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A theory is developed for the emission of y rays by electrons and positrons in planar channeling in the 
case when the recoil on radiation and the interaction of the particle spin with the radiation field become 
important. Analytic expressions are obtained for the spectral and angular densities of the probability of 
radiation for two models of the planar potential. It is shown that recoil on radiation is the cause of 
buildup of transverse oscillations of particles in the channel. 

PACS numbers: 61.80.Mk 

INTRODUCTION 

A relativistic particle channeled in a c rys ta l  moves 
on the average in a straight line along planes o r  s tr ings 
of atoms of the crystal  (for example, s e e  the review by 
Gemmelll). The motion of a part icle in the t ransverse  
direction is finite and consequently the part icle energy 
associated with the t ransverse  motion takes on discrete 
values. Thus, a channeled particle is a model of a 
one -dimensional o r  two -dimensional (for channeling 
along a string) atom uniformly moving in a c rys ta l  with 
a relativistic velocity. From this point of view, elec - 
tromagnetic radiation occurs in spontaneous transition 
of the particle from the initial s ta te  of the t ransverse  
motion to the final s tate.  This  phenomenon has been 
discussed by Vorobiev et a1.' However, the energy of 
the observed photon, generally speaking, does not co- 
incide with the difference in the energy levels of the 
transverse motion. As a result  of the Doppler effect, 
the photon energy depends on the angle 0 between the 
direction of the particle's longitudinal velocity and the 
direction of observation. For this reason,  a s  has been 
shown by Kumakhov, 3e4  the maximum of the spectral  
density of radiation by relativistic part icles is shifted 
toward the x-ray frequency region and increases with 
increasing part icle energy-in contradiction to the con- 
clusions of Ref. 2. A detailed analysis of the e r r o r s  
contained in Ref. 2 has  been given K ~ m a k h o v . ~  

The radiation arising in spontaneous transitions be- 
tween the levels of the t ransverse  motion can be called 
the "characteristic" radiation of channeled part icles.  
As noted by K ~ m a k h o v , ~  and a lso  a s  studied in more  
detail by Bazylev and the present  a ~ t h o r , ~  the spectrum 

of this radiation is determined to a significant degree 
by the form of the interplanar potential. 

Another type of radiation (analogous to radiation in 
the radiative recombination of ions) a r i s e s  in capture 
of a part icle from the energy continuum to a level of 
the t ransverse  m ~ t i o n . ~  A s imi lar  question has been 
discussed also by Fedorov and Smirnov8 in a discussion 
of radiation by an  electron diffracted in  a single c rys -  
tal. 

After Kumakhov's work: a number of a r t ic les  by 
other authors appeared in which the theory of electro-  
magneti: radiation in channeling was discussed. Bary- 
shevskii and Dubovskayag discuss the general formula- 
tion of the problem of radiation by channeled electrons 
in a single c rys ta l  of finite thickness and the possibility 
of complex and anomalous Doppler effects. A. A. 
Vorob'ev and his  c o l l e a g ~ e s ' ~  and a lso  Terhune and 
Pantell" est imate the spectral  distribution of the pro- 
bability of radiation of relatively soft photons by elec- 
t rons in axial channeling on the bas is  of the well known 
results  of the theory of synchrotron radiation (for ex- 
ample,  s ee  Ref. 12). Akhiezer et aZ.l3 generalized to 
the ca se  of an  arb i t ra ry  potential the results  of the 
classical  calculation by Kumakhov3 of the intensity of 
dipole radiation in planar channeling in a parabolic po- 
tential. 

