
guish between the total energies Ei(Ef) and the longitudinal 
energies E! ( E ' ; ) .  

"The specific barrier height turns out to be unimportant for 
the levels considered. 

" In Ref. 6 the quantity J $ !  is given erroneously for this case. 
6' Integration over 0 is  carried out by elementary means in 

view of the presence of the 6 function in Eq. (14). 
" ~ t  high energies (2 E & 2 1) this spectrum is non-equidistant 

even for a parabolic well. 
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Spin-orbit interaction in an excitonic dielectric 
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The influence of spin-orbit interaction on the character of electron-hole pairing in a two-band model is 
considered. It is shown that the classification by the possible types of the ground state, given by Halperin 
and Rice [Solid State Physics, 21, 115 (1968)], remains in force in this case. The degeneracy between the 
chargecurrent and spin-current states, which exists in the absence of spin-orbit interaction, is lifted. If 
the spin-orbit interaction is strong enough, the current state may turn out to be the ground state even in 
the absence of impurity scattering. 

PACS numbers: 71.35. + z, 71.70.Ej 

1. INTRODUCTION 

It  is known that, depending on the phase of the o r d e r  
p a r a m e t e r  and on i t s  sp in  s t ruc ture ,  f o u r  types of 
anomalous mean  values are possible  in electron-hole 
pairing.' It is shown in Ref. 2 that if no account is taken 
of the sp in  d e g r e e  of f reedom the s y s t e m  goes o v e r  into 
a s ta te  (n(r)), with a charge-density wave ( C ~ D W )  if the 
order p a r a m e t e r  is real, and into a s t a t e  (j(r)) with a 
current-density wave (CUDW) if the o r d e r  p a r a m e t e r  is 

imaginary. If account is taken of the sp in  and of the asso- 
ciated choice of the s ignof  the o r d e r p a r a m e t e r  A f o r  oppo- 
s i t e  spindirect ions,  then it c a n b e  s e e n  that, dependingon 
this  choice, we get also a spin-density wave (SDW) 
( ~ ( r ) ) ,  and f o r  an imaginary order p a r a m e t e r  we  get  
a sp in  flux densi ty wave (SFDW) ( ~ ( r ) j ( r ) )  f o r  a n  imag- 
inary o r d e r  parameter .  Each  of these o r d e r  p a r a m e t e r s  
is charac te r ized  by i t s  own effective coupling constant. 
Following Ref. 3, we c a n  show that in  the scheme of a n  
isotropic  semimeta l ,  the effective coupling constants 
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for the solution with real A corresponding to the charge 
and spin density waves a r e  respectively 

At the same time, the constant for the solution with 
imaginary A, corresponding to solutions with current 
o r  spin flux density waves, is 

Here g, is the constant of an interaction of the density- 
density type, g, is the unrenormalized interaction con- 
nected with the transition of the pair from one band to 
another (of the typeg,a;a;a,a,),~, is the same screen- 
ing-renormalized interaction, and g,, is the value of the 
electron-phonon interband interaction. It is seen from 
(1) and (2) that the state with current and spin flux den- 
sity waves is realized if electron-electron attraction 
exists in the interband channel, i.e., when 

Since the interaction with the constant g, is of short- 
lived character, g, and g, a r e  practically equal. It 
appears therefore that the condition (3) cannot be re- 
alized, and the state with the current and with spin- 
flux density waves may turn out to be ground states 
only in the presence of interband impurity scattering.' 
This, a s  well a s  everything that follows, pertains equal- 
ly well to the case of band extrema that coincide in mo- 
mentum space, when the corresponding homogeneous 
states appear. It should be noted that regardless of the 
approximations (high density, etc.) in the exact equa- 
tions for  an arbitrary interaction force the symmetry 
and the character of the self-consistency equations 
remain unchanged, only the bare interaction is replaced 
by a complete interaction. Relation (2) indicates also 
that a state with imaginary A is degenerate. 

All the foregoing dictates the aim of the present 
paper. It is, first, to investigate the influence of spin- 
orbit interaction on electron-hole pairing, to deter- 
mine how the states with real and imaginary order pa- 
rameters vary, and what conditions a r e  necessary in 
place of (3) to realize the current state a s  a ground 
state. Second, we wish to show how the degeneracy, 
with respect to the states with the current and spin- 
flux density waves, is lifted for the principal solution 
with the minimum order parameter, which follows 
from the equality of the effective coupling constants 
for the states with the current and spin-flux charge 
densities, without the spin-orbit interaction. 

