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The renormalization group method is used to obtain the properties of a phase transition in the continual 
Potts model with arbitrary number of components s. It is shown that at s = 3, in the three-dimensional 
model, both a first-order and a second-order phase transition are possible, and the critical exponents y 
and q are calculated. It is established that the scaling properties of the model at s = 1 (the percolation 
problem) are different in principle than at s = 3. At s> 3 only a first-order phase transition is possible. 
The results are compared with the experimental data for physical systems in which the phase transitions 
are described by the Potts model, as well as with the results of numerical calculations for this model on a 
lattice. 

PACS numbers: 05.70.Fl1, 64.60.Fr 

INTRODUCTION the susceptibility of a disordered phase in an Ising mod- 
e l  with spin J =  1 in the presence of a biquadratic inter- 

In 1952, Potts analyzed the properties of a generali- action, found that the biquadratic exchange parameter 
zation of the Ising model.' In the Potts model (hereafter a t  which.this model becomes equivalent to the three- 
called the S model), each lattice site can be in one of s component Potts model l ies outside the region which 
states, and the energy of interactionbetweenneighboring they found for continuous transitions, although it does 
sites is equal to E,  if their states a r e  identical, and &, l ie close to the boundaries of this region. The con- 
>&, if their states a re  different." Obviously, a t  suf- clusion that the phase transition a t  s >2 will be of first  
ficiently low temperatures, a phase transition takes order was reached also by Kim and Joseph, who in- 
place in such a system to an ordered state "enriched" vestigated directly the dependence of the order param- 
with one of the s components. For the S model on a e ter  of the S model on the temperature.'' The causes 
quadratic lattice, it was established in Refs. 1 and 2 of such discrepancies between the conclusions con- 
that there exists a duality transformation of the par- cerning the character of the phase transitions of the 
tition function, and this made it possible to find T ,  of three-dimensional S model a r e  apparently the following: 
the phase transition a t  any2) value of s: First, the inability to determine T, with sufficient ac- 

The question of the order of this phase transition was 
solved by Baxter in 1973.4 He established the connec- 
tion between the free energy of the S model near T, 
and the free energy of the Rys F model for antiferro- 
e l e c t r i q 5  which was previously solved exactly by 
Lieb? and was able to show rigorously that the phase 
transition is continuous a t  s 5 4. The assumption of the 
continuity of the phase transition in the two-dimensional 
three-component Potts model was advanced inanearlier 
paper by Kihara and co-workers7 on the basis of an 
analysis of the low-temperature expansions of the par- 
tition function, and later by Straley and ~ i s h e r , 8  who 
generalized their results to include the case of an ex- 
ternal field. Baxter proved the validity of this assump- 
tion and his paper stimulated further investigations of 
the character of the phase transition in the three-di- 
mensional S model. 

Attempts to obtain information on the order of the 
phase transition by numerical methods led, however, 

curacy (the value obtained by reduction of the series 
for the heat capacity, susceptibility, and order pa- 
rameter "floats" quitewidely for the various series). 
Second, the expansion coefficients have a rather ir- 
regular behavior," so  that when the number of cal- 
culated terms is small it is difficult to separate the 
contribution due to the physical singularity a t  T = T, 
from the background of the unphysical singularities. 
Thus, the numerical calculations lead to no definite 
conclusions concerning the order of the phase transi- 
tion in the three-dimensional S model. 

Besides the numerical calculations for the S model 
on a lattice, field-theory methods were used also to 
study the critical behavior of the continuous analog of 
the model. Golner,14 using Wilson's approximate re- 
cursion formulas, performed computer calculations 
for the three-component model. He observed no stable 
fixed point for the effective Hamiltonian, and concluded 
that the phase transition will be of f i rs t  order. Since 
the Hamiltonian of the continual S model contains a 
triple vertex I?,, it was stated in a number of papers 
(see, e.g., Refs. 15 and 16) that the phase transition 

to conflicting results. Thus, straleya and Enting,l" is continuous only if r, decreases a s  T - T, more ra- 
who investigated the three-component model on cubic pidly than the quadruple vertex r4. Calculations of the 
and fcc lattices by the method of expansions in series critical dimensionality near the "Heisenberg" fixed 
in the temperature and field, concluded that the phase point by the &-expansion method ( E = 4 - d )  have shown, 
transition is continuous. At the same time, Ditzian however, that the triple vertex perturbs substantially 
and Oitman,' who calculated six terms of the series for  the critical behavior of the system. None the less, a s  
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we shall show in detail below (see also Ref. 171, this 
still does not lead to the unequivocal conclusion that 
the phase transition must be of f i rs t  order. Examples 
of physical systems in which the phase transition is 
described by a continual S model will be cited a t  the 
end of the paper in the discussion of the result. 