Bazylev and zhevago6 car r ied  out a quantum-mechan- 
ical  calculation of the spectral  and angular distributions 
of the probability of radiation of relatively soft photons 
(Aw << E) in planar channeling for  an  arb i t ra ry  form of 
interplanar potential with inclusions of the effect of 
frequency and spatial dispersion of the electromagnetic 
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wave on the radiation process.' In particular, it was 
shown that beginning with a particle energy El = (mc2)'/ 
2U0, where U, is the depth of the potential well in which 
the transverse motion of the channeled particle occurs, 
the radiation is no longer dipole. As a consequence of 
this, even in a parabolic potential well, in contrast to 
the case discussed by Kumakh0v,3*~ the probability of 
transition of a particle to the bottom of the well be- 
comes relatively high. As a consequence of the Doppler 
effect, in such a transition a photon with energy Ew 

2 ~ ~ ( E ~ / m c ~ ) ~ =  E~ is radiated. Thus, a t  sufficiently 
high energies2) of channeled positrons or  electrons, 
the upper end point of the characteristic radiation 
spectrum reaches the initial energy of the particle. In 
this case in calculation of the spectral distribution of 
photons i t  is necessary to take into account the quan- 
tum-mechanical recoil on radiation and also the inter- 
action of the particle spin with the effective radiation 
field. The present work is devoted to this question. 

1. MOTION OF ELECTRON OR POSITRON IN THE 
FIELD OF CRYSTAL PLANES 

The solution of the Dirac equation for an electron in 
an external field can be represented in the form 

Y ( ~ ) = ( ~ ' ~ , + f ) w ( x ) ,  (1) 

where P, = -ia/ax, -eA, ( E = m = c =  1) and yu a r e  the 
Dirac matrices. In a coordinate system with axis xl 
perpendicular to the channeling planes, o n v  the scalar 
potential @(xl) i s  nonzero and the function \Ir(xl) satis- 
fies the equation 

a d @  (2 
[ ( i z - e @ ( x I ) )  a + A - i + i e a , ~  ] @ ( x )  =o. 

ax, 

Let E be the energy of the relativistic particle and 
U, the characteristic potential energy of the particle 
in the field. We neglect the terms (e@(x,))' and i ea ld@/  
dx, (the latter corresponds to interaction of the particle 
spin with the field of the crystal planes). The order of 
magnitude of these terms i s  equal to the order of Ui 
<< E2. With this accuracy the solution of the equation 
was obtained in Ref. 6. Substitution of G(xl) into Eq. 
(1) leads to the following result for the initial wave 
function of the electron in the interplanar field @(xl): 

The initial values of the wave function $,(xl) and the 
energy level &, which correspond to transverse motion 
a re  determined in this case by an equation of the 
Schrijdinger type: 

Here we have introduced the following designations: 
E!= [(p:)'+ 1]112 i s  the initial energy of the longitudinal 
motion, pi i s  the projection of the initial electron mo- 
mentum on the channeling plane, p is the radius vector 
lying in the channeling plane, cp, is a spinor describing 
the initial spin state of the electron, a are  the Pauli 
matrices, p = -iV i s  the particle momentum operator, 
and E,=E;'+&,. 

The final-state wave functions of the particle a re  

obtained from Eq. (2) by formal replacement of the ini- 
tial quantum numbers by final ones. It should be noted 
that the Hamiltonian of the transverse motion corres- 
ponding to Eq. (3) depends parametrically on the energy 
of the longitudinal motion. Therefore the final wave 
functions of the transverse motion xf(x1) form an ortho- 
normal basis which, generally speaking, is different 
from {~l~(x,)). 

The nonorthogonality of the wave functions of the ini- 
tial and final states of the transverse motion creates 
certain complications in specific calculations. How- 
ever, for a number of important forms of planar po- 
tential @(xl) the problem can nevertheless be solved 
in analytic form (see below). On the other hand, analy- 
tic solution of the exact equation is impossible even in 
the case of a potential of the simplest form (for ex- 
ample, @(xl)mx12). 

