
Fluctuations of 1 lead to a change of the macroscopic 
ground state: a static stochastic magnetic structure 
appears, which can be investigated by electron-optical 
methods. Use of such supplementary methods can 
appreciably increase the informational content of the 
SWS method. 

The greatest difficulty of the theory of SWS lies in 
allowance for the magnetic dipole fields. This prob- 
lem has so  far been solved in analytical form only for 
fluctuations of a;2 for fluctuations of f l  and 1, the shift 
of the uniform FMR frequency has been calculated. 

Expressions obtained without allowance for the mag- 
netic dipole fields a re  useful only for qualitative in- 
terpretation of experiment. 

"AS has already beenmentioned,' fluctuations of P and 1 de- 
scribe not only inhomogeneity of the crystallographic aniso- 
tropy, but also any inhomogeneities whose effect can be 
approximately described by a term P ( ~ 1 ) ~  in the phenomeno- 

logical Hamiltonian (internal elastic s t resses ,  inclusions, 
etc.). 
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An exact solution is obtained of the problem of the density of one-electron states for two models of a 
disordered semiconductor that is described by a system consisting of two first-order equations and 
corresponding to the two-band approximation. In the first model, where the disorder is produced by a 
random impurity potential of a definite type, the state density has no singularities when the gap collapses. 
In the second model, where the fluctuation parameter is the gap width, the state density can have a 
singularity at the center of the forbidden band, when the fluctuations of the gap are large enough. 
Asymptotic formulas are obtained for the state densities in characteristic sections of the spectrum and at 
the most interesting values of the parameters. 

PACS numbers: 71.20. + c 

INTRODUCTION 

The interest presently shown in the spectra of one- 
dimensional disordered systems, with allowance for  the 
band structure, is natural. Up to now, the equivalent- 
mass approximation was used most treatments of the 
electron spectrum o r  of the equivalent concept of the 
structure of the unperturbed (ordered) crystal for other 
types of excitations (see, e.g., Refs. 1-5 and the biblio- 
graphies therein). Yet situations exist when allowance 
for the periodicity of the initial ordered system, mean- 
ing also the band structure of the bare spectrum, is im- 
portant. This problem arises,  in particular, when an 
attempt is made to explain some observed singularities 
of physical quantities (for example, the low-temper- 

ature behavior of the magnetic susceptibility6) in quasi- 
one-dimensional compounds .'-' Since full allowance for 
the band structure entails great difficulties, it is nat- 
ural  to turn to the simplest case of two broad resolved 
bands with a narrow gap between them. In this case 
(see Ref. 10) the spectrum and the states of the quasi- 
particles in the vicinity of the gap in the presence of a 
random potential a re  described by a system of two 
first-order equations of the Dirac type. 

This paper consists of two parts. In the first  (Secs. 
1 and 2) we derive a number of relations that hold for 
an arbitrary random potential, and calculate the state 
density within the framework of the indicated equations 
for a model in which the potential is a sequence of rec- 
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tangular barriers of fixed height with an exponential 
distribution of the random lengths of the barriers and 
of the distances between them.lb In the second part we 
solve the analogous problem for a somewhat different 
model, in which the fluctuating parameter is the gap 
width. Such a model was considered in Ref. 8 for the 
case when the gap fluctuation is  Gaussian white noise. 

1. DERIVATION OF THE BASIC EQUATIONS 

1. The system of equations that define the electron 
spectrum takes in the considered approximation the 
formlo 

Here v is the impurity potential, E is the energy ' 

reckoned from the center of the gap, A is the half-width 
of the gap (measured in units of fzp/m, where in is the 
electron mass), 

n 
P - J ('IT L.. ( 2 )  " 

and u,,,(x) are the Bloch amplitudes in the upper and 
lower bands, respectively. 

A similarity transformation reduces the system (1) to 

Introducing in lieu of the complex vector rp two real 
vectors f and g in accord with the formulas8 

fl-Re((Pl+(P2), gl=-lm(p,+cp,), 
fr=Im(cp,--qt). g,=Re(p,-cp,), 

we obtain the following system of equations: 

for the function f, and an identical system for the func- 
tion g. This means that the state density of the initial 
problem (1) is equal to double the state density for (3). 
This system of equations will be considered on the seg- 
ment [ O , L ~  with zero boundary conditions for the com- 
ponent f,, followed by a transition to the limit as L --. 