The S model is of interest also because its analytic 
properties describe, a s  s - 1, a continuous phase tran- 
sition in the problem of the percolation-theory bonds,'' 
which has many physical applications (see the review1'). 
This analogy makes it possible to construct a micro- 
scopic similarity theory for the percolation problem via 
&-continuation from six-dimensional spacez0 o r  directly 
for a three-dimensional space with only one triple ver- 
tex taken into account.z1 We do not know, however, how 
the results obtained in this manner a r e  altered when 
account is taken of the quadruple vertex, with respect 
to which a "Gaussian" fixed point in three-dimensional 
space is also unstable. 

In this paper we investigate by the field renormaliza- 
tion group method the critical behavior of the continual 
S model a t  arbitrary values of s. We a r e  interested 
primarily in two questions: 1) What is the order of the 
phase transition a t  s >2?  2) Is allowance for one triple 
vertex sufficient for the construction of a microscopic 
similarity theory in the percolation problem (s = l ) ?  
~ a ~ r d u s k f i ~ ~  has also considered recently, by the field 
renormalization group, the three-component case, but 
his paper contains e r ro r s  that lead both to incorrect 
numerical results and to a qualitatively incorrect in- 
terpretation of the results. The case s = 3 is therefore 
analyzed below anew. 

1. CONTINUAL S MODEL. CONDITIONS FOR 
CONTINUITY OF PHASE TRANSITION 

For the continual S model we can introduce a field 
Hamiltonian in full analogy with Wilson's approach to 
the Ising model.16 Namely, the s allowed states of the 
lattice model must be se t  in correspondence with a 
potential that has s minima, and since all these s states 
a re  equivalent, the field Hamiltonian *must be invariant 
to the symmetry group of a hypertetrahedron with s 
vertices in (s - 1)-dimensional space. To take into ac- 
count this invariance of X a t  arbitrary s, a s  well a s  to 
simplify the calculations, it is convenient to introduce 
s vectors eQ(a  = 1, . . . , s), directed into the vertices 
of the hypertetrahedron, such that 

t - L  

Each of these vectors describes one of the s permissi- 
ble states a t  the site. Using em, we can represent the 
S-model Hamiltonian in the form16 

Here 
a,,, = C eane,"ehQ, 

a r e  the invariants of third and fourth order of the sym- 
metry group of the hypertetrahadron, cp, i s  an  (s - 1)- 
component real  field, p2 =x,cp;, and r, i s  a linear func- 
tion of the temperature. 

We discuss now the possibility of the existence of a 
continuous phase transition in the S model. It i s  obvious 
that expansion of the thermodynamic potential in 
powers of the average order parameter contains odd 
terms and takes the form 

where r ( T d  = 0, r,(O) a r e  irreducible vertex parts a t  
zero momenta, (Q) i s  the equilibrium value of the order 
parameter in the transition into one of the s ordered 
phases, and it i s  assumed that C > 0. The potential @ 
has, besides the obvious minimum a t  (Q) = 0, also a 
relative minimum at  (Q) = Q*--B/c. If this minimum 
"deepens" with decreasing temperature, then a first- 
order phase transition will take place a t  a certain tem- 
perature T, >To. Clearly, this occurs in fact if the 
fluctuations in the system a r e  small and the phase 
transition takes place within the region where the Lan- 
dau theory i s  valid, when the vertices r,(O) a t  n > 2 
can be regarded as independent of temperature. The 
situation changes if the phase transition takes place 
in the strong-fluctuation region. The vertices r,(O) 
a r e  then strongly renormalized and have a power-law 
dependence on the reciprocal correlation radius x ,  and 
then the dimensionality of I',(O), as will be shown be- 
low, is such that this vertex does not vanish compared 
with r,(O), and remains essential in the critical region, 
where 

Here q$ and g,* are  the coordinates of the fixed point 
of the renormalization-group equations for the Hamil- 
tonian (2). Substituting the asymptotic expressions (5) 
in expression (4) for 9 and recognizing that the re-  
ciprocal susceptibility i s  r -  x '-", we get 

We see  that the phase transition i s  continuous if i t  is .  
assumed that (Q) -- qx(1+ ' )12  and the following condition 
i s  satisfied 

I I 1 - + - gs'q + - gt'q2 + . . . > 0. 
2! 3! 4 !  