2. CHARACTERISTIC RADIATION BY CHANNELED 
ELECTRONS OR POSITRONS 

For sufficiently high energies of the particle and 
photon i t  is possible to neglect the effect of the fre- 
quency dispersion of the electromagnetic wave in the 
crystal on the probability of characteristic radiation 
of y rays by channeled  particle^.^ We shall also not 
discuss more complicated radiation processes invol- 
ving the effect of spatial dispersion. Then the spectral 
and angular density of the probability of radiation of 
a photon with polarization e per unit time can be repre- 
sented in the form (see Eq. (4) from Ref. 6) 

d2w e'o 
-=- ~ e j  P ; , ( T ,  o)e ie ,dz ,  
dodQ 2nZ 

where 

k= no, n is a unit vector in the direction of radiation, 
and i, k = 1 ,2 ,3 ;  F is the set  of quantum numbers of the 
final state of the particle. 

For particles with spin 4 the matrix elements of the 
transition current have the form 

[ j ( x )  e*'] ,,= J T, ( x )  a~ F ( x )  eikrdSr. (6) 

Calculation of Eq. (6) with the wave functions (2) leads 
to the result 

(the Russian notation of square brackets indicating a 
vector product is used), and in the ultrarelativistic 
limit (Ell >> 1, E: >> 1), the vectors A and B a r e  deter- 
mined by the equalities3) 

Here v','=py/Ey is the projection of the initial velocity of 
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the particle on the channeling plane; k ,  and k" a r e  the 
photon momentum components perpendicular and paral- 
lel to the channeling plane. There exists between the 
integrals in Eq. (7) the relation 

-k,l/;'+Ei1~:' +E,I::) =0, (8) 

which is a consequence of the equality 

We eliminate from A, and B ,  by means of Eq. (8) the 
quantity I:;'. The further calculations can be simpli- 
fied if we note that the vector A is multiplied in Eq. 
(4) by the photon polarization vector and if we take in- 
to account the condition that the photon be transverse, 
k1Ie"+ k,e,= 0. Then we can assume that 

Taking into account energy conservation (E, - Ef = w ,  
see  Eq. (11)) we represent the vector B in the form 

The further calculations we shall carry  out for un- 
polarized particles. Summation over the final polari- 
zations and averaging over the initial polarizations of 
the electron in Eq. (5) is equivalent to calculation of 
the trace 

i / 2Sp(A,+ i [aB] , )  (Ak'-i[aB'Ik) =A,A,'+ IB J ' G a - B X .  (9 
Summation over the photon polarizations reduces to 
replacement of the tensor e,e: in Eq. (4) by the tensor 
6,, -n,nk. After folding this tensor with expression (9) 
it is necessary to calculate the quantity 

(M,I~'=IAI'+IB('-IA~~~+~B~~'. 

We choose a spherical system of coordinates with polar 
axis along the initial direction of the electron momen- 
tum projection p:. The azimuthal angle cp is measured 
from the direction of the x ,  axis. In the ultrarelativis- 
tic case radiation occurs mainly a t  small polar angles 
8<< 1, and therefore I M , ~  1 can be approximately rep- 
resented in the form 

IMjIlzx ( l+u+uz/2)  [ 11::' 1'0'+11.!~' 1'-2 ~e1 j : ' l ; : '  0cos q ]  

+ (ug/2Ei') 11;;' I' ( u = o / E I ) .  
(10) 

Further calculation shows that for scalar particles 
the terms proportional to u2 in Eq. (10) vanish. Thus, 
the terms proportional to u in Eq. (10) a re  due to the 
quantum-mechanical recoil on radiation, and the terms 
proportional to u 2  a re  due to interaction of the particle 
spin with the effective radiation field. 

We sum in Eq. (5) over all projections p: of the final 
momentum of the particle on the channeling plane and 
then integrate in Eq. (4) over the time variable T .  We 
obtain 

Here wif =&, - cf i s  the difference of the energy levels 
of the transverse motion, and the summation in (11) is 
carried out over all quantum numbers f of the trans- 
verse motion of the particle with longitudinal energy 
E N  = Ell - ,,. In the limit of small polarization angles 
O<< 1 and ultrarelativistic energies (Er>> 1 ,  El-,>> 1) 

the change of the longitudinal energy on radiation has 
the form 

We now reduce the quantity lMif 1 to a form more 
convenient for specific calculations. We represent the 
wave function xf(x,) of the final state of the transverse 
motion in the form of a super-position of the wave 
functions of the basis of the initial states: 

