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The effect of spatial fluctuations of the modulus M of the magnetization on the complex modification of 
the dispersion relation for spin waves, in amorphous ferromagnets, is investigated in the case of strong 
ferromagnetic exchange, for which only orientational oscillations of M(r, t ) ,  described by the 
Landau-Lifshitz equation, can exist. It is shown that the character of the modification of o(k) with 
fluctuation of M diiers essentially from the modifications produced by fluctuations of other magnetic 
parameters [V. A. Ignatchenko and R. S. Iskhakov, Sov. Phys. JETP 45, 526 (1977) and 47, No. 4 
(1978)l. Correlation effects that occur in joint fluctuations of several parameters are considered in the 
illustrative case of simultaneous allowance for fluctuations of a and of M. The possibility is discussed of 
developing spin-wave spectroscopy of amorphous magnets, i.e. the experimental determination of the basic 
stochastic characteristics of the fluctuating parameters of a spin system by measurement of the 
modification of the dispersion relation. 

PACS numbers: 75.30.D~ 

INTRODUCTION It was shown that the character of the modification of 
the dispersion relation is substantially different for 

The phenomenological Hamiltonian that describes the each fluctuating parameter. 
properties of the magnetic system of an ideal crystal 
has the form 

where a is the exchange constant, /3 i s  the anisotropy 
-constant, 1 is a unit vector along the easy anisotropy 
axis, H i s  the external magnetic field, and H, is the 
magnetic dipole field, which is related to the magnetiza- 
tion by Maxwell's equations. 

Upon amorphization of a ferromagnet, disorder 
ar ises  in the material: structural (fluctuations of the 
magnitude and direction of the interatomic distances, 
fluctuations of the density of the material) and chemi- 
cal (fluctuations of the concentrations of the compon- 
ents of an alloy, fluctuations of the concentration of 
amorphizing additives). This in turn leads to the re- 
sult that the spin-system parameters 2, p, M, and 1 
that occur in (1) became functions of the coordinates. 
It is clear that the relations between the contributions 
of the fluctuations of each parameter to the modifica- 
tion of the dispersion relation for spin waves may be 
different for each specific material; situations are  pos- 
sible in which the effect of one parameter will domi- 
nate. It therefore makes sense first  to investigate 
separately the effect of fluctuations of each of the four 
phenomenological parameters a, p, M, and 1 on the 
dispersion law, supposing in each case that the other 
three parameters are  constant. 

Inour papers,'.' such a s  investigation has been car- 
ried out for the parameters a, p, and 1. There i t  was 
supposed that the fluctuating parameter is a random 
function of the coordinates, whose basic characteris- 
tics-the relative root-mean-square fluctuation y and 
the correlation radius ?-,-appear in the theory as phen- 
omenological constants describing the amorphous state. 

The differences in character of the modification of 
the dispersion law, as i t  depends on the fluctuating par- 
ameter, apparently render practicable the development 
of spin-wave spectroscopy of amorphous magnets, the 
problem of which would be to determine the principal 
fluctuating parameters of the spin system and to mea- 
sure their basic characteristics. An experimental 
demonstration that such a formulation of the problem is 
realistic has been given, in a paper3 in which the 
method of spin-wave resonance was f i rs t  used to ob- 
serve a characteristic modification of the dispersion 
law on amorphization of Co,,,P, films. The character 
of the modification made i t  possible to state that the 
principal fluctuating parameter in amorphous Co,,,P, 
films is the exchange parameter a; i t s  root-mean- 
square fluctuation (y = ha/a - 0.25) and correlation 
radius (r, = 24 A) were measured. 

The task of the present paper is the further develop- 
ment of the theory that describes the nature of the in- 
fluence of fluctuating parameters of the spin system on 
the dispersion law. Section 1 investigates the effect of 
a fluctuating modulus M of the magnetization on the 
complex modification of the dispersion relation; Section 
2 considers correlation effects that ar ise  in simultan- 
eous fluctuation of several parameters; Sec. 3 discusses 
the possibility of spin-wave spectroscopy and the nec- 
essity for supplementing if with several other methods. 