In this case the critical fluctuations "smear out? the 
minimum of + at  (Q) = Q* s o  strongly that no phase 
transition occurs all the way to x = 0. 

Thus, the phase transition in the S model can be con- 
tinuous if there exists a gauge-invariant solution (5) 
for which the condition (7) i s  satisfied. We note that 
the condition (7) limits substantially the region of ad- 
missible values of g,* and g,*, so that the statement 
made in Ref. 22 that the very presence of fixed points 
of the renormalization-group equations already ensures 
the existence of a second-order phase transition in the 
three-component Potts model is  incorrect. 
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2. GAUGE-INVARIANT PROPERTIES OF THE S 
MODEL 

It i s  easy to show within the framework of the c -ex- 
pansion procedure (& = 4 - d << 1) that the triple vertex 
r,(0) greatly influences the critical behavior of the S 
model. We calculate to this end the gauge dimen- 
sionality of r3(0) near the fixed point r4(0) = r,t. It 
is convenient to illustrate the calculation using a s  an 
example the three-component model, where the stable 
fixed point i s  isotropic and I't is given by 

The behavior of r, = r3(0) a t  r: << I?, x ' i s  described by 
the normalization-group equation linearized in I?, 

where the wavy line means differentiation with respect 
to x 2  and the vertex r4(0) must be replacedby its asymp- 
totic form (8). The solution of (9) i s  then 

Substituting this solution in (4) we see that the term 
r,(OXQ), decreases with temperature more slowly than 
x2-"Q)', and consequently the relative contribution of 
I?, in the critical region increases. It can be similarly 
verified that at  s > 3 the fixed points for which r,+ = 0 
a r e  also unstable with respect to I?, (Ref. 16). This in- 
stability, however, still does not mean thephasetransi- 
tion must be of first  order, since expression (10) is  
valid only a t  small values l": << r 4 x  '. Therefore, if a 
fixed point exists such that (g;)' >>g,*, then the 
asymptotic form of r, i s  (5) and not (lo), and if the con- 
dition (7) is  satisfied a second-order phase transition 
is  possible. 

The possible existence of such a phase transition i s  
indirectly indicated by the presence of a fixed point 
when account is taken of the renormalization of one 
vertex I', (without I?,). The equation of the renorma- 
lization group for the invariant charge g3- X ( * - ~ + ~ ' ) ' ~ ~ , ( O )  
takes in the lowest order in & the form 

- -- 6-d-31 g,  + ( s - 3 ) g , J ,  t=-ln z', 
4 

where q=q(&). It has a nontrivial fixed point: 

Generally speaking, Eq. (11) is  correct only a t  6 - d 
= E << 1, for in this case the remaining vertices in the 
critical region a r e  negligible and we can confine our- 
selves to the lowest-order approximation in the re- 
normalization group, by virtue of the smallness of g,*. 
We note, however, that the fixed point a t  s = 3 is  pre- 
served upon continuation into three-dimensional space 

and in the next order in E. '~  However, the solution (12) 
at s = 3 i s  unsatisfactory from the physical point of view, 
since the condition (7) is obviously not satisfied when 
r4 is  discarded, and the model becomes unstable to 
precipitation of a condensate. At the same time, a s  
s - 1 (the percolation problem), the solution (12) i s  
perfectly acceptable, for in this case the order pa- 
rameter (Q) has the meaning of the probability of the 
existence of an infinite cluster, and consequently (Q) 
3 0 and the minimum of 3 corresponds to (Q) * = 0, so 
that condition (7) drops out. 

When a microscopic similarity theory is constructed 
for the percolation problem it i s  important to know 
whether the solution (12) changes qualitatively on going 
to d =  3, owing to the presence of the vertex r4, which 
usually determines the critical behavior of the system 
a t  d c 4. Whether l?, is significant o r  not a t  the critical 
point determines, for  example, the form of the equation 
of state near the percolation threshold. The role of r4 
can be explained by calculating its anomalous dimen- 
sionality in the "non-Gaussian" basis (12) a t  & = 6 - d 
<< 1. This i s  technically somewhat more complicated 
than the calculation of r, near the "Heisenberg" fixed 
point (8), since it i s  necessary to renormalize simul- 
taneously four operators Ai having the same dimen- 
sionality: 

The renormalization factors At for the multiplicatively 
renormalizable parts a r e  not independent. We must 
therefore introduce a nondiagonal renormalization 
matrix Atk : 

