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The structures of the crystalline modifications of IV-VI compounds are regarded as distorted cubic 
lattices of the NaCl type. The instability of the cubic phase is attributed to a specific feature of the 
electron spectrum, whereby the Fermi surface of the "parent" phase with primitive cubic lattice becomes 
completely or partially congruent with itself under certain translations in reciprocal space. It is shown that 
diierent degrees of doping can result in ferroelectric structures with different symmetries. Restructuring 
into an antiferromagnetic phase with rhombic symmetry is considered within the framework of the 
phenomenological theory of structure transitions. The possibility of the onset of an inhomogeneous 
structure in this phase, due to the noncommensurability of the displacement wave with the period of the 
initial lattice, is indicated. The influence of doping, which stabilizes the commensurate structure, is 
examined. A number of experimental data on phase transitions in IV-VI compounds are discussed on the 
basis of the proposed model. 

PACS numbers: 61.50.Em, 61.70.Tm, 77.80.Bh 

1. INTRODUCTION 

The crystal structures of IV-VI semiconductors, 
meaning compounds of elements of group N and group 
VI of the periodic table, can be one of three systems, 
cubic, rhombic, and rhombohedral. The crystals of 
lead chalcogenide Pb(S, Se, Te) and of the high-tem- 
perature modifications of GeTe and SnTe have a cubic 
lattice of the NaCl type. The structures of the com- 
pounds Ge(S, Se) and Sn(S, Se) belong to  the rhombic 
system.' With changing temperature and pressure, 
phase transitions between the indicated crystalline 
modifications take place in the N-VI compounds. ' 
Thus, when the temperature of GeTe is decreased, 
depending on the deviation of the composition from 
stoichiometric (which determines the carr ier  density 
in IV-VI semiconductors1), transitions a re  observed 
from the cubic to the rhombohedral phase2 or  to the 
rhombic phase. In SnTe, a structure transition is 
observed only into the rhombohedral phase,4 although 
there a r e  experimental indications that another phase 
transition is possible. 

In the present study we attempted to connect the ob- 
served crystal structures of the semiconductors of 
the IV-VI group with the general symmetry properties 
of their electron spectrum. We shall use here the 
known analogy between IV-VI compounds and the ele- 
ments of group V (Bi, Sb, AS),' an analogy which i s  
apparently due to the fact that in all these substances 
each atom has on the average two s and three p va- 
lences electrons. The crystal structures of the dif- 
ferent modifications of the IV-VI semiconductors can 
be regarded a s  NaCl lattices, deformed in a definite 
fashion, in analogy with the Abrikosov and Fal'kovskiia 
treatment of the structure of the elements of the bis- 
muth group by starting from a primitive cubic lattice. 

The dependence of the critical temperature of the 
transition, especially in SnTe (Ref. 4) and of the sym- 

metry of the low-temperature phase in GeTe (Refs. 
2 and 3) on the ca r r i e r  density indicates that the struc- 
tural transition is due to  instability in the electronic 
subsystem, due to electron-electron and electron- 
phonon interactions. This instability can ar ise  in a 
metal in the presence of congruent sections of the 
Fermi ~ u r f a c e , ~  in a semimetal that has electron and 
hole Fermi surface of almost the same shape,8 or  
in a semiconductor with sufficiently narrow forbidden 
band." These three cases can be treated in unified 
fashion by assuming the initial state to be metallic. 
Simultaneously with the "collective" gap in the elec- 
tron spectrum, i t  is necessary to take into account . 
the semiconducting gap," a s  well a s  the structural re-  
arrangement with the corresponding change of the 
Brillouin zone. This approach should be based on an 
analysis of the electron spectrum of the initial phase. 

2. ELECTRON SPECTRUM OF IV-VI 
SEMICONDUCTORS I N  THE-TIGHT-BINDING 
APPROXIMATION 

1. From among the IV-VI compounds, the most 
fully investigated is the band structure of lead chal- 
~ogen ides . '~* '~  It has been established that the ex- 
t rema of the electron and hole bands a re  located at 
L points of the Brillouin zone (Fig. 1). A similar 
electron spectrum is possessed by the semiconductors 
SnTe (Ref. 14) and GeTe. Experiments on photoemis- 
sion15 offer evidence of a similar band structure also'  
for compounds with orthorhombic lattice such a s  
Ge(S, Se) and Sn(S, Se). Thus, one can speak of an 
electron spectrum that i s  typical of semiconductors 
of the N-VI group. 