1. DISPERSION RELATION WHEN THE MODULUS OF 
THE MAGNETIZATION FLUCTUATES 

The magnetization (magnetic moment of unit volume) 
M is defined by averaging of the microstate of the spin 
system over some volume v,. Spatial fluctuations of 
the modulus M = M(r) of the magnetization can be sep- 
arated into two types according to their origin. The 
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f i rs t  type of fluctuations of M can occur in the presence 
of complete orientation ordering of the spins of the 
atoms within the averaging volume at T=O. This type 
of fluctuations is characteristic of amorphous materials 
with strong ferromagnetic exchange and is caused by 
fluctuation of the number of magnetic atoms in the vol- 
ume vo as a result of structural and chemical disorder. 
Here a change of M with time (without a change of the 
density of the material) i s  impossible; there can occur 
only orientational oscillations of M(r, t ) ,  which are  de- 
scribed by the Landau-Lifshitz e q ~ a t i o n , ~  a s  in an ideal 
crystal. 

The second type of spatial fluctuations of the modulus 
of the magnetization i s  a result of averaging of an or- 
ientationally disordered basic microstate. This situ- 
ation is characteristic of spin glasses and of systems 
similar to them, with weak exchange interaction. Here 
there is possible also a change of the modulus M with 
time (because of a change of the orientational micro- 
state within the averaging volume v,); that is, the ap- 
pearance of waves of magnetization density M(r, t ) ,  
which are  not described by the Landau-Lifshitz equa- 
tion. Such systems were considered in the papers of 
Halperin and Saslaws and of A n d r e e ~ . ~  

We shall restrict  ourselves to consideration of fluc- 
tuations of M(r) of the f i rs t  type, when the situation is 
described by the Landau- Lifshitz equation. On neg- 
lecting, for simplicity, the anisotropy and the magnetic 
dipole fields, we find that the Hamiltonian (1) corres- 
ponds to the following system of equations: 

g - ' i k z = c u k f . ~ ~ M , -  ( a V 2 M , + H )  M,, 
g-'M,= ( a V Z M , + H )  Mx-aM,V2M,,  

M2+Myl+MI2=M2!r) .  
(2) 

Here the third dynamic Landau-Lifshitz equation, for 
M,, has been replaced by an equivalent equation in 
which the fluctuating parameter M(r) occurs explicitly. 
We represent this parameter in the form 

where M = (M(r)), p(r) is a random function with zero 
mean and unit variance, and AM i s  the root-mean- 
square fluctuation of M(r). 

On linearizing the system (2) for M,z M(r) and M,, M, 
<< M, we obtain for the circular projection m = M, + i M ,  
the equation 

where y,= AM/M and wo=gH. 

Hence we find, by the method developed in Ref. 1, in 
the f i rs t  order of perturbation theory, the complex dis- 
persion relation 

" ~ ( k - k , )  ' 

L(k) = y,,? j --- (Irk,) (k-Zk,) (kt-2k)dk,, 
- = 

where L(k) = (w - wo)/cugM - k2, S(k) = ko/n2(ki + k2)2 i s  
the Fourier transform of the correlation function, and 
ko = r;'. 

The imaginary part  of the integral in (5) can be cal- 
culated exactly by residues; we find for the damping an 
expression analogous to that obtained earlier '  for  a 

fluctuating exchange constant: 

The real part  of (5), after completion of the integration 
over the azimuthal angle cp, and the polar angle 01, 
leads to the following expression for the modified dis- 
persion law: 

o=oo+agMl i ' [  l+ym'Jm(k) I ,  (7) 

where 

On expanding the logarithm as a series,  we get for the 
function f(x) the expression 

Over the whole range of integration with respect to 
k, and for all finite values of the parameter k, the val- 
ue of x is less  than 1; i t  reaches unity only for k - .o 

and k, -.o. Therefore the se r i es  (9) con1 erges quite 
rapidly, and we need to keep only i t s  f i rs t  terms. Thus 
if we neglect all the terms in square brackets except 
unity, we obtain for J,,,(k) an expression whose graph, 
as a function of u =  (k/ko)2, is given in Fig. 1, curve 1. 
If we take account of the next term of the series,  we 
obtain a more complicated expression, whose graph is 
given in Fig. 1, curve 2. It is seen that within the 
range u 5 1 curves 1 and 2 behave qualitatively in the 
same way (both have a minimum a t  u- 0.3), although 
quantitatively the difference between them is impor- 
tant, especially when u > l .  Allowance for the follow- 
ing term of the ser ies  (9) modifies curve 2 only in- 
appreciably in the range u 6 1 that is of interest to us. 
Within this range, the complicated analytical expres-' 
sion that corresponds to curve 2 can be considerably 
simplified by expanding the radical that occurs in it: 

Here the f i rs t  term corresponds to the f i rs t  term of the 
ser ies  (9), the second to a correction introduced by the 
second term of this series.  