The coefficient Cfp = $xfqp *&, can be interpreted a s  
the probability amplitude of a transition from the state 
xf to the state qf. for a certain change of the relativis- 
tic mass of the particle. Then the integrals 1::) and 
1:;' in Eq. (7) can be represented in the form of sums 
of similar integrals Jj;' and J:f) which a r e  calculated 
with wave functions $f and $p belonging to the same 
basis {$,(x,)). Using the SchrMinger equation for $f 
and qp ,  we can show that the following relation exists 
between J$! and 5:;; : 

here wip=&,(Ei) -Ep (E, ) .  

Thus, the spectral and angular density of the proba- 
bility of characteristic radiation per unit time by an 
electron o r  positron with initial energy E and initial 
transverse energy &,(E) takes the form 

Here 
u = o l ( E - o ) ,  oi l .=e,-e , . ,  oo=e,-el,  k,=o0coscp, 

ei==eZ(E), el.=e,.  ( E )  , e , - e , ( E - o ) ,  
(15) 

c,,,= J*t . ' (x , )~ t  (xi)&,, JY ( k i )  = J elkrnq.'(zi)rp~.(xi)dzc. 
The functions $, and $? satisfy Eq. (3), where EI= E ,  
and xf satisfies the equation which is obtained from (3) 
by replacing Ey by E j  = E - w .  

For photons with energy w << E we obtain u = W / E  << 1, 
Cfp= tif,., , where 6fp is the Kronecker symbol and ex- 
pression (14) coincides in this case with the previously 
calculated spectral and angular distribution (see Eq. 
(15) from Ref. 6) in the limits of small polar angles 
and ultrarelativistic energies. 

Thus, the problem reduces to solution of Eq. (3) and 
calculation by means of the transverse-motion wave 
functions of the matrix elements of the radiative trans- 
ition J$! and of the quantities Cfp (or 1:;) and 1:;'; see 
Eqs. (7) and (10)). 

3. RADIATION SPECTRUM FOR VARIOUS MODELS OF 
PLANAR POTENTIAL 

The potential 9(x,) in which the channeled particle 
is moving is in the general case a periodic function 
with a period d equal to the distance between neighbor- 
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ing crystal planes: 
- 

Q ( x , )  = V(z,-nd) . 
,r=-- 

The potential produced by an individual plane V(xl) can 
be represented in analytic form in the ~ o l i ' e r e  approxi- 
mation for the potential of an atom and with inclusion 
of isotropic thermal vibrations.14 

It turns out that in most cases in analysis of the 
states of negatively charged channeled particles i t  is 
sufficient in Eq. (16) to consider only the potential of 
one plane, and for positively charged particles-the 
potential of two neighboring planes (see for example 
Section 2.4 of Ref. 1). Diffraction effects associated 
with the periodicity of the potential can be appreciable 
only in channeling of light particles (electrons) with 
energies of several MeV.15 With increasing energy of 
the particles, diffraction effects become less and less  
important. This is due to the relatively low trans- 
mission of the potential barrier separating neighboring 
channels. At high energies, where the number of levels 
in an isolated potential well is large (see below), i t  is 
possible to use a quasiclassical estimate for the ratio 
of the splitting A& of the transverse energy level & to 
the distance w, between neighboring levels (see for ex- 
ample Ref. 16, 950, problem 3): 

Here the integration is carried out over the classically 
forbidden region of transverse motion of the particle. 
According to Lindhard (see for example Ref. I), chan- 
neling is stable if a positively charged particle does 
not approach the plane closer than the Thomas-Fermi 
radius ( a 2  a,,). Using the explicit form of the silicon 
(100) plane potential,14 we obtain from Eq. (17) &/w, 
= 6- for 2EU0= 1,  where U,= 23 eV is the depth of 
the potential well. At the same time the radiative width 
r of this energy level, calculated by means of the re-  
sults of Refs. 3-6, for a parabolic potential has the 
form 

r z o O e 2 ( 2 u s )  I". 

