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Expressions are obtained for the change (jump) of the magnetic moment of the conduction electrons 
following a transition from the ferromagnetic into the antiferromagnetic phase. It is shown that the 
absolute value and the sign of this jump depend substantially on the topology of that Fermi-surface section 
which is responsible for the formation of the helicoidal magnetic structure. Good qualitative agreement is 
observed between the relative change of the magnetic moment of the conduction electrons and the relative 
change of the hyperfine field at the diamagnetic-impurity nuclei in a dysprosium matrix. 

PACS numbers: 75.30.Kz, 75.30.Hx, 75.50.C~ 

1. In most heavy ra re  earth metals (REM) the ferro- 
magnetism gives way to antiferromagnetism when the 
temperature is increased. Antiferromagnetism exists 
in the temperature interval from the Curie point to the 
Nkel point, and in this interval the REM can have a 
variety of magnetic structures. For example, in ter-  
bium and dysprosium the collinear ordering i s  replaced 
by a simple helix, and in erbium the ferromagnetic 
helix goes over into a static longitudinal spin wave. The 
specific magnetic properties of REM a r e  due to long- 
range oscillating exchange interaction between the 4f 
ions via the conduction electrons, which become polar- 
ized by the interaction. Information on the spin polari- 
zation of the conduction electrons can be obtained by 
measuring the magnetic fields induced by these elec- 
trons a t  the nuclei of diamagnetic impurities in REM 
matrices." Measurements of this type were made in 
the course of investigations1-5 of the temperature de- 
pendence of the hyperfine field a t  cadmium and tin nu- 
clei implanted in matrices of dysprosium, holmium, 
and terbium. A jumplike decrease of the hyperfine field 
a t  the impurity was observed a t  the point of transition 
from a ferromagnet into a simple helix. Since the local 
magnetization of the matrix is not changed at this point, 
it can be assumed that the s-f interaction constant also 
remains unchanged, and we can attempt to ascribe this 
jump to a change of the spin polarization of the conduc- 
tion electrons a s  a result of a change in the topology of 
the Fermi surface. 

We investigate in this paper the singularities of the 
polarization of the conduction electrons in REM in the 
transition from the antiferromagnetic state into the 
ferromagnetic one. We confine ourselves to the case of 
a helical antiferromagnetic structure, which is ob- 
served, for example, in dysprosium and erbium. In 
this structure the atomic magnetic moments in each of 
the hexagonal planes a r e  parallel to one another and 
form ferromagnetic layers whose magnetic moments 
a r e  perpendicular to the hexagonal axis. The magnetic 
moment of each successive layer is rotated through a 
certain angle Po. If we introduce for such a structure a 

where d is the distance between the nearest hexagonal 
planes, then the average magnetic-moment density is 
given by 

M,=M cos qz,  M,=M sin qz, M,-0, (1) 

where M is the average modulus of the magnetic mo- 
ment of the REM ion a t  the given temperature. Near the 
point of transition into a collinear ferromagnetic struc- 
ture  with a moment perpendicular to the hexagonal axis, 
the period of the magnetic structure of the dysprosium 
spans approximately seven basal planes, while the per- 
iod of the magnetic structure of terbium spans ten 
planes (see, e.g., Ref. 6). The angle cp, increases with 
increasing temperature, but near the N6el point the 
vector q i s  much less  than the reciprocal-lattice vector. 