The dotted curve in Fig. 1 is from Ref. 1 and de- 
scribes the modification of w when it  is the exchange 
constant that fluctuates (the scale for the J,(k) curve is 

FIG. 1. Variation of the 
characteristic functions J ,  
and J, with the normalized 
square of the wave num- 
ber ,  u= (k/ko?.  1, first 
approximation to J,(u); 2. 
second approximation to 
J,,,C); dotted curve, J , (u) .  
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shown to the right of the graph). It is evident that the 
character of the modification of w(k) when M fluctuates 
is substantially different from the modification that 
corresponds to fluctuation of a. Still more substantial 
is the difference of the modification caused by M(r) . 

from the modifications produced by fluctuations of p(r) 
and of l(r).l 

2. ALLOWANCE FOR CORRELATIONS 

In Refs. 1 and 2 and in the preceding section, we 
have discussed the effect of fluctuations of each of the 
four phenomenological parameters a, p,1, and M sep- 
arately on the dispersion law and damping of spin 
waves. Here we shall discuss problems that arise 
when there i s  simultaneous fluctuation of several para- 
meters; as an example, we choose a medium with a 
fluctuating exchange constant and magnetization mod- 
ulus. 

The linearized equation of motion for the circular 
projection of M in this case has the form 

where y, = h a / &  y, = AM/M, and pa and p, a re  sta- 
tionary random functions of the coordinates with zero 
means and unit variances. 

We obtain the complex dispersion relation in the form 

ya2Sa (k-kt) kk,+ymfSm (k-k,) (2k-k,) (2k,-k) 
-- 

k-k, 
+y,. [sam(k-k,) (4kk.-kt-ka) + ~(k,)~..(k.).-] 1. (12) 

k, 

where S,,(k), the Fourier transform of the cross-cor- 
relation function, appears on averaging of the products 
of the Fourier transforms of the random functions pa 
and p,: 

(p.(k) p, (k') ) =Sam (k) 6(k-k'). (13) 
In order to calculate this quantity, i t  is necessary to 
investigate the origin of the functions pa and p, and to 
find expressions that relate each of these functions to 
some initial random functions that describe the struc- 
tural and chemical disorder in the material. This 
problem is outside the scope of the present article; we 
shall restrict  ourselves to consideration of the two 
simplest limiting cases. 

If the functions pa and p, a re  uncorrelated, then the 
dispersion relation (12) contains the sum of the prev- 
iously calculated complex modifications of the frequency 
with respective weighting factors y: and Y:. The oppo- 
site case of complete correlation can be expressed as 
a linear relation between the fluctuations of a and of 
M; then Sam = S, = S,, although the values of y, and ym 
may remain different. In the case of such correlation, 
we get.for w" the expression 

The real part  of (12), after completion of the integra- 
tion over the azimuthal angle cp, and the polar angle O,,  

FIG. 2. Characteristic 
function Jam(u) of the cross- 
correlation of the fludua- 
tions of a and of M. 

takes the form 

e=os+agMkZ[l+yaVa(k) +ymfJm(k) +y,ymJam(k) 1, (15) 
where 

J,,=1+4Ja+" - f (z) k, dk,, 
2nk" kI2-k' 

On calculating the integral over k, in the same approxi- 
mations as in (8), we get for Jam(k) a complicated ex- 
pression whose graph is given in Fig. 2. It is evident 
that the function J,,(k), with respect to the character 
of i t s  behavior, is close to an average between the func- 
tions J,(k) and J,(k). For  k - 0, the dispersion rela- 
tion (15) takes the form 

3. SPIN-WAVE SPECTROSCOPY OF AMORPHOUS 
MAGNETS 

The investigations presented in Refs. 1 and 2 and in 
the present paper show that fluctuation of each of the 
spin-system parameters considered, a, M,p, and 1, 
leads to a modification of the dispersion law that is 
characteristic of that parameter. It is therefore pos- 
sible, in principle, to develop a spin-wave spectro- 
scopy (SWS) of amorphous magnets. For  materials in 
which the correlation radius of the fluctuations of the 
parameter under investigation is sufficiently large, one 
can use the improved method of spin-wave resonance a t  
frequencies -9 GHz;' the study of shorter correlation 
radii requires the development of higher-frequency 
methods. 