Here rf) and r,,' a re  respectively the renormalized 
and unrenormalized four-point vertices containing a s  
an insert the operator At, and z is the renormalization 
constant of the Green's function. In the critical region, 
the vertices a re  subject to a matrix (since zik is 
not diagonal) renormalization-group equation, so that 
the power-law asymptotic form is possessed not by the 
r ~ ' t h e m s e l v e s ,  but by their linear combinations 
(scaling fields) r(,fl, which diagonalize the renormali- 
zation-group equations: 

Since the four-point diagram r4 is made up of diagrams 
that contain only r,* (12) (without the Ai insert) and is 
proportional to the increments of the type 
Scp4 and Fq4 to the Hamiltonian do not influence the 
gauge-invariant behavior that is determined by the 
triple vertex I?,+ alone if 

The scheme for  calculating the anomalous dimension- 
alities hi is described in detail in Ref. 24, and we pre- 
sent here only the result: As s - 1, all Xi < 0 even a s  
&--3; the condition (15) is satisfied, and consequently 
the fixed point (12) can actually describe the scale in- 
variant behavior in the phase transition of the percola- 
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tion problem. It follows therefore than an equation of 
state of the "linear model" type i s  valid near the per- 
colation threshold (at least within the framework of the 
t-expansion-for details see Ref. 17). At s =2 we have 
A+ = 0 and s > 2 we have A+(s) > 0, so that to study the 
critical behavior of the S model in this case we must 
consider the evolution, with temperature, of the vertex 
parts of the operators S2q3, Sq4, and Fq4 jointly. 

This conclusion, obtained by calculating the dimen- 
sionality of r4 in a hypothetical (6 - &)-dimensional 
space, agrees with the natural physical requirement for 
the need of taking r, into account s > 2 if the stability 

gram prior to differentiation with respect to xZ) are 
expressed in terms of the I' function and are equal to 

A change to dimensionless invariant charges 

causes Eqs. (17) to take the form" 

ag 6-d-sq 
-..-=- 

at 2 
g-3g[2u+3(s-2)f l+2(s-3)& 

condition (7) i s  to be satisfied. We shall present below 
arguments that are  not connected with perturbation 
theory and confirm that the gauge-invariant properties 
of the S model are substantially different at s - 1 and 
s>2 .  

3. RENORMALIZATION-GROUP EQUATIONS FOR 
THIRD AND FOURTH ORDER VERTICES 

To analyze the critical behavior of the S model at 
s 3 2, we write down the system of renormalization 
group equations for the renormalized vertices 

We have 

Usually the solution of the renormalization-group 
equations provides a qualitatively true picture of the 
phase transition even in the lowest approximation. 
Without claiming numerical accuracy of the results, we 
assume nevertheless that in the S model, too, the 
phase transitions can be satisfactorily described with 
only the single-loop diagrams cited in (17). Using the 
definitions (1)-(3), we obtain for the combinatorial 
factors of diagrams a to e the values 3/2, 1, 312, 6, 
and 3, and for the corresponding tensor contractions 

The derivatives of the integrals aZ, /an2 in the system 
(17) (k i s  the number of Green's functions in the dia- 

af - 4-d-24 --- 3 
f-3 [2ui  + - ( I - 2 ) f  ] + 2 g [ 2 ~ + 3 ( r 3 ) f ] - ( r - I ) D ~ .  

at 2 2 

(20) 

Here t = -Inn2, D = 2(8 - d)/3(6 - d) and the function dg) 
i s  given by 

q (g) ='Is (s-2)  g. (21) 

In accord with the conclusion of Sec. 1, the investigation 
of the character of the phase transition calls for a de- 
termination of the fixed points of the system (20) and for 
checking the condition (7) for these points. This proce- 
dure simplifies greatly at s = 2 and s = 3, when the sym- 
metry of the model admits of the existence of only one 
fourth-order invariant. In terms of the contractions 
of the vectors ea, this symmetry requirement manifests 
itself in the fact that we have St ,, = 2Ft ,, at s = 2 and 
S tRr  =(9/2)Ft,,, at s =3. Therefore for the case s =2 the 
equation for the only fourth-order coupling constant 
X = u + f we obtain, adding the last two equations of the 
system (20), 

We see that the charge g drops out of Eq. (22), which 
is  the renormalization-group equation for the continual 
Ising model. It i s  clear that this property i s  preserved 
in the higher orders of perturbation theory, since it i s  
the consequence of symmetry: they hypertetrahedron 
group degenerates at s =2 into the inversion group S,, 
which has no odd invariants. From Dyson's equation 
for the mass operator it follows that the charge g 
makes no contribution to the renormalization of the 
 ree en' s function. 