~z~a losh insk i ; '  has shown that stable helical struc- 
tures occur when the vector q is close to an extremal 
diameter of the Fermi surface. The Fermi surfaces of 
REM o r  complicated and their cavities have different 
dimensions. Since qd << 1, it is clear that in the "reso- 
nant" interaction of the 4f ions with the conduction elec- 
trons the participating electrons a r e  located either on a 
small cavity of a complex Fermi surface, o r  to a sec- 
tion close to i ts  anomalously small  diameter. The 
existence of an anomalously small  extremal diameter 
means that the Fermi surface passes near  the critical 
point p, of p-space, in which the electron eqd-energy  
surfaces ~ ( p )  =& change their topology8: 

The equal-energy surfaces located near p, can be 
approximated by surfaces of second order,  such a s  an 
ellipsoid o r  a one- o r  two-cavity hyperboloid. The 
magnetic-structure vector q is determined by the ex- 
tremal diameter 2p ,  of these surfaces, and i ts  direc- 
tion is that of the p ,  axis: q = 2 p ,  (Fig. 1). 

wave vector q, Each of the surfaces shown in Fig. 1 can be either a 
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At qd << 1 the accuracy of this expression is deter- 
mined not so  much by the smallness of J as by the fol- 
lowing circumstance: if the vector p were a momentum 
(and not a quasimomentum), the expression (6), and 
with it also (7), would be exact. Since the difference 
between a momentum and a quasimomentum is connected 
only with the possibility of umklapp, formula (8) is 
exact if  umklapp is neglected. At qd << 1 this can almost a b always be done. 

FIG. 1. Various topologies of the Fermi surface near the cri- 
tical point p,, . The eigenfunctions of the operator (2) a re  given by 

hole o r  an electron Fermi surface; we consider both 
variants. 

2. The Hamiltonian of the conduction electrons in the In the ferromagnetic phase (q =O) we have c* =c0(p) *J 
field of the-magnetic ions is  and hence 

where eo(p) is the operator of the electron energy in the i.e., in the ferromagnetic phase $+ and $- are  superpo- 
paramagnetic phase, G o  = $ =(eE/2mc)o^,6 are  Pauli sitions of eigenfunctions of the operator 6,.2 ' 
matrices, and J is the constant of the interaction of the To find the magnetic moment of the conduction elec- electrons and the magnetic ions. A s  shown in Ref. 7, trons we must first calculate the mean values of the 
J - ( T ~ C ~ ) ~ / ~ ,  where TN is  the N6el temperature and CF operators G,, 6, and 3, in the states (9), and integrate 
is the Fermi energy. The interaction constant J will be 

the obtained expressions over the phase-space region considered to be the smallest parameter of the problem: inside (or outside) the surfaces c*(p) = where E; is the 
J<< E ~ ( Q ) < < & ~ .  The entire calculation is effectively chemical potential. Neglecting temperature effects, carried out in the form of an expansion in J. we can regard the chemical potential a s  equal to the 

The two component electron eigenfunction * =(::) of Fermi energy. 
the operator&"satisfies the following system of equa- According to (9), we have tions : 

(p) 9z-~e'qx$l=e~I,  (4) 

where & a re  the eigenvalues of the operator (2). We 
multiply both sides of (3) from the left by eiaz and sub- where 
stitute in this expression q2 from Eq. (4). We obtain 

U(p) =['/,(eo(p+q/2) --~~(p-q/2))'+Pl'~. 

e'*19,=ee'qx91 eiql& (p) 9, - - For any of the second-degree surfaces considered 
eo(p)-e above, these expressions can be simplified if it is 

or ,  after multiplying from the right by e-" recognized that 

Since can be represented as a product of a spin where m,, is the effective mass. As a result we get 
function by a spatial function, i.e., $, =$y'exp(ip-r) (we 

tax>* = T 
J 

have put t i=l) ,  we get [ (p.q/2mll)~+JZ1'" cos qz, 

e ~ ~ l , ( p )  e-2*gl=eo(p-q) $, (6)  
<it,)* = r J 

sin qr, 
[ (pzq/2m,)z+Jtl" 

(11) 
and a nonzero solution exists if satisfies the following 
dispersion equation: (ex>* = r . 

[ (p.q/2mll) '+PIsh ' 
(en (PI -el (~o(P-q) -e) =P. 

(7) These a re  the formulas we shall use henceforth. At 
It is convenient to use a more symmetrical form of =0 we have 

the dependence on p, by making the change of variable .. 
p- p +q/2. According to (7) (&)*--rl, <o.)=(a,)--0. 