We introduce in (f,, f,) space the polar coordinates 

and to define uniquely the phase shift cp(x) we must stip- 
ulate that it be a continuous function of x. From (3) we 
find that cp(x) satisfies the equation 

and the initial condition cp(0) =0, while the eigenvalues 
of the problem are determined with the aid of the re- 
lations 

cp(E, 15) =mn, (5) 

where In is an integer. 

Differentiation of (4) with respect to E and integration 
of the resultant linear equation show that a c p ( ~ , x ) / a ~ > O  
for any x>O. This fact, which is the main point of the 
described formalism, leads directly together with Eqs. 

(5) for the eigenvalues, to the formula 

where n,(E,, E) is the number of states per unit length 
in the interval [E,, E]. Going to the limit as L - .o in 
this formula and using the self-averaging of the limiting 
number of states, is., the fact that the limit 

n(Eo, E )  - lim nL(Eo, E )  
L - r  

is not random, we find that 

n (E,, E )  = lim 
( c p  (E,  L )  > - (cp(E0, L )  > 

I+- = nL 
(6) 

Replacing cp(E, L) in this expression by 

j @ E ( v ( x ) , v ( z ) ) ~ ~  
0 

and recognizing that as  x - .a the probability density 
PE(v, cp, x) tends to a stationary limit P,(v, cp), we 
get 

where (- .),, denotes averaging over the stationary dis- 
tribution PE(v, cp). 

We introduce now the probability density PE(@, x) re- 
ferred to the interval [0, n] of the phase at the point x: 

where 

is a periodic 6 function. Differentiating both sides of 
this equation with respect to x and using (4), we get 

where 

J=(Q.  5 ) = < 9  (cp(E, z ) - @ )  Q ) a ( v ( ~ ) ,  cp(x)) ) (10) 

is the probability flux, and the relation (9) itself is sim- 
ply the continuity equation and expresses its conserva- 
tion-constancy of the normalization of PE(cp ,x) with the 
"time" x: 

f Pa(#, z ) d @ - i .  
a 

As x - a, the flux JE(@, x) tends to its limiting value 
J(E), which is independent of both x (by virtue of the 
produced spatial homogeneity) and @ (according to Eq. 
(10): 

n l ( ~ ) = l i m J  ~ a ( @ , z ) d @ =  ( @ E ( v , ( P ) ) ( ~ .  
s* r 

This relation, together with (7), makes it possible to 
express n(E,, E) directly in terms of the stationary 
probability flux J(E): 

n(Ec, E )  = i ( E ) - J ( E o ) .  (11) 

Formulas (6) and (7) obtained above for the number of 
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states a re  not always the most convenient for  actual 
calculations, since the first  contains explicitly the op- 
eration of taking the limit, while the second calls for  
knowledge of the stationary probability density PE(v, cp) 
followed by calculations of integrals of the type 
Jdcpdv~,(v, cp)@,(v, cp). In addition, it follows from the 
definition of the probability flux (10) that 

Relations (11) and (12) lead to a formula simpler than 
(7) 

which makes it possible to calculate the number of 
states if the stationary distribution is known P,(v,cp) 
only at cp =O.  This is precisely the formula we shall 
use hereafter to obtain most results. 

2. We assume that the potential v(x) is given by 

where the random process s(x) is equal to zero o r  unity 
on intervals x, and x, having probability densities 
ailexp(-ai1x,), where i = O  o r  1. In this case the station- 
ary distribution 

satisfies the Fokker-Planck equation (see Ref. 11) 

where 

and satisfies in addition the conditions of n-periodicity 
and normalization 

-P.(o), C J dcpp. (rp)=i. 
.-O,1 0 

Before we proceed to solve (15), i t  will be useful to 
take into account some symmetry properties of the 
spectrum of the system (3) with the potential (14). It is 
easy to verify that each solution (f,, f,) of the system, 
corresponding to the realization s(x), the energy E ,  
the potential amplitude v,, and the boundary conditions 
fl I ,, , =0, corresponds to a solution (f,, f,) of the same 
system, corresponding either to a realization s(x), an 
energy -E and an amplitude -v,, o r  else to a realiza- 
tion 1 - s(x), an energy v, - E,  and an amplitude v, with 
boundary conditions f, 1 ,, = 0. 

Inasmuch a s  in the limit as L - WJ the spectrum does 
not depend on the form of the boundary conditions, the 
foregoing leads to the following symmetry relations for 
the limiting state density p(E, v,, a,, a,): 

p (E ,  U O ,  a,, a,) =p ( -E ,  -UO, a,, a,) =p (-E+v,, UO,  a,, a,). (17) 

It suffices therefore to find the number of states 
n(v0/2, E) for the case v,,> 0 and E> v0/2 (the hatched 
region in Fig. I), since the spectrum in the remaining 
region of the parameters (v,, E) can be easily obtained 
with the aid of relations (17). 

