in spin 
glasses and their existence is a simple consequence of 
the invariance of the spin system under arbitrary rota- 
tions. 

However, in many problems the macroscopic theory 
is insufficient and there is a need to develope a micro- 
scopic theory. We shall derive microscopic equations 
describing spin waves in spin glasses. We shall show 
that in the hydrodynamic limit they reduce to the corre- 
sponding equations obtained in the macroscopic the- 
~ r y . ' * ~  We shall deduce a general expression for the 
velocity of spinwaves in terms of microscopic constants. 
We shall show that the derived equations are analogous 
to the corresponding equations for the strain tensor of 
amorphous substances. 

2. DERIVATION OF PRINCIPAL EQUATIONS 

We shall consider the following model. We shall as- 
sume that magnetic atoms (concentration p )  are distri- 
buted at random in space and that their interaction with 
one another can be described by the exchange integral 
J(r) characterized by the mean value (J)= 0. This con- 
dition can be ensured in two ways. Firstly, J(r)  may 
be an oscillatory function which varies rapidly over 
distances much shorter than the average separation be- 
tween the atoms. This case occurs in the Kittel-Ruder- 
man interaction. Secondly, J(r)  can be represented in 
the form ~,J(r/r~), where ro is the radius of the poten- 
tial and Jo is a random quantity distributed, for exam- 
ple, in accordance with the Gaussian law. This is the 
model first considered by Edwards and Andersod and 
then used in many other papers. 

The Hamiltonian of the interaction is of the form 

H=-C J i 8 S j ,  Jij=J(R,-Rj) (1) 
, 

where S is the spin operator. Using Eq. (1) and the 
commutation relationships for the spin operators, we 
obtain the usual equations of motions for spin: 

a s i i a t = 2 C  Jij[SiS~l,  (2) 
I 

where [ab] denotes a vector product. We shall simplify 
the problem by assuming that the spin is large. In this 
case we can ignore the quantization of the spin variables 
and assume simply that S is a classical vector of length 
S, whose equations of motion are given by Eq. (2). At 
absolute zero the system is in equilibrium, which cor- 
responds to zero of the right-hand side of Eq. (2). The 
equilibrium values of the vectors Sf will be denoted by 
So,. They satisfy the equations 

which imply that each spin is parallel to its local molec- 
ular field. 

We shall now consider smalldeviations from equili- 
brium. As shown by Andreev,l such deviations can be 
described conveniently a s  follows. Let a vector Sof be 
rotated through an angle 0 about a unit vector n. Then, 
the new vector St can be expressed in terms of So, as 
follows: 

where 

Let us assume that the rotation of each spin is de- 
scribed by its local vector cp,. If all the vectors cp, are 
equal, the energy of the system does not change and we 
again obtain some equilibrium position. However, if cpf 
are different, a force is established which tends to re- 
turn the system to its equilibrium position. The equa- 
tion describing this process in the linear approximation 
can be derived by substituting Eq. (4) into Eq. (2) and 
bearing in mind that the vectors Sot are independent of 
t: 

Equation (5) is derived using the equilibrium condition 
(3). Substituting in Eq. (5) the expression cp, = p i +  (cp, 
-q t )  and applying Eq. (3) again, we obtain 

The system (6) represents the equations of motion of the 
vectors cpf(t) which, according to Eq. (4), describe de- 
viations of the initial state from equilibrium. It is clear 
from Eq. (6) that cp, = const is the solution of these 
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equations and this implies invariance of the system un- 
der  arbitrary simultaneous rotation of all the spins 
through the same angle. This invariance has been dis- 
cussed in detail earlier.lp2 

I t  is convenient to transform the system (6) into sec- 
ond-order equations. This can be done by solving Eq. 
(6) for ~ p , .  We shall show that the solutions a re  of the 
form 

where the tensor c,, represents a generalized suscep- 
tibility describing the appearance-of a local magnetiza- 
tion m, under the action of a local magnetic field h, (for 
simplicity we shall assume that the gyromagnetic ratio 
is y = l ,  i.e., that m, is measured in units of y and it,, 
in units of y2) .  TO derive Eq. (7) we shall consider the 
problem of the motion of spins in the presence of local 
magnetic fields h,. By analogy with Eq. (2), we have 

The second equation in the system (8) describes new 
equilibrium states. These states Sf, can be expressed 
in terms of So, and local rotation angles cp,. In the line- 
a r  approximation i t  is clear that cp, = h, and, therefore, 
we obtain from Eq. (8), 'by analogy of the derivation of 
Eq. (6) from Eq. (51, 

I t  is now quite clear that an applied magnetic field pro- 
duces nonequilibriurn moments m, = s,, - So, = 2[q,~,,]. 
This follows from Eq. (4) if the linear approximation is 
employed. By definition of the susceptibility, we have 

The second expression in Eq. (10) follows from the de- 
finition of mi. I t  gives the explicit form of the solution 
of Eq. (9) for cp,, 

We shall now return to Eq. (6). Comparing i t  with 
Eq. (9), we can see that the two equations a re  identical 
if hi is replaced with 2a(p,/at. Hence, w e  immediately 
obtain the explicit form of the solution of Eq. (6) for cpl. 
This solution is Eq. (7). 