We proceed now to a concrete form of the Fermi sur- 
face near the critical point p, (Fig. 1). 

(8) 3. Let the conduction electrons interacting with the 4f 
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FIG. 2 .  Topology of the Fermi surface: a-at 6 - E,>q2/8m,l 
+J, b-at q2/8mll - J <  & -  E, <q2/8ml1+~,  c-at & -  %<q2/8m11 
-J. At 5 -E ,=q2/8m1, +J a new cavity appears, and at 
& -  &=q2/8 m,, - J the junction breaks. 

ions be located inside a small  ellipsoid whose equation 
can be represented a s  

where m, is the effective mass. For convenience, we 
have transferred the origin to the point p,,. The wave 
vector is q=2p,, wherep,=(2m1,(t -E,))~'~. In the 
antiferromagnetic phase the electrons have, according 
to (8) and (12), the following dispersion law: 

At various relations between the quantities in (13), 
the Fermi surface ~ ' ( p )  =6 has different topologies (Fig. 
2). 

Inasmuch a s  in the Dzyaloshinskii theory the critical 
value of q is known only in order of magnitude ( l q2/8m ,, 
- Iq l I -J, 11 =&,, -6), we must consider a l l  three cases  
shown in Fig. 2. 

We s t a r t  with surfacea  of Fig. 2, which has, besides 
the dumbbell, a small  ovaloid ( 17 I > J +  q2/8ml,). The 
limits of integration with respect top,  a r e  obtained from 
the equation 

At q = O  Eqs. (15) and (14) lead directly to the known 
expression of the magnetic moment of an electron gas 
placed in a weak "magnetic field'" J/p ,, : 

The integrals in (15) can be easily calculated. We, 
however, do not need the exact expression. Using the 
fact that J<< q2/8m,, and J<< I q I , we put J= 0 in (14) as 
well a s  everywhere under the integral sign in (15). In 
our case this can be done, since the logarithmic singu- 
lari t ies cancel each other a t  the lower limits. From 
(14) and (15) we have 

This expression admits of a transition to the limit of 
the ferromagnetic case: a s  q - 0 the second term tends 
to (2m,, 1q 1) '  12/2. 

We turn now to Fig. 2b. The "plus" band is not popu- 
lated, and the Fermi  surface of interest to us is a 
dumbbell. The second term of (15) vanishes. To pre- 
vent the integral from diverging a t  the lower limit, 
we retain J in the denominator of the integrand. The 
result is 

The junction breaks a t  1 q1 < q2/8m,, - J, (Fig. 2c). The 
corresponding formula for p , coincides with (17). It 
is convenient to combine (17) and (18) into one formula 
by using the fact that 

For the "plus" and "minus" band these limits a r e  re-  
spectively 

We see  immediately that the z component of the elec- 
tron magnetic-moment vector vanishes, since i t  is 
necessary to integrate an odd function between symme- 
t r ic  limits. The remaining components of this vector 
can be written in the form 

k-p cos qz, p,= y sin qz, 

where 

We obtain 

The minus sign in front of the second term pertains to 
the case c of Fig. 2. 

On going from the ferromagnetic into the helical phase, 
the magnetic moment of the "resonant" conduction elec- 
trons decreases by approximately one-half. The jump 
expressed in terms of the vector q is 

We consider now a situation when the critical point 
p, is a maximum point. In place of (12) we have 

eo (p) =ecr-p2/2m,,-Pl2~2m,. (21) 

The ellipsoid whose diameter along the p, axis deter- 
mines the wave vector of the magnetic structure con- 
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tains not electrons but holes. In the antiferromagnetic 
phase we obtain the following equation for the hole 
Fermi surface: 

This surface has the same shape as the electron 
Fermi surf ace shown in Fig 2, except that 6' i s  replac- 
ed by 'E and 5 - cCr by cCr - 5. The volume occupied by 
the electrons i s  equal to the volume of the Brillouin 
zone minus the volume occupied by the holes. Perform- 
ing the appropriate calculations we verify that regard- 
l e s s  of whether the electrons in the paramagnetic phase 
a r e  outside o r  inside the ellipsoid, the general formula 
for the magnetic moment in the antiferromagnetic phase 
takes the form (19), and expression (20) holds for the 
jump Ap. 