Thus, at s =2  the triple vertex has no effect whatever 
on the behavior of real physical quantities, and this 
behavior i s  determined only by the stability of the finite 
point of Eq. (22). It i s  obvious from (22) that r,* -x4-' 
at s =2, and consequently [cf. (16)] the result that 
X+(2) = 0, obtained in Sec. 2 by perturbation theory in 
hypothetical (6 - &)-dimensional space, i s  in fact not 
connected with perturbation and i s  exact. A discussion 
of the generally trivial case s = 2 was useful to us for a 
comparison of the scaling properties of the S model a s  
s - 1 and at s > 2. As will be shown below, at s =3  the 
renormalization group equation have fixed points with 
r,+ +O and r,t +0, therefore the conclusion in Sec. 2 that 
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&(3) > 0 is confirmed. It i s  natural to assume that on 
the segment [I, 31 the function X + ( s )  i s  mon~tonic.~) 
Then X+(s) reverses sign at s =2 and i s  negative a s  
s - 1. The condition (15) i s  then satisfied, and conse- 
quently the similarity properties of the percolation 
problem are determined only by the triple vertex. 

In the case s =3, the system (20) again reduces to 
two equations for g and L = u + (3/2)f (L is  the invariant 
charge of the only (isotropic) fourth-order vertex): 

Renormalization-group equations at s =3  were de- 
rived also by ~ a ~ r u d s k G . ~ ~  Unfortunately, the values 
of the combinatorial factors indicated by him for di- 
agrams d and e [see (17)] are smaller than the true ones 
by factors 2 and 6, respectively, and this affects the 
numerical results in the determination of the fixed 
points and the critical exponent y of the susceptibility. 
An additional difference between the system (23) ~d 
the renormalization group equations of Zaprudskii is 
that in (23) account is taken of the contribution due to 
the renormalization of the Green's function, neglected 
in Ref. 22. The system (23) has besides the stable 
"Gaussian" (see Ref. 10) and "Heisenberg" fixed points 
with g* = O  also two other fixed points, A+ and A-, whose 
coordinates are real at d <d,= 4.00: 

The fixed pointA, turns out to be asaddle, andA- a 
stable focus. In our first-order approximation in the 
renormalization group, the condition (7) reduces to the 
absence of real roots of the quadratic equation and takes 
the form 

g-cZ7l tr ,  (25) 

Both fixed points A, and A- land in this case in a region 
of values of g and L which is free of the appearance of a 
condensate. 

The phase trajectories of the system (23) (at d=3) is 
shown in the figure. The line 1-0 corresponds to the 
condition (25), and in our approximate a first-order 
phase transition into the ordered phase takes place on 
it. The phase trajectory 2-0, which passes through the 
fixed point A,, divides the phase plane into two parts; 
the trajectories from the region 1-0-2 to off go the line 
1-0 and a first-order phase transition takes place, 
while in the region 2-0-L they tend to the fixed point 
A- and the phase transition is of second order. Using 
the Ward identity for the Green's function we can easily 
express the susceptibility exponent corresponding to the 
fixed point A- in terms of grand Lf :  

E(g-*, L-.) -1-7-' 

In three-dimensional space we get 5 =0.25 andy =1.33. 
Substituting g =gf in (21), we get 17 =0.07. 

We discuss now the connection between the foregoing 
results for the continual three-component model and i ts  
initial lattice version. The lattice model can be repre- 
sented with the aid of functional integration in the form 
of a field theory with a nonpolynomial interaction poten- 
tial in which all the nonrenormalized constants are rig- 
orously connected with one an~ the r .~ '  We do not know 
whether we can confine ourselves in the description of 
a phase transition in the lattice model to the expansion 
terms written out in (21, but if the Hamiltonian (2) can 
be used for this purpose, then it will correspond to the 
lattice model only at a definite relation between the val- 
ues of X,, u,, and f,. Therefore the kinetic behavior of 
the lattice model will be described by some single phase 
trajectory of the system (23). 

Our value y = 1.33 is much larger than the y = 0.9 - 1.0 
obtained from numerical calculations for the lattice 
modeL6' 91'3125 of course, it is perfectly possible that 
this discrepancy is due to the excessively low accuracy 
of our lower-bound renormalization-group approxi- 
mation. However, a study of the phase diagram of the 
solutions of (23) (see the figure) shows that the discrep- 
ancy can be due to special properties of the model it- 
self. 