We note that the above coincidence of h, and 2acp,/8t 
har, a deep physical meaning. In fact, 28cp,/at = w,, 
where w,  is the angular velocity of rotation of a spin 
So, and we can see that the veloeity w, behaves exactly 
in the same way a s  the applied magnetic field hi. 

Substituting now Eq. (7) on the left-hand side of Eq. 
(6), we obtain 

Equation (11) is the microscopic analog of the corre- 
sponding equation obtained by Andreev.' We shall now 
find the microscopic analog of the equations deduced by 

Halperin and Sas10w.~ I t  follows from Eqs. (6) and (7) 
that 

The second of the above equalities is the definition of a 
nonequilibrium magnetization mi. The first  two equa- 
tions a re  microscopic analogs of the hydrodynamic 
equations obtained by Halperin and S a ~ l o w . ~  Summing 
Eq. (12) over i, we find that-on the basis of Eq. (3)- 
that the total moment M = C i  mi is an integral of motion. 

3. ANALYSIS OF THE EQUATION OF MOTION 

We shall now analyze the equation of motion (11). It 
is convenient to represent this equation in two equiva- 
lent forms 

where 

The matrices A and fi have the following symmetry pro- 
perties: 

The above relationships a re  derived using the equilibri- 
um condition (3). We note that the last  two properties 
of the matrices fi and A are  a consequence of the inva- 
riance of the system under rotations. We recall that 
in the problem of small vibrations of atoms in disor- 
dered systems we obtain similar equations and the main 
conditions imposed on the matrices 6 and A are  the 
conditions (14) and the requirement that the matrices 2 
and fi are positive and definite. This requirement is . 
very important also in our case because, as can be 
seen from Eq. (13), the positive definite nature of % and 
fi ensures that the spectrum of Eq. (13) is positive, i.e., 
that w z > O ,  where w, i s  the eigenvalue of this equation. 

We shall now show that the positive definite nature of 
fi is a consequence of the fact that our system should- 
be in the ground state at absolute zero and this ground 
state i s  a position of stable equilibrium. 

We shall do this by substituting Eq. (4) into Eq. (1) 
and calculating the energy of a deformed state V(cpi) 
with cp,# 0 in the approximation which is quadratic in pi: 
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The term linear in q ,  should vanish because of the nec- 
essary condition for the extremality of the ground state. 
Since Jfj= J,,, we can see that this condition is identical 
with the equilibrium condition (3). Moreover, it readily 
follows from Eq. (13) that, if Eq. (3) is allowed for, the 
part of V(cy,) quadratic in 9, is 

Since a sufficient condition for the ground state to be a 
position of stable equilibrium is the positive definite na- 
ture of the quadratic form V(v,), our statement is 
proved. Thus, in the ground state the matrix 0 must be 
positive definite. In fact, it is positive definite not only 
in the ground state but in any other state of stable equi- 
librium if such states do exist. The calculated energy 
V(9,) is the potential energy. Comparing Eqs. (13) and 
(16), we obtain immediately the expression for the kin- 
etic energy associated with the field cp: 

where (;)-I is  a matrix that is an inverse of ic. The 
second equality in Eq. (17) follows from Eq. (12). The 
formulas (16) and (17) define a second integral of mo- 
tion, which is the total energy of the deformed state 
E = T+ U. These formulas are the microscopic analogs 
of the corresponding formulas obtained by Andreevl and 
Halperin and Sas10w.~ (For comparison with Halperin 
and S a s l o ~ , ~  we recall that their vector 8 is 2q.) The 
Lagrange function for Eq. (13) is L = T - U. 

The explicit form of the energy E = T+ U has an im- 
portant consequence that 9, and l?zi are canonically con- 
jugate variables and m, are generalized momenta for 
generalized coordinates 9,. We note that the definition 
of a nonequilibrium magnetization m, implies that mi 
= 0 in the ground state (otherwise we have to redefine 
So,). hforeover, the ground state may be stable against 
the appearance of spontaneous magnetic moments mi. 
This means that T(m, #0)> 0 and %,, must be positive 
definite matrix. Thus, both the kinetic and potential 
energies are positive definite quadratic forms. Hence, 
it dollows that the eigenvalues ofEqs. (11) and (13) are 
real. 

4. CALCULATION OF THE SPIN WAVE VELOCITY 

We shall now consider the spectrum of low-lying ex- 
citations and derive a general formula for the spin- 
wave velocity. We shall do this using a method sugges- 
ted for the problem of diffusion in a disordered sys- 
tem? 