For simplicity we solve the problem for an isotropic 
semimetal whose crystal lattice has an inversion center. 
We note that all the conclusions obtained for this model 
remain in force for semiconductors with narrow for- 
bidden bands. All this is intended only to facilitate the 
calculations. To eliminate the computational diffi- 
culties, we shall exclude the interband electron-phonon 
interactions from the system Hamiltonian, and also 
neglect the renormalization of g, in the exchange di- 
agrams due to screening of the interaction. 

2. HAMILTONIAN OF THE SYSTEM 
A 

We diyide the Hamiltonian H O! our system into three 
parts: H,,I?:,$ and E?:::, where Ho is of the Hamiltonian 
of the electrons that do not interact with one another 
?nd a r e  located in the periodic field of the lattice; 
Hi:: is the part of the electron-electron Hamiltonian 
in which a r e  left only the terms responsible for the 
exciton instability of the density-density type for elec- 
trons from different bands, and the terms that take into 
account the transitions of the electrons f ~ o m  one band 
into another without spin flip. Finally, Hi:: is the sec- 
ond part of the Hamiltonian of the electron-electron 
interaction, whose terms correspond to the transition 
of electrons of one band into another with spin flip. We 
note that in the one-particle Hamiltonian we did not 
include in explicit form the spin-orbit interaction, 
since this interaction does not spin-split the spectrum 
of crystals with inversion centers. The effect of this 
interaction on the electron-hole pairing is investigated 
with the aid of the generalized Bloch functions. 

In the presence of spin-orbit interaction, the zeroth- 
Hamiltonian wave eigenfunctions a r e  of the Bloch type 
and a r e  spinors. In the general case 

where the arrows in the subscripts of the Bloch func- 
tions cpkt and cp,, indicate the spin state: for example, 
in the former case the spin is directed in general up- 
ward in the sense that the mean value (cp, t ,  o,cp,+ is 
positive. In the presence of spin-orbit interaction, the 
functions uk(r) and v,(r) satisfy the equations 

1 i ( g(i+k)l+~(r)+--;?[e 4m c Y grad V(r) I (b+k)) 

Here 6 is an operator, k is a number, and V(r) is the 
periodic potential of the crystal lattice. It is seen from 
these equations that u,(r) differs from vk(r). 

Since the Hamiltonian is invariant to the space in- 
version operation I, we have accurate to a phase factor 

In addition, from the invariance of the Hamiltonian to 
time reversal, it follows that 

where K =  - iu#, is the time-reversal'operator ac- 
cording to Kramers, K O  is the operation of complex 
conjugation, and a, is a Pauli matrix. Relations (7) 
show that for crystals with inversion center the spin 
degeneracy is not lifted, a fact we already noted earlier. 

Regarding from the very beginning uk(r) and vk(r) a s  
real functions, something also possible for band ex- 
trema, we obtain also an expression for cp,, in terms 
of these functions: 
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We note that complex u,(r) and v,(r) yield no new 
qualitative changes. 

We continue the analysis of the problem in the high- 
density approximation (this does not change the results 
qualitatively), when the following inequality is satisfied 

where $, is the width of the forbidden band and is 
negative ( gx <O) for a semimetal, e is the electron 
charge, & is the dielectric constant of the lattice, and 
xis the reciprocal screening radius. In this case the 
effective interaction potentials can be replaced by mo- 
mentum-independent constants. 

The single-particle Hamiltonian of the isotropic semi- 
metal is of the form 

Here Cik is the quasimomentum of the electron, 1 and 
2 a r e  the indices of the conduction and valence bands, 
respectively, m is the effective mass, which for sim- 
plicity is assumed to the same for electrons ahd holes, 
and a,, (k), a,, (k) a r e  the fermion operators of electron 
annihilation in bands 1 and 2, respectively, in states 
of the type (4) and (8). 