We note first that the fixed point A_ is a focus, and 
therefore oscillating additions to the scaling appear. 
Although they decrease as  T - T,, they can hinder the 
reduction of the temperature-field expansions by, say, 
the Pad6 method. Second, the phase trajectory corres- 
ponding to the lattice model can pass in the region 1-0 
-2, but somehow close to the fixed point A,. Then, 
even if  a first-order phase transition takes place, the 
behavior of the thermodynamic quantities near T, willbe 
describd by the effective critical exponents correspond- 
ing to this fixed point. Calculation yields y =0.6 for the 
fixed point A,. This, too, is quite far from the values 
(given in Refs. 9, 13, and 25); nevertheless, both cited 
causes of the discrepancy seem worthy of attention. 

We note that the phase diagram given in Ref. 22 has 
a separatrix that passes through a "Heisenberg" fixed 
point and a fixed point of type A,, so  that as a result 
there exists a region of small values of the coupling 
constant of the quadrupole vertex, for which the phase 
transition is of first order no matter how small coupling 
constant of the triple vertex. This led in Ref. 22 to the 
conclusion that the results of Golner's computer calcu- 
l a t i on~ , '~  which revealed a first-order phase transition, 
can be attributed to the choice of too small a value of 
the coupling constant for the first-order term in the 
nonrenormalized Hamiltonian. In fact, however, there 
is no such separatrix (even for the renormalization- 
group equations used in Ref. 22), and the phase diagram 
is of first-order for the values of the nonrenormalized 
coupling constants in the region 1-0-2 (see the figure), 
and the transition to the disordered phase, in our re- 
normalization-group approximation, follows the line 
1-0 and not L-0 as indicated in Ref. 22. Therefore 
Golner's result can be due either to the insufficiently 
small triple coupling constant at the chosen quadruple 
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FIG. 1. Phase diagram of 
the system of renormaliza- 
tion-group equations (23). 
In the shaded area the 
symmetrical (degenerate) 
state is thermodynamically 
unprofitable. 

one, o r  to the fact that the approximate integral form- 
ula which he used does not describe well enough the 
critical behavior of the S model. 

We consider now the properties of the phase tran- 
sition in the S model at s > 3. Since the fixed points of 
the system (20) with g* = O  a re  unstable relative to 
small g,16 the second-order phase transition can be 
due only to the presence of a fixed point with g* zO. At 
s > 3  the fourth-order invariants in the S model a re  in- 
dependent, and therefore the search for such fixed 
points by making twp substitutions in (20) reduces to 
solution of a fourth-order equation for the value off* 
at the sought fixed point. Inasmuch a s  this equation is 
very cumbersome for  arbitrary s > 3, we write down 
first  the equation for s =4, and also put immediately 
d =3: 

This equation has no real roots,7) and consequently 
there a re  no fixed points with g*+O for s =4.  By virtue 
of the instability of the remaining fixed points (with 
g* =0) this means that in the three-dimensional four- 
component S model only a first-order phase transition 
is possible. We have ascertained in similar fashion 
that at s = 5  and 6 there a re  likewise no real  fixed points 
with g* zO. At large values of s the results of the aver- 
age-field theory a re  valid (it predicts a first-order 
phase transition2'), s o  that it is natural to assume that 
the phase transition will be of f i rs t  order also at s>6. 

The fact that fixed points with g* z 0  exist in the case 
s = 3  but not at s >3, while obtained by solving the re- 
normalization group equations in the lowest approxima- 
tion, does not seem fortuitous to us.. It is apparently 
connected with the various symmetry properties of the 
S model at s = 3  and s > 3 .  In fact, i t  is easy to verify 
that even a t  s =3 there a re  no real values of u*, f *, 
and g* # 0 such that the right hand sides of all three 
equations in (20) vanish, i.e., in the space of the three 
variables u, f, and g there a re  no fixed points with 
g* zO either at s >3 or  at s =3. At s =3, however, the 
group C, admits of a smaller number invariants than 
the permutation group at s > 3 ,  and this leads to de- 
generacy of the system (20) into the system (23) and 
makes the space of the renormalization-group variables 
two-dimensional. We see that i t  i s  not simply the 
parametric dependence of the coefficients in the re- 
normalization group equations on s, but certain dis- 

tinct symmetry properties of the three component model 
which cause the character of the phase transitions in 
this model to be different than in models with s >3. 