The mathematical structure of the system (13) is, as  
mentioned above, analogous to that encountered in the 
problem of small vibrations in amorphous substances. 
Since low-lying oscillations in a macroscopically ho- 
mogeneous medium are plane waves, it follows from 
this analogy that the corresponding eigenfunctions of our 
problem are modulated plane waves 

fii= uki exp (ikRi - iwk t ) ,  (18) 

where k is the wave vector and w, is the energy. As in 
Ref. 4, we shall assume that corresponding to small 

values of k can be expanded as a series in k. Sub- 
stituting Eq. (18) into Eq. ( l l ) ,  we obtain 

We shall now show that for small values of k, we have 

The quadratic dependence of w i  on k2 will be derived be- 
low; at this stage we shall assume that we know this de- 
pendence and we shall show that c2>0. We shall multi- 
ply Eq. (19) by u$,, sum over i, and let k on the left- 
hand side of Eq. (19) approach zero. Next, we shall al- 
low for the fact that, as shown below, q,, is  indepen- 
dent of i. We then obtain 

.--. 
where N is the number of particles in a crystal. 

It follows from the definition of %,, in Eq. (7) that the 
usual local susceptibility i ,  and its average value 6) 
are given by 

The last equality follows from the absence of any pre- 
ferred direction in a spin glass. It then follows from 
Eqs. (18), (21), and (22) that 

c2=p./<x>, (23) 

where 

We can see that there is  a positive definite form on the 
right-hand side of Eq. (23) and, therefore, p,>O. We 
also note that it follows from Eqs. (21) and (23) that cp,, 
is an eigenfunction of the matrix and p,k2 is its ei- 
genvalue, so that once agiinwe have p,>O. On the 
other hand, it is clear that &)>O. Hence, it follows 
that c2 > 0. 

We shall now show that wf = k2 and that u, are inde- 
pendent of i. We shall do this by substituting k= 0 in 
Eq. (19): 

Summing over i and using Eq. (14), we find that w:=O. 
Substituting this value in Eq. (24) we can see that q,, 
= q,,, i.e., that q,, is independent of i. Expanding Eq. 
(19) as a series ink up to the first term and repeating 
exactly all the procedure given above, we find that the 
first term of the expansion of wf in terms of k vanishes 
and the derivatives of u,, with respect to k satisfy the 
equations 
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where therefore, the expression 

The second equation in the system (25) is associated 
with the first. We shall now expand Eq. (19) up to k2 
and sum again over i; next, we shall multiply the ob- 
tained equation by u*, and use the second equation in the 
system (25). Then, simple transformations carried 
out on the assumption that p,= c2&) give the following 
expression for p,: 

Bearing in mind that in the case of a positive definite 
matrix any form obeys (cp*i?cp)>O, we find from Eq. (26) 
that the second sum in that equation is positive and, 

represents an upper limit of p,. This upper limit is 
identical with that obtained by Halperin and S a s l ~ w . ~  

The author is grateful to I. Ya. Korenblit for discus- 
sing this paper. 
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Some characteristic singularities of the behavior of superfluid 'He-A in the presence of a strong magnetic 
field are observed in the immediate vicinity of the transition into the A,  phase. It is shown that in narrow 
gaps of width L L 5, the texture of the anisotropy vector 1 should change abruptly when the temperature 
of the A-A, transition is approached, leading to a considerable variation of the spectrum of the NMR 
frequencies. Coupled oscillations of the density and of the longitudinal magnetization near the A+A, 
transition are investigated. These oscillations merge in the A,  phase with the magnetosonic mode typical 
of triplet pairing in the state with a single spin projection. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION described by a real (unit) vector d, along which the 
projection of the summary spin of the pair i s  equal to 

It i s  presently customary to identify the superfluid zero. 
A phase of liquid 3 ~ e  with the Anderson-Brinkman- It must be recognized, however, that in the pre- 
Morel state (see, e.g., Ref. 1). For this anisotropic sence of a sufficiently strong magnetic field, and 
state, the nine-component complex order parameter close enough to the temperature of the transition to 
that describes the coherent phase with triplet spin the normal phase, the pairing amplitudes of the quasi- 
pairing in the j5 wave has a relatively simple multi- particles in states with summary-spin projection S, 
plicative structure =*I are not equal (A, #A,) (Ref. 2). It i s  then no 

A,r=Ad,u,, longer possible to describe the spin part of the order 
parameter by a single real vector, and the vector d 

where A=A(T) specifies the amplitude of the order in (1) must be represented by a linear superposition 
parameter, and the complex vector u=(u, + i u , ) a  
describes an orbital state whose of the rela- d=c+d,+c,d,, (2) 
tive angular momentum of the Cooper pairs along the 
axis 1 =u, Xu, (u, and u, are  real orthogonal unit vec- where the complex vectors d, =(dl + i d , ) / a  and d, =d: 
tors) i s  equal to + l .  As for the spin part of the order describe states of pairs whose summary-spin projec- 
parameter, in the absence of a magnetic field it i s  tion on the direction s =dl xd, is equal to +1 or - 1, 
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