The difficulties that arise in the interpretation of a 
dispersion law in which superposition of the character- 
istic functions J,(k) of several fluctuating parameters 
has occurred can be overcome by investigation of the 
damping w" of spin waves caused by inhomogeneities 
and of a number of other characteristics. Thus accord- 
ing to the character of the damping, the parameters 
under consideration separate into two pairs: a) isotro- 
pic inhomogeneities (a,  M), characteristic of which a re  
an increase of the damping with increase of k and a 
change of the law from k5 to tz3 at the point k,/2; b) aniso- 
tropic inhomogeneities (P, l), which lead to a maximum 
of the damping a t  the point ko/2. Fluctuations of M lead 
to an actual decrease of the saturation magnetization, 
which can be measured by independent methods. Fluc- 
tuations of p and 1 shift the frequency of uniform ferro- 
magnetic resonance (FMR) in a sphere, while fluctua- 
tions of a and M do not; in bodies of other shapes, be- 
cause of the effect of the demagnetizing fields, the FMR 
frequency will be shifted also by fluctuations of M. 
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Fluctuations of 1 lead to a change of the macroscopic 
ground state: a static stochastic magnetic structure 
appears, which can be investigated by electron-optical 
methods. Use of such supplementary methods can 
appreciably increase the informational content of the 
SWS method. 

The greatest difficulty of the theory of SWS lies in 
allowance for the magnetic dipole fields. This prob- 
lem has so  far been solved in analytical form only for 
fluctuations of a;2 for fluctuations of f l  and 1, the shift 
of the uniform FMR frequency has been calculated. 

Expressions obtained without allowance for the mag- 
netic dipole fields a re  useful only for qualitative in- 
terpretation of experiment. 

"AS has already beenmentioned,' fluctuations of P and 1 de- 
scribe not only inhomogeneity of the crystallographic aniso- 
tropy, but also any inhomogeneities whose effect can be 
approximately described by a term P ( ~ 1 ) ~  in the phenomeno- 

logical Hamiltonian (internal elastic s t resses ,  inclusions, 
etc.). 
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An exact solution is obtained of the problem of the density of one-electron states for two models of a 
disordered semiconductor that is described by a system consisting of two first-order equations and 
corresponding to the two-band approximation. In the first model, where the disorder is produced by a 
random impurity potential of a definite type, the state density has no singularities when the gap collapses. 
In the second model, where the fluctuation parameter is the gap width, the state density can have a 
singularity at the center of the forbidden band, when the fluctuations of the gap are large enough. 
Asymptotic formulas are obtained for the state densities in characteristic sections of the spectrum and at 
the most interesting values of the parameters. 

PACS numbers: 71.20. + c 

INTRODUCTION 

The interest presently shown in the spectra of one- 
dimensional disordered systems, with allowance for  the 
band structure, is natural. Up to now, the equivalent- 
mass approximation was used most treatments of the 
electron spectrum o r  of the equivalent concept of the 
structure of the unperturbed (ordered) crystal for other 
types of excitations (see, e.g., Refs. 1-5 and the biblio- 
graphies therein). Yet situations exist when allowance 
for the periodicity of the initial ordered system, mean- 
ing also the band structure of the bare spectrum, is im- 
portant. This problem arises,  in particular, when an 
attempt is made to explain some observed singularities 
of physical quantities (for example, the low-temper- 

ature behavior of the magnetic susceptibility6) in quasi- 
one-dimensional compounds .'-' Since full allowance for 
the band structure entails great difficulties, it is nat- 
ural  to turn to the simplest case of two broad resolved 
bands with a narrow gap between them. In this case 
(see Ref. 10) the spectrum and the states of the quasi- 
particles in the vicinity of the gap in the presence of a 
random potential a re  described by a system of two 
first-order equations of the Dirac type. 

This paper consists of two parts. In the first  (Secs. 
1 and 2) we derive a number of relations that hold for 
an arbitrary random potential, and calculate the state 
density within the framework of the indicated equations 
for a model in which the potential is a sequence of rec- 

729 Sov. Phys. JETP 48(4), Oct. 1978 0038-5646/78/100729-07$02.40 O 1979 American Institute of Physics 729 