CONCLUSION 
A large class of systems for which the.magnetic and 

structural phase transitions a re  described by the con- 
tinual three-component S model i s  made up of crystals 
with cubic sy-metry and three easy axes. In particular, 
this model is applicable to a number of compounds 
having a general structure A-15, such as 
h%,Sn, Nb3A1, V,Si, V2Si, and others, in which a marten- 
sitic phase transition from the cubic to the tetragonal 
phase takes place Experiment has revealed in the 
properties of these crystals, near the phase transition, 
strong temperature anomalies that point to a proximity 
of the phase transition to a continuous one.21 The pre- 
dictions of the Landau theory can then be reconciled 
with the experimental temperature dependences only 
by assigning to the coefficient of the cubic term of the 
free-energy expansion a value much lower than ob- 
tained from estimates based on microscopic considera- 
tions. Using the results obtained by us  above, that 
continuous o r  near-continuous phase transition in 
systems having the symmetry of the three-component 
S model are  possible, i t  is natural to assume that the 
smallness of y,, which is common to the different 
compounds, is due to strong interaction of the fluctua- 
tions that lead, by virtue of the special symmetry 
properties of the three-component S model, to an ef- 
fective decrease of y, in the critical region.') 

Arguments have been advancedz8 that the phase transi- 
tion in cubic ferromagnets (Fe, PrAl,, NdAl,, and 
others) to which a small magnetic field (of the order 
of the anisotropy field) is applied along the [ I l l ]  
diagonal, is also described by the three-component S 
model. The question of the order of the phase transi- 
tion in this model is of great interest and therefore, 
in view of the indication2' that this model i s  physically 
realizable in cubic crystals, an attempt was made2$ 
to determine a number of phase transitions experi- 
mentally. To this end, the EPR method was used to 
investigate the properties of the structural phase tran- 
sition from the trigonal ( R ~ c )  phase into the tetragonal 
(I4/mcm) in SrTiO, under pressure applied in the 
[lll] direction. It was found that the phase transition 
is of f i rs t  order, but owing to the strong fluctuations 
the exponent of the discontinuity of the order para- 
meter differs from the Landau value and is in fair 
agreement with the prediction of the renormalization- 
group method. Thus, the existence of a region of the - -  - 

type 1-0-2 in the three-component S model can be 
regarded as experimentally proved. Unfortunately, 
as is clear from Ref. 29 itself, this method cannot be 
used to study the critical behavior of the S model a t  
very small values of the triple coupling constant, for 
in this case the phase transition occurs in the vicinity 
of a bicritical point on the phase diagram, where the 
effective Hamiltonian is of "Heisenberg" rather than 
S-model form. The question whether the phase transi- 
tion becomes continuous at small unrenormalized 
values of the triple vertex remains open and should 
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be experimentally investigated. 

In addition to those mentioned, there are also other 
physical systems in which the phase transition is des- 
cribed by. the S model, for  example the phase transition 
in  H O S ~ . ~ '  A common feature of these phase transitions 
is that they are close to continuous. We have shown in 
this paper that this behavior can be explained within 
the framework of the renormalization-group method. 
We have also verified that a microscopic similarity 
theory can be constructed for the percolation problem 
by taking into account only one triple vertex. Inas- 
much as in this case we have in the first-order re- 
normalization-group approximation A r p  +y =2, the 
equation of state for dilute ferromagnets at low 
temperatures near the percolation threshold can be 
expressed in a form similar to the "linear model." 
This form of the equation of state makes it possible 
to obtain expressions for the susceptibility and the 
heat capacity as functions of the magnetic field and 
the concentration, s o  that these formulas can be 
verified experimentally. We emphasize in conclusion 
that while it is, of course, difficult to assess the 
reliability of numerical results  of the solution of the 
renormalization-group equations in f irst-order ap- 
proximation, the qualitative features of the solution, 
such as the appearance of fixed points with # O  at 
s =3 and their absence at s >3, as well as the funda- 
mental difference between the scaling properties of 
similarity theory for the percolation problem from the 
properties of the three-component model, a r e  ap- 
parently valid by virtue of their symmetry origin. 

I am grateful to S. L. Ginzburg, A. I. Sokolov, and 
B. N. Shalaev for numerous useful discussions on the 
questions touched upon here. I am also indebted to 
E. I. Kats, I. F. Lyuksyutov, and V. M. Filev for a dis- 
cussion of the results. 

"A model with four states per site, including the case s =4 
of the Potts model, was investigated even earlier by Ashkin 
and Teller. 

''T, was later obtained also for triangular and hexagonal lat- 
tices. 

%ee, e.g., the results of the calculation of the critical 
isotherm in Ref. 13. 