We have similarly expressions for  and i?:::: 

2; =z {ga'[al,+ (k) ale+ (k')aS (k') aso (k) 
tat.. 
a+# 

-a~a+(k)&+ (k')al~(k')aS(k)+al.+(k)&p+(k')al~(k')&~(k) 
-~t-+(k)ato+ (k')~,(k')eo(k) +h.c.l 
+gl"[a(a1,+ (k)a16+(k')a26(k')aa~(k) 
+a,.+(k) aIa+(k')a,(k')aS (k) - h.c.1 

+a(ala+(k)%+(k')alo(k')66(k) 
+o,r+ (k) &+ (k') a,. (k') a&) +h.c. ) I). (12) 

Here g, and g, were defined above, g; is the bare inter- 
action connected with the transition of a p a i r  of electrons 
from one band to another, when both electrons change 
the spin direction in the transition, and g: is the same 
bare interaction, but when the spin of one of the elec- 
trons is reversed in the transition (we have in mind the 
generalized spin). We note that the values of g,, g;, 
and g; a r e  different and a r e  determined by the formulas 

where vc(r - r') is the Coulomb interaction; in the 

foregoing formulas cu # f l  and to simplify the notation 
we have left out the k indices. 

With the aid of (41, (81, and the expressions focg,, 
g;, and g! it is easily seen that a l l  the terms in H::: 
should enter with a plus sign, while the sign in 
alternates, depending on the direction of the electron 
spins. 

Thus, the total Hamiltonian of the investigated sys- 
tem is of the form 

3. SELF-CONSISTENT SYSTEM OF FUNDAMENTAL 
EQUATIONS 

The system described by the Hamiltonian (14) is anal- 
yzed with the aid of a diagram technique for time- 
dependent Green's f i~nct ions .~ The Green's function is 
defined by 

Ga, ~ ( r ,  r') =-i(T$.(r, t)$6+(r1, 0) ), (15) 

where +,(r, t), c ( r ,  t )  a r e  the operators of annihilation 
and creation of an electron a t  the point r with gen- 
eralized spin cu/2 in the Heisenberg representation. 
In the SchrMinger representation these operators can 
be expressed in terms of the electron creation and an- 
nihilation operators a;,&), a,,&) with quasimomentum 
Rk. In the two-band model we have 

where cp,,, a r e  the generalized Bloch functions intro- 
duced above, with electron quasimomentum Ek, in the 
electron and hole bands. We change over to the matrix 
element of the total Green's function (151, calculated in 
the generalized basis of the Bloch functions: 

Here i and j a r e  the band indices. 

The time-dependent Fourier components of the zeroth 
Green's functions a r e  of the usual form 

~,@)(k, o )  - [o+hzka/2rn+8J21-', 

G?' (k, o )  = [o-hzkz/2m-8d2]-i. 

We write down also the expression for the total  ree en's 
function in terms of its matrix elements (17): 

The total   re en's function will be represented on the 
diagrams by a thick line, with the band indices marked 
below the line and the spin indices above the line. The 
free Green's functions ~ p ' ( k ,  t )  and GF'(k, t ) ,  which 
correspond to the Hamiltonian (lo), a r e  diagonal in the 
band and in the spin indices; they a r e  represented by 
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a thin solid line. We note, in the case  of high density 
(91, to find the anomalous Green's function, it suffices 
to retain in the corresponding equations only the direct 
and exchange diagrams, which contain the interband 
Green's functions G:! a t  i # j. This corresponds to the 
Hartree- Fock approximation. 

The diagrams obtained from H::: and the corresponding 
analytic expressions for the Green's functions coincide 
with those obtained in Ref. 3, and we therefore write 
out only the corresponding analytic expressions. Using 
the notation given above, we write down those additional 
digrams which a r e  obtained from HG, denoting the 
additional part of the Green's function by 6G;f. 

The diagrams for 6G:: are: 

The diagrams for 6Gy;-" are: 

The letters o! and B in front of the diagrams indicate the 
sign. For example, for 6 ~ : f  a plus sign in front of the 
last diagram remains a plus sign, while in the case of 
6G;P i t  changes to a minus sign. In analytic form, the 
expressions for the Green's functions a r e  

-iG:" (k, a )  {x [ ~ . G X ~ + B ~ G : ; - ~ ] + ~  g / [ ~ > n - ~ ~ ; - * + ~ ~ ]  

We note that all the Green's functions under the summa- 
tion sign depend on k' and w'. Equations for G&' - 

G Y ,  G,q' a r e  written in similar form. 