E 

FIG. 1. Equations of the 
straight lines 1) E = v d 2 ,  
2) E = v O - A ,  3 )  E = v O + A ,  
4 )  E = A .  

2. INVESTIGATION OF THE STATE DENSITY 

1. The procedure for solving (15) is quite standard, 
although somewhat cumbersome. We present therefore 
only the final formulas for the number df tes ts  
n(E,, E) o r  flux J(E) in various ranges of the energy of 
the amplitude of the potential (see Fig. 1). It is con- 
venient in this case to define the following functions: 

1 (("-""+A 1)" 
"(')= a,[ (E-vOs) 2 - 8 ' l m h  

arcctg 
E-v,s-A ctgcp 9 

1 ctg cp + ctg cp. I 
(18) 

Ts(rp)= Za,[ (E-uos)2-A'] '~~ In I ctg rp-Ctg 9.  . ' 

where 

A distinction must be made between the following 
cases: 

I. v, < 2 4  E < A. Under these conditions a gap exists 
in the spectrum of the system, n(v0/2, E) =O, since the 
amplitude of the potential i s  l e s s  than the width of the 
bare gap. 

11. IE-V,I<A,E>A. In this case we have 

where R(cp) = Q,(cp) + T1(cp), and the integration regions 
S ,  and S ,  are  indicated on Fig. 2. 

Interest attaches here primarily to  the behavior of the 
number of states in the case v, < 2 4 E - A  +O. It is easy 
to verify that the main contribution to S1(E) is made by 
the integral over the square p, < cp < n/2, n/2 < cp' < n - cp,, 
and the corresponding asymptotic form of n(v0/2, E) i s  

where the symbols for the special functions h e ~ e  and 
below a r e  the same as in the book of Gradshtein and 
~yzhik.', 

FIG. 2. The regions Si and 
Sz are  hatched horizontally 
and vertically, respec- 
tively. 
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We see thus that at vo<2A the spectrum of the system 
has a gap whose boundaries a re  the true fluctuation 
boundariesL13 with the exponential asymptotic form of 
n(v0/2, E) typical of these boundaries. In the limiting 
case v, - 2A - 0 the gap collapse, but the character of 
the asymptotic number of states in the vicinity of the 
point E = A remains the same a s  before: 

We note that this result can be obtained both from the- 
exact formula (19) at vo = 2 4  and a s  a result of taking 
the limit v, - 2 in (20). 

In. A< v0/2 < E < v, - A. Under these conditions we 
arrive at the formula 

where now R(cp) = Qo(cp) - Ql(cp). 

We see immediately that at the point E = v0/2, which 
is singled out by the symmetry properties of the spec- 
trum, no singularity appears in the number of states. 
It is meaningful, however, to examine n(v0/2, E) in the 
vicinity of this point, when the gap has just collapsed, 
i.e., at vo - 2A << A, E - v0/2 + 0. The main contribution 
is then due to the integral over the square r/2 < cp'< r, 
0 < cp < r/2. Introducing the symbol 

we obtain from (22) 

cn aoalA exp ( - ~ 1 ~ 1 2 6 )  
p - + o  m-- ( ) 86' ao+a, B : ( l / A  (a&,)":) 

where c =min(l/a,A, l/a,A), and Kl is a MacDonald 
function. We note that a s  6 -0 this formula is valid 
outside an exponentially small vicinity of the point 
E=vo/2, namely, at 

In addition, by virtue of the symmetry relations (I?), 
the state density to the left of E = v0/2 turn$ out to be 
different: 

C'X a,aln exp(-c1n/26) 
p - - 0  %-- ( ) 8 8  ao+a, X, ' ( l /A(ap.) 'h)  ' (24) 

Depending on the relation between c and c', the state 
density in the vicinity of the point v0/2 either remains 
practically unchanged (if 2c> c') or jumps very rapidly 
in the case 2c<ct, with a derivative ptA-6-'>>1. In 
either case, however, a s  6 -0 the state density is ex- 
ponentially small to the left and to the right of v0/2. 

In the limiting case a, =al - 0, v, - m v2,a0/4 = B, = const, 
the initial potential (14) becomes a Gaussian white 
noise. Making the indicated limiting transition in (22) 
and simultaneously shifting the energy by an amount 

equal to the average potential (E - v0/2 +E), we get 

where R(q) = Eqp + A sincp. 