')In fact, tensor contractions for any diagram of the S model 
are monotmic functions of s, and we think it most unlikely 
that the exact function &(s) would have a minimum at s = 2. 
Formula 06) obtained by perturbation theory agrees with 
this point of view. 

analogy with the well known representation for the Ising 
model. 

6'It was found in Ref. 22 by the renormalization-group model 
that y = 1.1, and good agreement with the numerical calcula- 

tions was noted. Actually, however, there is no such 
agreement, and the reasons are explained in the text follm- 
ing Eqs. (23). 

')we have verified that there are none not only at d =  3 but 
also at all d <  6. The expressions for the coefficients as 
functions of d are  not given in the text, again because they 
are too cumbersome. 

8)The temperature of this phase transition is somewhat lower 
than the temperature of the superconducting phase transi- 
tion. 

''It is interesting to note that a value y = 0.86 was obtained 
experimentally for Nb,Sn; this is quite close to the numerical 
value for the lattice model. 

'R. B. Potts, Proc. Camb. Phil. Soc. 48, 106 0952). 
'5. Ashkin and E. Teller, Phys. Rev. 64, 178 0943). 
3 ~ .  Mittag and M. J. Stephen, J. Math. Phys. 12, 441 
(ign). 

'R. J. Baxter, J. Phys. C 6, L554 (1973). 
5 ~ .  Rys, Helv. Phys. Acta 36, 537 0963). 
6 ~ .  H. Lieb, Phys. Rev. Lett. 18, 1046 0967). 
'T. Kihara, Y. Midnmo, and T. Shizume, J. Phys. Soc. Jpn. 
9, 681 0954). 

'J. P. Straley and M. E. Fisher, J. Phys. A 6, 1310 (1973). 
'J. P. Straley, J. Phys. A 7, 2173 6974). 
''1. G. Enting, J. Phys. A 7, 1617 (1974). 
"R. V. Ditzian and J. Oitman, J. Phys. A 7, L61 (1974). 
I'D. Kim and R. I. Joseph, J. Phys. A 8, 891 (1975). 
131. G. Enting, Phys. Rev. B 8, 3419 6973). 
"G. R. Golner, Phys. Rev. B 8, 3419 0973). 
'%. J. Amit and A. Shcherbakov, J. Phys. C 7, L96 0974). 
'k. K. P. Zia and D. J. Wallace, J. Phys. A 8, 1495 (1975). 
1 7 ~ .  L. ~orzhenevskiy, Fiz. Tverd. Tela  enin in grad) 20, 
359 (1978) [Sov. Phys. Solid State 20, 207 (1978)l. 

lap. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn. 
Suppl. 26, 11 (;969). 

"B. I. Shklovskii and A. L. i f ros ,  Usp. Fiz. Nauk 117, 401 
(1975) [Sov. Phys. Usp. 18, 845 697511. 

'OA. B. Harris, T. C. Lubeneky, W. K. Holcomb, and C. 
Dasgupta, Phys. Rev. Lett. 35, 327 (1975). 

2 1 ~ .  L. Ginzburg, Zh. Eksp. Teor. Fiz. n, 1145 0976) 
[Sov. Phys. JET: 44, 599 (1976). 

"v. M. Zaprudakii, Zh. Eksp. Teor. Fiz. 73, 1174 (1977) 
[Sov. Phys. JETP 46, 621 Q977)I. 

2 3 ~ .  G. Priest and T. C. Lubensky, Phys. Rev. B 13, 4159 
(1976). 

'9. J. Amit, D. J. Wallace, and R. K. P. Zia, Phys. Rev. 
B 15, 4657 (1977). 

2 5 ~ .  W. Burkhardt , H. J. F. Knops, and M. den Nijs, J. 
Phys. A 9, L179 0976). 

2 6 ~ .  Mittag and M. J. Stephen, J. Phys. A 7, L109 (1974). 
''M. Weger and I. B. Gddberg, Solid State Phys. Advances 

in research and applications, ed. H. Ehrenreich [a. o. I, 
vol. 28, New York-London, Acad. Press, 1973, p. 2. 

'8D.  Mukamel, M. E. Fisher, and E. Domany, Phys. Rev. 
Lett. 37, 656 0976). 

2 9 ~ .  Aharony, K. A. Miiller, and W. Berlinger, Phys. Rev. 
Lett. 38, 33 (1977). 

'OD. Kim, Phys. Rev. B 12, 989 0975). 

Translated by J. G. Adashko 

750 Sov. Phys. JETP 48(4), Oct. 1978 