It should be noted, as indicated in Ref. 3, that Eq. 
(22) is gauge-invariant because i t  includes terms that 
contain the coupling constants g2, g;, and gf and also 
Hartree terms. Therefore i t  is not contradictory in 
two cases: for pure real  and pure imaginary phase fac- 
to r s  for the interband Green's function. 

For  the matrices ~;a(k, w) and G$(k, w) over the spin 
indices a and B we can write down a system of equations 
in matrix form: 

where [(k) = ek2 /2m + gg/2,1 is a unit two-dimensional 
matrix, and is the matrix of the order  parameter. 

We consider now separately solutions with real  and 
imaginary order parameters. 

A. States with real A 
A 

For the components of the order-parameter matrix A 
we can obtain the system of self -consistency equations 

A I ~ + A - I ,  -s=(g.-3gz-gar) (AIt+A-l ,  - t )  K-2gx"(At. - l -A-l l)K, 
At.-A-i, -i-(gi+gz+gz') (AIi-A-,, -.) M, 

At, -.+A-t, .=(gl+gz+gz') (At, -,+A-t, ,)Jf, 

K=-i wCL'(k) - (AitA-s.-t-Atl-sA-~,t) 
Det 

k.. M--iz a'-P(k)+(A..A- ,.-. -A.,-,A-~.,) 

k,w 
Det (24) 

The symbol Det stands for an expression that deter- 
mines the spectrum of the single-particle excitations: 

It is seen from the obtained system (24) that when 
gi =gi = O  we have the self-consistency conditions fo r  
the singlet (A:) and triplet (A!) order parameters5: 

The second and third equations yield ~ 0 , ' ~  A!' and the 
fourth equation multiplied by i yields A!'. 

The system (24) can be reduced to two equations rela- 
tive to the new unknowns A, and A, defined by the rela- 
tions 

under the additional condition that follows from (24): 

The singlet and triplet coupling constants a r e  deter- 
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mined as follows: 

If we substitute in (26) gi =g; =0, then at g2 > 0 we ob- 
tain g, =g, - 3g2, which agrees with the known results 
obtained in Ref. 3, but at g2 < 0 we have g, =g, 1g2 1 , 
which corresponds to the maximum energy. This indi- 
cates that at g2 < 0 we should take the second root of K. 

We note that the system consisting of the first and 
fourth equations of (24) has nonzero solutions when their 
determinant is equal to zero. It is the vanishing of this 
determinant which gives two roots for K: the root 

which was used above, and 

Using the second root K2 we determine the constants g, 
and g, at g2 < 0 in the following manner: 

and corresponding new relations that connect the old 
unknowns with the new ones : 

Relative to the new unknowns A, and A,, the system of 
two equations coincides with that obtained in Ref. 3. 

It remains to make sure that the quantities A* and A, 
given by (26) o r  (26a) actually correspond to states with 
charge density and spin density waves. To this end we 
calculate the local charge density Q(R) = (n(R)) and the 
local magnetic moment M(R) = (S(R)) . The matrices of 
the corresponding operators a r e  given by 

and with the aid of these operators we obtain expressions 
for Q(R) and M(R): 

where the matrix A t , ( ~ ; k ,  - 0) has matrix elements of 
the type 

cplrm(R)~L(R) G?(k, -0).  

After rather simple calculations we obtain 

where QI2(R) i s  the matrix element of the operator ;(R). 
The obtained expressions indicate that A, and A, indeed 
correspond to states with charge density and spin densi- 
ty waves, respectively. 

6. States with imaginary order parameter 

As already stated, the matrix of the order parameter 
A can be either real or  imaginary. States with real i\ 
were investigated above. We investigated here the case 
of an imaginary order parameter. An imaginary order 
parameter is obtained i f  G;: in the system (23) has 
an imaginary phase factor. For the components of the 
matrix of the order parameter we have the following 
self-consistency conditions: 

At, -,+A-1, I =  (gs-ga-ga') (As, -1SA-I, l)M, 
Ai, t=(gi-gz-3gz') (Ai, -I-A-1, 1) K-2gP(Asi+A-I, -i)K. 

The expressions for K and M are the same as in the 
system (24). We note that the system (31) contains 
the moduli of the components of the imaginary matrix 
d. 