For 2U,,E= 1 this value is three orders of magnitude 
greater than the splitting of the level a s  the result of 
tunneling. Thus, a t  sufficiently high particle energies 
if we limit ourselves to states of the transverse motion 
not too close in energy to the barrier height, we can 
neglect the band nature of the transverse energy spec- 
trum in the first  approximation and solve the problem 
for an isolated potential well. Kumakhov and Wedell17 
reached the same conclusion on the basis of somewhat 
different calculations. The existence of relatively 
narrow bands in the transverse energy spectrum may 
turn out to be important only in study of such questions 
as induced radiation by channeled particles of not too 
high energy,'' when it is necessary to know the spec- 
tral  width of the radiation a t  a definite angle 9. 

In the present work we discuss mainly effects arising 
at rather high particle energies where the states of 
the transverse motion a re  with sufficient accuracy de- 
termined by the isolated potential well. In the general 

case the band nature of the transverse energy spectrum 
can be taken into account subsequently by the strong- 
coupling method (for example, see  Ref. 19). 

The potential of an isolated well has a rather com- 
plicated form.14 Analytic solution of Eq. (3) and calcu- 
lation of J:;! and C f f .  is possible only for certain very 
simple models. Thus, in the case when the effective 
potential is a rectangular well of width d with infinitely 
high walls:) the wave functions do not depend on the 
relativistic mass of the particle (see for example $22 
of Ref. 16) and the energy values a r e  quantized accord- 
ing to the equation 

e , ( E )  =n2iZ/2Ed"i=l, 2, 3 , .  . .). (18) 
In this case the result of the calculations has a partic- 
ularly simple form:=) 

where y = kld and 6 f p  is the Kronecker symbol. 

For planar channeling of positively charged particles 
the potential is fitted with sufficient accuracy by a 
parabolic well (see Fig. 9 of Ref. 1): 

Here the energy spectrum is equidistant: 

The quantity 15:; 1 was calculated in Ref. 6 and has 
the form 

where 5 = k;d/[8(2~&)'/~]; L;(Z)  is the Laguerre 
p01ynomial.~~ 

In calculation of I C f p (  we shall use the results of 
Popov and per el or no^:^ who solved the problem of 
parametric excitation of a quantum oscillator with var-  
iable mass. For a sudden change of mass the coeffi- 
cients ICfP1 a r e  nonzero if the difference of the quan- 
tum numbers f -fl is even, and in this case the coeffi- 
cients have the form 

f<I - If- ir , ,a  - 
ICit.12 =-)'l-plP(i+,, , , l  0'1-p) IS. (22) 

f>1 

where f,= minCf,f'), f,= maxCf,fl), 

and Pr ( z )  is the associated Legendre f~nct ion. '~  

We note also that in planar channeling of electrons a 
potential of the form ecp b,) = U, ~ o s h ' ~ a x ,  i s  closer to 
reality and permits analytic solution. 

We now consider some general properties of photon 
emission in channeling of charged particles. 

Conservation of energy and momentum in the radia- 
tion require vanishing of the argument of the 6  function 
in Eq. (14). Thus in the transition of a particle from 
level i to level f the frequency of the radiation is strict-  
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ly related to the direction of radiation: 

The dependence on the azimuthal angle cp in Eq. (23) 
appears a s  a consequence of the effect of recoil in the 
radiation on the longitudinal motion of the particle. It 

, must also be recalled that the quantities w,, in the gen- 
era l  case depend parametrically on the radiation fre- 
quency a s  the result of the recoil effect on the trans- 
verse motion. The maximum frequency w6: is radiated 
at O= 0. Using for a rectangular well (see Eq. (18)) the 
explicit form of the parametric dependence w,, = c,(E) 
-cf(E-w) on the frequency w, we obtain in this case  

where 3,, =c,(E)-cf(E). This result shows that at re l -  
atively low energies where 2Ec, << 1 the maximum fre- 
quency increases a s  E ~ / ~  (if i -f << i, then G,, - E ' I / ~  ) 9 

which corresponds to the results of K ~ m a k h o v . ~ ' ~  HOW- 

ever, a t  high energies (2Ec, >> 1) the maximum fre- 
quency increases more slowly (as  E",) with increase 
of the energy. For a parabolic well we obtain a result 
similar to Eq. (24) but more cumbersome. 