In the limiting case E - 0 or  E - we have 
2s -I 

4 0 .  E )  = nE [ 0 j drp dt exp - sinq)  )] , E-0, 

IV. E > v, +A. In this case J(E) is determined by 
formula (22), in which, however, R(cp) = Q,((p)  + Ql(cp). 
It is of interest here to trace the asymptotic behavior of 
n(v0/2, E) a s  E - a. The corresponding formula is 

where 

2. A number of the asymptotic forms presented above 
a r e  valid not only for the model considered, but in a 
much larger class of cases. We shall discuss now some 
other more general methods of obtaining such asymp- 
totic forms. 

a) The first  i s  the asymptotic number of states a t  
high energies. This number can be obtained with the 
aid of (6), in which cp(E, L) is  obtained from Eq. (4) by 
using perturbation theory in the parameter A/(E - ( v ) ) .  
Carrying out this expansion accurate to terms of fourth 
order in the indicated small parameter, inclusive, we 
get 

1 
n ( E )  = - ( ( E  - <v>)'-A2)" A2B ( 0 )  

x ( I -  ( E -  <v))') ' 

where 

We call attention to the fact that Eq. (28) i s  even more 
accurate than the asymptotic form obtained from the 
exact solution. 

b) Next, the asymptotic form (20) of n(vd2, E) near 
the true fluctuation boundary can also be obtained with 
logarithmic accuracy by another method that can be 
used in a much more general situation. We have in 
mind the method proposed by Eggarter14 and developed 
further by us.13 The main point of this method is  the 
proof of a certain statement concerning the character 
of the behavior of the phase in the case when the energy 
i s  extremely close to the true fluctuation boundary. In 
the considered model2) this statement can be easily 
proved and i s  formulated a s  follows. 

Let 

Then, if 
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rp(0) <qcr = d 2 - - 1 ,  
n 2 E-A 

r<rcr - - - arctg ((=) '" ctg a)] , (Ez -~z ) ' ! .  [I - 

then cp (x) < n for all x from the interval [0, +Y]  and 
cp(7+~)<cp,. 

Hence, using (13) and reasoning as in Refs. 13 and 
14, we find that a t  u , < ~ A , E - A + O  we have 

where the lower integration limit is 6 = n/(E2 - A ~ ) " ~  
and f,(r) is the density of the probabilities of the dis- 
tance between barriers. For a power-law decrease 
of the probability we obtain the more accurate result - - 

n ( E )  = a,-' j f o  ( x )  dz, a, - l z fo  ( 2 )  dx. (32) 
c 0 

We note that these results a r e  valid also a t  v,= 2A, 
since the statement (30) remains valid also in this case. 

c) As was demonstrated for a Schrijdinger equation 
with the potential (14) in Ref. 11 and with a potential 
-Bb(x -x , )  in Ref. 4, the state density in some vicinity 
of the point E =(v) i s  of the same form as if the potential 
were a Gaussian white noise. A similar situation 
ar ises  in the present case, and furthermore for a large 
class of random potentials3) vk) .  

To demonstrate this, we consider the equation for 
the quantity z = - cotcp = f2/fl: 

dz -= A ( 2 ' - l ) + [ E - v ( z ) ]  ( t l + l )  
dz 

and make the change of variables x = t/x , E = (v) + E , v k )  
= (v) + 5 (t), after which we get 

In terms of these variables, the correlation function of 
the potential f(t)  takes the form [see (2911 

and in the case x r C  << 1, where rc i s  the characteristic 
distance over which B b) varies, is a 6-like function. 
When the indicated inequality is satisfied, the potential 
in (33) is therefore quite similar to a Gaussian white 
noise with a pair correlator of the type 

We now choose the parameter x such as to satisfy the 
condition D" 1. Then 

where k, is the characteristic amplitude of the potential 
t(t). In the case of the Gaussian white noise which en- 
t e r s  in (33) a t  the very outset, the amplitude of the po- 
tential is large compared with the coefficients A/X and 
E / X  . Therefore when the conditions 

a r e  satisfied the relations between the different terms 
of the right-hand side of (33) will be the same as for a 
Gaussian white noise. Since, however, the behavior of 
the phase shift cp, and hence also of z ,  determines 
uniquely the spectrum of the system (3), the foregoing 
means that for any potential satisfying the conditions 
k& << 1 and A << ko the number of states n((u) , (v) + E) 
in a region of width IE -(v) 1 e k, in the vicinity of the 
point (v) will take a form corresponding to a Gaussian 
white noise and determined by formula (25), which is 
obtained as the limiting case of a certain exactly 
solvable model. 