The system (31) reduces analogously to two equations 
with respect to new unknowns A:" and A:", defined 
by the relations 

subject to an additional condition analogous to (25): 

At,-i-A-l,l- - 
. ga" 

g/+(g;z+c)s  (All+A-r.-s)r 

At, -I=-A-1. t. 

The singlet and triplet coupling constants take the form 

g.'m=gl-ga-g.'+2(g:a+e)*, gtim==gl-g,-g;. (34) 

We note that for K,, just as in the case A, we obtain 
one more root, but we choose the first of them, which 
corresponds to the minimum energy. 

The new system of equations with respect to A:" 
and A:" also corresponds with the system obtained 
in Ref. 3. Starting from the expressions for the cur- 
rent density and the spin-flux density1 

eh [C+X(R)VP~(R)-[V$~+(R)I*(I)I~~ jS(R) = - 
2mi 

a.0 

we obtain 
ehI (R) A,'" j(R)="- 

m g,'" 

The expressions for the current density and the spin- 
flux density indicate that A:" and A:" indeed corres- 
pond to respective states with current and spin-flux 
density waves. 

71 1 Sov. Phyr JETP 48(4), Oct. 1978 Volkov et a/. 71 1 



4. CONCLUSIONS 

Allowance for  the spin-orbit interaction leads to a 
substantial renormalization of the effective coupling 
constants. This renormalization makes it possible to 
obtain less stringent conditions for the realization of 
the current states than the conditions (3) (just as above 
with the electron-phonon interaction neglected). We 
examine the cases g2 <O and g2 >O separately. 

1) g2<0.  In this case the state with the current 
charge density is more convenient if a) Ig2 l < Igi l a t  
gi<O: b) (gi2+gi'2)112>g;- lg21 atgg>O. 

2) g2 >On In this case we have for the realization of 
the current states the following conditions: c) 
(gh2 +gi'2)112 >(g2 +gi) at gi >O and d) (gi2 +gy2)112 
>(g2-  1gi1) atgi<O. 

It is seen that the more favorable conditions are  b) 
and d), which require only that gzgi <O and that their 
difference be small. The case b) corresponds to at- 
traction in the interband channel between electrons 
having like spin, and repulsion of electrons having 
unlike spin, while the case d) corresponds to repul- 
sion of electrons with like spin direction in the inter- 
band channel and attraction of electrons with different 
spin directions. 

Thus, from a comparison of expressions (28), (28a), 
and (34), i t  is seen that for a sufficiently strong spin- 
orbit interaction the state with the current density wave 
may turn out to be the ground state even in the absence 
of impurity scattering.2 Equally well, as from (32), the 
degeneracy between the state with the current density 
wave and the state with the spin flux density wave, 
which is present if there is no spin-orbit interaction 
(gi =gi' =O), is lifted by this interaction, the state with 
the current density wave being favored in this case. 

The most unexpected result of the present analysis 
is the following. With increasing spin-orbit interaction, 
the spin ceases to be a good quantum number. One 
can therefore hope that, for example, states with 
charge density waves and spin density waves, which 
a re  characterized in the absence of spin-orbit inter- 
action by singlet and triplet spin structures of the 

electron- hole pairs, become entangled, i.e ., a state 
is possible in which the charge and spin density waves 
exist simultaneously. However, the foregoing analysis 
of the self-consistency equations for A shows that the 
stationary structures a r e  those corresponding either to 
charge density waves o r  spin density waves (see (30a)). 
The coexistence of the spin and charge density waves, 
which leads to a ferromagnetic state, is possible only 
if the electron and hole Fermi surfaces a re  not fully 
congruent, as well as in the absence of spin-orbit 
i n t e r a ~ t i o n . ~  

Similar reasoning can be applied also to states with 
current and spin-density waves. 

All the results presented in this paper remain un- 
changed if the extrema of the bands coincide in momen- 
tum space. Instead of the charge density wave we get 
here a shift of the sublattices and ferroelectric or- 
dering if the matrix element of the momentum operator 
differs from zero.6 

A state with spin density wave will have the period of 
the initial crystal lattice. Instead of the states with 
current and spin-flux density waves there will occur 
corresponding homogeneous current statesi if the 
magnetic field of these currents is not taken into ac- 
count. 
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