The absolute upper end point of the spectrum corres-  
ponds to transition of the particle to the bottom of the 
potential well (wif = c,(E)). If a s  an estimate of c,(E) 
we take the value Uo= 10 eV, we find that 2EU,= 1 a t  
electron or  positron energies E x  10 GeV and conse- 
quently in this case the particle can emit photons with 
energy w - E (see Eq. (24)). 

It should be noted that in a certain region near the 
angle 9= 0 the radiation has a dipole nature for any 
particle energies. In this case the arguments y in (19) 
and 5 in (21) turn out to be small and the radiative 
transition matrix elements a r e  substantially simpli- 
fied.' Therefore in evaluating the spectral density 
dQ/dw of the radiated energy for w= we can use 
the dipole approximation formulas obtained in Refs. 
3-6: 

Then, according to Eq. (24), the spectral density of 
energy a t  w= w:: f irst  r i ses  as EI/' ( ~ E E ,  << 1) and then 
(2Ec, >> 1) begins to fall a s  E ~ ~ / ~  with increasing energy 
of the particle. This important result shows that the 
maximum spectral density of the energy of character- 
istic radiation by channeled particles is reached a t  
energies E = (+)u, (-10 GeV for planar channeling). 

The spectral distribution of radiated energy obtained 
by means of expressions (14), (15), and (18), (19), by 
numerical integration of (14) over the azimuthal angle 
cp, is given in the figure for an electron with energy 
10 GeV which is channeled in the (100) plane of si l i-  
con." The potential was fitted by a rectangular well 
with parameters Uo= 18 eV, d =  1.92 hi. The initial 
state of the transverse motion corresponds to a quan- 
tum number i =  185, a t  which the energy of the trans- 
verse motion c, is close to the value U,. Sharp max- 
ima in the spectrum ar ise  a t  frequencies w,!,g for even 
f< i. A small region of frequencies near these maxima 

is described by the dipole approximation. Smoother 
maxima correspond to the frequencies w62 for odd f. 
These maxima appear as the result of explicit violation 
of the dipole apprcximation a t  high energies. 

4. INFLUENCE OF POPULATION OF STATES ON THE 
RADIATION SPECTRUM 

Expressions (lo),  (11) and (14), (15) for the spectral 
and angular density of the probability of radiation were 
obtained on the assumption that the particle before ra -  
diation is in a definite state i of the transverse motion. 
In real  situations the initial state of channeled particles 
is characterized by some distribution in the transverse 
energy levels. This distribution is formed on entry of 
the particles into the crystal  and, generally speaking, 
changes a s  the beam of particles moves into the inter- 
ior  of the crystal  a s  the result of scattering of the par- 
ticles by the electrons of the medium, lattice defects, 
impurities, and other factors. It is important, how- 
ever,  that with increase of the particle energy the ra-  
diative lifetime of the levels turns out to be shorter 
than the lifetime due to inelastic scattering processes.18 
Thus, in the first  approximation we can assume that 
the population of the levels in the radiation process 
coincides with this value a t  the moment of entry into 
the crystal. 

Let the wave function of transverse motion of the 
particle before entering the crystal be a plane wave 

which corresponds to a particle traveling a t  a definite 
angle ~=P,/E relative to the crystal  planes. Near the 
crystal boundary the plane wave is reorganized into a 
superposition of the wave functions of the transverse 
motion $,(x,). As shown by Kagan and ~ o n o n e t s ' ~  the 
time I ,  of this reorganization turns out to be signifi- ' 

cantly shorter than the characteristic time 1, of the 
transverse motion of the particle. Therefore according 
to the theory of sudden perturbations the relative pro- 
bability P, of capture into a level n of the transverse 
motion is determined by the square of the correspond- 
ing coefficient of expansion of the plane wave in the 
wave functions $,(xl). For a rectangular well this pro- 
bability has the form 

For a parabolic potential (see also Ref. 17) 

where w: = 8u0/d2E; C, and C, a r e  normalization con- 
stants and the H,(z) a r e  Hermite polynomials. 