d) Among the various limiting cases in the model of 
Sec. 1, interest attaches to the situation wherein the 
average lengths of the barr iers  and of the intervals be- 
tween them increase, a,, a,- a, a d ~ , =  const, a situation 
corresponding to a very smoothly varying potential. 
In this case the number of states takes the asymptotic 
form 

which can be easily explained. In fact if a, and a, tend 
to infinity simultaneously, the potential remains prac- 
tically constant over very long sections, and therefore 
leads simply to a random energy shift, as in the case 
of the SchrSdinger 

3. FLUCTUATING-GAP MODEL 

1. In this section we consider a somewhat different 
model defined by the system of equations 

- i  dldx A ( z )  
( i d /dx  ) p-E*. (37) 

Comparison with (2) shows that this model can be 
formally obtained from (2) if v = 0, and the half-width 
A of the gap i s  a random function of the coordinate. 
Such a model was proposed in Ref. 8 and was investi- 
gated for the case when A&) =(A) + f k), where 5(x)  is a 
Gaussian white noise, with (&(x)f(O)) = 2D8k). One of 
the main results of Ref. 8 was the absence of a gap from 
the spectrum a t  arbitrarily small intensity D, and a 
singularity of the state density a t  the center of the gap 
in the case of sufficiently large fluctuations of the gap 
D >(A). We consider below another variant of this 
model, in which 

where s(x) is the random process used in Secs. 1 and 2 
to describe the impurity potential u(c) [see (14)]. 

It is  easily seen that the phase formalism developed 
in Sec. 1 can be applied in i ts  entirety also to the case 
considered here. The difference from the formulas of 
Sec. 1 is only that now the Fokker-Planck equation (15) 
contains a somewhat different function 

Q. (T) =E+A.  cos acp (38) 

and the symmetry conditions (17) a r e  altered: 
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In addition, Q,(cp) and T,(cp) in the formulas of the 
present section must be taken to mean the functions 

1 ctg p  + c tg  cp. 
T s ( ~ ) =  Z ~ . ( A : - E Z ) ' ~ ~  I c t g p - c p p .  I -  

In accord with relation (39), we consider henceforth 
throughout the number of states n(0, E) 2 n(E) = J(E) (it 
turns out that in this model we always have J(0) = 0). 
Just as  before, Eq. (15) with @,(cp) taken from (38) can 
be integrated in quadratures, and this leads to different 
equations for n(E), depending on the energy E and on the 
gap parameter A,. We write down and investigate below 
only those which correspond to the most interesting be- 
havior of the number of states. 

I. 0 < E <A,< A,. In this case n(E)= 0, i.e., the spec- 
trum of the system has a gap. Its existence follows both 
from the exact equations (4) and (15), and from general 
operator considerations. It precisely at this point that 
the model of gap fluctuation in the form ~ ( x )  = (A, - Ao)s(x) 
differs substantially from that considered in Ref. 8, 
where there was no gap in the spectrum at all values of 
the problem parameters. 

II. 0 <Ao < E < A,. For the number of states we obtain 
formula (19) in which B(cp) = Qo(cp) + T,(cp). It i s  of in- 
terest to investigate the behavior of n(E) near the true 
fluctuation limit E - A,+ 0. The main contribution i s  
made then by integration over the same square as  in 
part 11 of Sec. 2, and the asymptotic form itself i s  

exp (-n/a, (C-A,') ") 

n(E'- (a.+*)~.(q+i) R"_ -% @) 

where 

In contrast to the result (20) of Sec. 2, it i s  impossible 
to go to the limit A, - 0 of gap collapse, thus indicating 
that the asymptotic form changes at Ao=O. Infact, putt- 
ing A, = 0 as E - + 0 in (19), we obtain 

We note that in the limiting case A, >> A, and E >> A,, 
when the spectrum i s  insensitive to the existence of the 
lower band, the exact formula (19) goes over, when (38) 
and (40) are  taken into account, into the equation for the 
number of states in a Schrijdinger equation with a poten- 
tial in the form (14) formula (8) of Ref. 11). 

III. 0 < E < - A, < A,. The number of states i s  deter- 
mined by the formula 

where R(q) = T,(rp) - T,(q), and the integration region S 
is indicated in Fig. 3. 