4. Assume that the Fermi surface near the critical 
point p, can be approximated by a two-cavity hyper- 
boloid (p,, is the conical point), i.e., the conduction 
electrons interacting with the 4f ions have the following 
dispersion law: 

In the antiferromagnetic phase we obtain accordingly 

The structure of the Fermi surface c*(p)= 5 is shown 
in Fig. 3. 

In contrast to Sec. 3, the Fermi surface is open. 
Since the dispersion law (23), and hence also (24), is 
valid only near the point p =  per, the integration with 
respect top,  must be restricted to the region Ip,I -(Po, 
with q Sp0 << l / d .  Calculations similar to the foregoing 
lead to the following formula that is common to the 
cases a - c: 

whereas the expression for p in the ferromagnetic 
phase (in terms of q) is 

FIG. 3. Topology of Fermi surface: a-at ) q 1 >q2/8 mil + J ,  
b-at q2 /8mI l  - J <  Iq I <q2/8mll  + J ,  c-at Iq l<q2/8mIl  - J .  
The &+ band is filled for all possible relations between I q  1 , 
q2/8m,, , and J .  At I q  I =q2/8mIl+J the junction breaks, and 
at 1 q I =q2/8  mil -J a new cavity is produced. 

The jump Ap is negative: 

Reversal of the signs of the effective masses  does not 
al ter  the structure of the Fermi  surface &*= b', except 
that E' is replaced by &-. Formulas (25) - (27) remain 
in force; just as in Sec. 3, the spin polarization of the 
"resonant" electrons is independent of whether their 
Fermi surface in the parametric phase i s  an electron 
o r  a hole surface. 

5. It remains to consider a Fermi  surface of the neck 
type (see Fig. lc) .  Let the conduction-electron disper- 
sion law near the point pcr be 

where m, and m, a re  the effective masses  (m,, m, >O). 

In the antiferromagnetic phase we obtain the following 
spectrum: 

The Fermi surface &* = Z and i t s  intersections with the 
planes py = const a re  shown in Figs. 4-6. (The junction 
breaks at 117 1 = q2/8m, + J, and an arm appears a t  117 1 
= q2/8m, - J.) 

Just  as in Sec. 4, the Fermi  surface is open, so that 
we choose as the limit of integration with respect top,  
the quantity ;,, which satisfies the same condition as 
Po in Sec. 4. The expressions used in the calculation of 
the magnetic moment turn out to be somewhat more 
complicated than (l5), since the surfaces of Figs. 4-6 
a r e  not surfaces of revolution. Expanding, a s  above, 
the integrands in powers of J, we arr ive  a t  the following 
general expression for pa,: 

In contrast to (19) and (25), pa, does not contain a 
correction term of order Slnl and does not depend on 
q. Since p,=Jm,pJo/n2, we have accurate to t e rms  of 
order 3 

A p O .  (31) 

In the case of a hole rather than an electron neck 
(m, ,  -( 0), formulas (30) and (3 1) remain in force. 