Analysis of expressions (26) and (27) shows that the 
capture probability has a distinct maximum for a small 
number of levels whose energy is close to the value 
p:/2E (see also Fig. 4 of Ref. 22). Hence i t  follows in 
particular that the critical entry angle at which dis- 
crete states in a potential well of depth U, a r e  still 
effectively populated is determined by the relation 
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decreases. As a result the quantum-mechanical recoil 
in radiation of even a relatively soft photon (w<< E) be- 
comes important. 

FIG. 1. Spectral density of radiated energy per unit path 
of an electron with energy 10 GeV channeled in the (110) plane 
of silicon, as a function of the frequency of the radiation. 

which is in agreement with the classical estimates of 
Lindhard (see for example Ref. 1). 

Thus, if the angular spread AO, of the particles in 
the beam is small (AGO<< Or ' ) ,  i t  is possible by ap- 
propriate orientation of the crystal to populate a rela- 
tively small number of close-lying levels, and then the 
pattern of the radiation spectrum will be close to that 
shown in the figure. However, for high-energy parti- 
cles (2 10 GeV) the critical channeling angle is s o  small 
(1 lo-*) that the angular divergence of real beams can 
be comparable with O?'. In this case i t  is necessary 
to further average the probabilities P,(p , )  over the dis- 
tribution of transverse momenta of the particles in the 
beam. Here the radiation spectrum can change sub- 
stantially in shape. Changes in the spectrum due to 
averaging over a relatively broad distribution of initial 
states of the transverse motion is more important, the 
larger is the deviation from an equidistant spectrum7' 
of the frequencies wi f .  

CONCLUSION 

In the theory of the radiation by channeled particles 
it is possible to separate a dimensionless parameter 
a=  ( 2 ~ & % ) " ~  which represents the ratio of the critical 
channeling angle to the effective angle of the radiation. 
On the other hand, this parameter also determines the 
number of levels n,,-$d in the potential well of the 
transverse motion, a s  well a s  the relativistic effects 
in the transverse motion of the channeled particles in 
the coordinate system where there is no longitudinal 
motion. 

The characteristics of the radiation turn out to be 
completely different, depending on whether the para- 
meter $ is small or  large. The main features in radi- 
ation by high-energy particles (8 2 1) a r e  a s  follows: 

1. With increase of $ the number of levels in the 
potential well increases and reaches a value -10' for 
13 - 1,  while the distance between neighboring levels 

2. Multipole expansion of the radiation field, gen- 
erally speaking, becomes inapplicable. An exception 
is in relatively narrow frequency regions correspond- 
ing to angles 8% 0. The width of these regions de-. 
creases with increase of 13. 

3. The factors enumerated above lead in turn to the 
s tar t  of a drop in the size of the peaks in the spectral 
density of the radiated energy with increasing energy 
of the particle E ,  and not a rise3" a s  in the case of 
relatively low energies (B << 1). The positions of these 
peaks in the spectrum shift toward higher frequencies 
more slowly with increase of the particle energy than 
in the case of low energies. 

4. The spectrum of the frequencies w of the radiated 
photons advances into the region w -  E where the radi- 
ation has essentially a quantum-mechanical nature. 
Under these conditions the radiation damping of the 
classical amplitude of transverse oscillations of parti- 
cles in the channel is partially compensated by a para- 
metric buildup of the oscillations (see Eq. (22)). The 
cause of the buildup is the recoil which the particle 
undergoes in radiating a sufficiently energetic photon. 