In this case greatest interest attaches to the behavior 

FIG. 3. The integration 
region S is hatched. 

of the state density a s  E -0. From (43) we obtain at 
E << - A, and (A) > 0 the asymptotic expression 

which i s  similar to formula (32) of Ref. 8 and coincides . 
with the latter following the limiting t ransi t i~ns A, - + a ,  
A, - -a , a, =a, -0, (A) = const, and (A, + Ao)2a, = const, 
which transform the gap fluctuations into a Gaussian 
white noise. Moreover, the same limiting transition, 
when performed in the exact equation (3) which is valid 
in this case for all values of the energy E, also trans- 
forms it into (44) with the parameters D, v, and E from 
Ref. 8. 

At E<< Eo it follows from (44) that the state density 
in the case v> 0 takes the form 

Therefore in the case of a small gap overlap v> 1/2 the 
state density at the center of the band tends to zero. 
With increasing overlap (with increasing I&,)) v de- 
creases and at A, = - a , ~ , / a ~ ( a , ~ ,  + 1) it i s  exactly equal 
to 1/2, and the state density takes in this case the form 

p (0) -DlnE,--const. 

Finally, if the overlap i s  strong 0 < v < 1/2, the state 
density has a singularity that i s  described a s  before by 
formula (45). In the limiting case v = 0 this singularity 
is somewhat altered 

This close similarity between formulas (44)-(46) and 
the results of Ref. 8 suggest that the onset of the singu- 
larity of the state density at the center of the band i s  
due not so  much to the concrete probability properties 
of A(X) a s  to the fluctuating-gap model itself, since the 
point E = O  i s  singled out from the very outset by the 
symmetry of the model. 

Favoring this point of view are  also the result of an 
investigation, in the same range of parameters, of the 
damping coefficient y(E) of the envelope of the wave 
function (reciprocal localization length), defined by the 
formula 

Elementary transformation reduce this expression, in 
the case of the model (31), to the form 
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r(E)--(A C O S ~ ~ ) ,  

whence we get in the limit a s  E - 0 

where 

and the number n(E) of the states is  given by (44) (after 
a limiting transition that transforms the gap fluctuations 
into a Gaussian white noise, formula (47), just like (44), 
describes the entire range of values 0 < E <m). 

It follows from (47), in particular, that at v = 0 the 
damping coefficient vanishes at  the point E =  0: 

in contrast to v > 0, when 

We note, however, that here the damping coefficient 
vanishes at the center of a formerly forbidden band, 
not an allowed one as, e.g., in Ref. 16. 

IV. 0 < A, <A, < E. Here n(E) is determined by formula 
(22) with *,(cp) from (38) and R(V) = Qo(cp)+ Q1(cp). As 
E-.o we get 

2. The content of this subsection is quite similar to 
that of subsection 2 of the preceding section. We shall 
therefore only list briefly the corresponding results. 

a) The high-energy asymptotic number of states, cal- 
culated by perturbation theory from (4) with subsequent 
utilization of (6), is 

where 

and turns out, just a s  (28) to be more accurate than 
formula (50) obtained from the exact solution. 

b) The analog of the statement (30) in the fluctuating- 
gap model i s  formulated in the following manner. Let 

Then, if 
rp(0) < qm= n/2 -a 

we get V ( X ) < T , O < X < Y + ~ ,  and c p ( ~ + ~ ) < c p  Cr- 

Hence, reasoning a s  before, we arrive at  formulas 

(31) and (32) for the number of states, but A in their 
right hand sides must now be replaced by A,. 

c) Under the conditions 

(A) < < B ~ ,  IE-(A) I < < B ~  kovc<<l, (54) 

where the parameters k,, r,, and B, a r e  defined in the 
same manner a s  in Sec. 2 but relative to the correlation 
function (52), the number of states n ( ~ )  in the vicinity 
of the point (v ) ,  with a width I E  - (v)l << Bo, takes for 
any potential ~ ( x )  a form corresponding to a Gaussian 
white noise and defined by formula (44), in which 
E, = D = 6,/2, and v = (A)/B,. 

d) For an extremely smooth potential a,, a, - m, ao/al 
=const we get from (19) and (22) 

The authors thank I. M. Lifshitz and E. I. Rashba for 
a discussion of the result. 

')In the effective mass approximation (the Schrijdinger equa- 
tion), such a model was proposed and considered in Ref. 11. 

*)we refer here to the system (3) with potential (14). but now 
with aribtrary probability densities of the barrier lengths 
f and of the distances between them f &). 

3, The same holds ture for the Schrijdinger equation. 
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