6. We have determined the conduction-electron mag- 
netic moment in three cases-at different topologies of 
the Fermi-surface section responsible for the appear- 
ance of long-period magnetic structures (Fig. 1). It 
turned out that this magnetic moment does not depend 

Px I 

a b 

FIG. 4. Fermi surface at 1 q I > q 2 / 8 m l l + ~  (a) and ita intersec- 
tion by py=const @). 
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FIG. 5. Fermi surface at  q2/8mll - J <  1 0  I <q2/sm,, + J (a) d 

and its sections atp, -0  andp,> [Zm2(q2/8m,- l O  I - J ) I ~ / Z  
FIG. 6. Fermi surface at  l o l <q2/8mI, -J (a )  and its sections 

(c). atp,=o@), 1/2 [2m2(q2/8mi- 1 0  1 - J ) I ' /~<P < [2m2(q2/8m, 
-IOI+J)l ( ~ ) a n d p , > [ 2 m ~ ( q ~ / 8 m ~ - 1 q ~ + ~ ] ~ / ~ ( d ) .  

on whether the indicated section i s  that of an electron 
I Y ~  hole Fermi surface. The jump of the magnetic mo- 
ment (sign and absolute value) depends substantially on 
the topology of the Fermi  surface. 

For  comparison with experiment we must find the 
quantity AF/Ff  where i s  the total magnetic moment 
of all the conduction electrons, including the "nonres- 
onant" ones, for which 2p,>>q, and A F  i s  the change of 
the total magnetic moment on going from the ferromag- 
netic into the antiferromagnetic phase. To calculate 
the magnetic moment p t  of the electrons belonging to 
the "large" Fermi surface, we expand the general ex- 
pression (8), which describes the electron spectrum in 
the helical phase, in powers of q and neglect terms of 
order of q2: 

where v =  ae,(p)/ap. An analogous expansion in formulas 
(10) yields for p t  the expression 

In the f i rs t  integral, the integration region is inside 
the surface E'=  6, and in the second inside the surface 
&'= t. According to (32), this means that the integra- 
tion is between the surfaces c'= 6 and &' = 5, the "dis- 
tance" between which is 6p = I v,. q 1 /v,, where v, i s  the 
velocity on the Fermi surface. Therefore 

where v(S) is the density of the electronic states on the 
Fermi boundary. 

Accurate to terms of order q2, the electrons that do 
not interact resonantly with the 4f ions, have in the 
antiferromagnetic phase the same magnetic moment a s  
in the ferromagnetic phase. Consequently, at the as- 
sumed accuracy we have Afi = h ~ ,  meaning that the 
jump of the magnetic moment i s  determined only by the 
"resonant" electrons. 

According to experiment, the discontinuity of the 
hyperfine field a t  cadmium and tin nuclei in a dyspro- 
sium matrix i s  AH = H, - Ha, >O. Since AH - AF, this 
means that the Fermi-surface section that determines 
the vector q in dysprosium is an ellipsoid (or close to 
it). Next, i t  follows from experimenpv5 that the rela- 
tive discontinuity i s  W/Hf = 8%. From (191, (20), and 
(34) we have 

where m* is the effective mass  of the "nonresonant" 
electrons and 3,= (2m*6)1'2. Assuming 23, to be of the 
order of the dimensions of the Brillouin zone for the 
hcp lattice of dysprosium, and also that m*-m,, we get 
A F / i f  = 0.06. The agreement with experiment can be 
regarded a s  satisfactory. A detailed comparison calls 
for a much more thorough investigation of the Fermi 
surfaces of f-metals, and in particular for a direct 
determination of the Fermi-surface section responsible 
for the formation of the helicoidal structure. 

It seems to us that the foregoing analysis demon- 
s t ra tes  the feasibility of investigating the role of the 
conduction electrons in the magnetic properties of 
metals by studying their electron properties. This 
makes it possible to separate those electron groups that 
a re  sensitive to the magnetic structure of the metal. 

In conclusion, we take the opportunity to thank I. E. 
~ z ~ a l o s h i n s k i r ,  I. M. Lifshitz, and V. S. Shpinelt fo r  a 
discussion of the results of the work. 

"Hyperfine fields a re  produced at  nuclei not by all the con-' 
duc tion electrons , but only by the s electrons. 

2, Were we to use a representation in which the matrix 3, is  
diagonal rather than $#, then the eigenfunctions obtained by 
us for the operator (2) a t  q =  0 would g~ into the states (!) and 
(i). 
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