5. Since the number of levels increases with increase 
of 3,  the transverse motion of a particle in the field of 
the planes for most states becomes more and more 
quasiclassical. The quantum nature of the transverse 
motion appears in the radiation only for transitions of 
a particle to the very lowest levels f such that (f - i) 
-i, i.e., in the most energetic portion of the radiated 
spectrum. In the relatively soft part  of the spectrum 
which is determined by transitions between the closest 
levels with large quantum numbers, the spectrum of 
the radiation by channeled particles is similar to the 
spectrum of radiation in macroscopic external fields 
(undulator radiation) (see for example Ref. 23). The 
analogy of the spectra ar ises  a s  a consequence of the 
similarity of the particle trajectories in the two cases. 
Only the causes producing periodic motion of the par- 
ticles a r e  different. 

The features considered in the radiation of high-en- 
ergy particles in planar channeling apply also to axial 
channeling, where they should be observed a t  some- 
what lower energies (-1 GeV), since the characteristic 
potential of an atomic string is a s  a rule higher than the 
potential of a plane. 

I would like to thank V. I. Glebov, who made the nu- 
merical calculations of the radiation spectrum, and 
also D. F. Alferov, Yu. A. Bashmakov, E.  G. Bessonov, 
and M. A. Kumakhov for a number of helpful remarks. 

In the studies cited, except for Ref. 9, the estimates of the 
radiation intensity agree with the results of ~umakhov.~'~ 

2' For positrons channeled along the (110) plane in silicon, E l  
-10 GeV. 

3, In calculation of A and B it is not necessary also to distin- 
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guish between the total energies Ei(Ef) and the longitudinal 
energies E! ( E ' ; ) .  

"The specific barrier height turns out to be unimportant for 
the levels considered. 

" In Ref. 6 the quantity J $ !  is given erroneously for this case. 
6' Integration over 0 is  carried out by elementary means in 

view of the presence of the 6 function in Eq. (14). 
" ~ t  high energies (2 E & 2 1) this spectrum is non-equidistant 

even for a parabolic well. 
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Spin-orbit interaction in an excitonic dielectric 
B. A. Volkov, V. G. Kantser, and Yu. V. Kopaev 
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The influence of spin-orbit interaction on the character of electron-hole pairing in a two-band model is 
considered. It is shown that the classification by the possible types of the ground state, given by Halperin 
and Rice [Solid State Physics, 21, 115 (1968)], remains in force in this case. The degeneracy between the 
chargecurrent and spin-current states, which exists in the absence of spin-orbit interaction, is lifted. If 
the spin-orbit interaction is strong enough, the current state may turn out to be the ground state even in 
the absence of impurity scattering. 

PACS numbers: 71.35. + z, 71.70.Ej 

1. INTRODUCTION 

It  is known that, depending on the phase of the o r d e r  
p a r a m e t e r  and on i t s  sp in  s t ruc ture ,  f o u r  types of 
anomalous mean  values are possible  in electron-hole 
pairing.' It is shown in Ref. 2 that if no account is taken 
of the sp in  d e g r e e  of f reedom the s y s t e m  goes o v e r  into 
a s ta te  (n(r)), with a charge-density wave ( C ~ D W )  if the 
order p a r a m e t e r  is real, and into a s t a t e  (j(r)) with a 
current-density wave (CUDW) if the o r d e r  p a r a m e t e r  is 

imaginary. If account is taken of the sp in  and of the asso- 
ciated choice of the s ignof  the o r d e r p a r a m e t e r  A f o r  oppo- 
s i t e  spindirect ions,  then it c a n b e  s e e n  that, dependingon 
this  choice, we get also a spin-density wave (SDW) 
( ~ ( r ) ) ,  and f o r  an imaginary order p a r a m e t e r  we  get  
a sp in  flux densi ty wave (SFDW) ( ~ ( r ) j ( r ) )  f o r  a n  imag- 
inary o r d e r  parameter .  Each  of these o r d e r  p a r a m e t e r s  
is charac te r ized  by i t s  own effective coupling constant. 
Following Ref. 3, we c a n  show that in  the scheme of a n  
isotropic  semimeta l ,  the effective coupling constants 
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