The forbidden band widths a re  30.1 and S O ,  18 eV 
for GeTe and SnTe, respectively, and - 0.3 eV in lead 
chalcogenidesl (300 K). The situation considered in 
Refs. 10 and 11 i s  thus realized, and i t  might seem 
that the structural realignment should be connected 
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FIG. 1. Brillouin zones 
for primitive cubic lattice 
with period a (see Fig. 2) 
and for an fcc lattice 
with period 2a. 

with the electron instability in the vicinity of the L 
points. It can be shown, however (see Ref. 16 and the 
Appendix) that the instability at the L points should 
lead to a transition into a structure with tetragonal 
symmetry,') whereas a rhombohedral distortionof the 
lattice is observed in experiment. Consequently, the 
instability is due to some other states and it is neces- 
sary to consider the formation of the electron spectrum 
in the entire Brillouin zone. We use for this purpose 
the tight-binding approximation. 

Regarding the interaction integrals a s  the param- 
e ters  of the fit, it i s  possible to account in this ap- 
proximation for the real band structures with good 
accuracy.17 At the same time, the symmetry of the 
electron spectrum is taken into account automatically 
and does not depend on these parameters. 

2. We s tar t  with aprimitive cubic lattice with period 
a (Fig. 2), in which each atom contains three valence 
p electrons. The chemical non-equivalence of neigh- 
boring atoms will be subsequently taken into account 
by introducing the ionicity ~ ( r ) ,  a s  was done by 
Gordyunin and Gor'kov. la The Brillouin zone for the 
considered primitive and fcc lattices a r e  respectively 
a cube and a polyhedron (Fig. 1). Since the atomic s 
levels form a deeplying narrow band,'' we confine our- 
selves to p electrons only. 

Thus, our initial approximation agrees with the hypo- 
thetical phase of the elements of the bismuth group, 
which has a primitive cubic lattice, and corresponds to 
a metal with a Fermi surface of large area. 

In the tight-binding approximation the atomic states 
Ip,) lead t o  bands t,(k) ( i = x ,  y, z with Ip,)=xf ( I r  I) 
etc. ). The corresponding Bloch functions a r e  

i 
Ik, i)= ax exp(ikR,,)p~(r-R.), . 

where the summation is over the sites of the primitive 
cubic lattice, N is the number of sites, p ,(r) is the 
atomic wave function of the state Ip,). Taking into 
account the interaction integrals for the three coor- 
dination spheres, the energy spectrum takes the form'' 

FIG. 2. Crystal lattice of 
the NaCl type. This struc- 
ture can be obtained from 
the primitive cubic lattice 
with period a by making 
the neighboring atoms 
nonequivalent. 

(1) e. ( k )  =a cos kp+V,(O, 1.0) (coa k,a+cos k.a) 
+V=( i , I ,O)  (cos k a  coa k,a+cos k& cos k.a) 

+V=(O, 1, l )cos k,acos k.a+V=(l, 1, 1)cos k p c o s  kflcos k,a. (2) 

Similar expressions a r e  obtained also for E, and E,. 

The interaction integrals a r e  

where a, a r e  the basis vectors of the cubic lattice. 

The degeneracy of the bands E,(k) along the A axis 
is partially lifted i f  account is taken of the off-diagonal 
matrix elements W,, (hybridization of the bands (2)): 

W",k) = V w ( l ,  1 ,  0)s in k,a sin k p  
-V=',,(i ,  1 ,  l ) s in  k~ sin k p  sin k,a. 

The electron spectrum is determined by the roots of 
the secular equation 

It is seen from (2)-(4) that if we neglect the inter- 
action integrals corresponding to  the second coordina- 
tion sphere, then the electron spectrum &,(k) (j= 1, 
2,3) satisfies the condition 

where Q= ( d a )  (1,1,1). The Fermi surface defined 
by Eq. (4) for E = 0 would4hen coincide with itself 
following a translation by the vector Q. If the viola- 
tion of the condition (5) on account of integrals of the 
type V,,(l, 1,0), is not too strong, then the crystal 
lattice may turn out to  unstable and the crystal ac- 
quires a periodicity characterized by the wave vector 
Q. 8.19 

A strikingly illustrative picture can be obtained by 
discarding in (2) all the terms except the first. As a 
result we have three purely one-dimensional bands 
which can be regarded a s  the "zeroth" approximation 
Fermi surface consists of three pairs of planes passing 
through the centers of the lines A (see Fig. 1). This 
surface becomes congruent with itself when shifted by 
the vector Q. 

The hybridization (3) leads to splitting of the zeroth- 
approximation Fermi surface into surfaces of three 
types. At the center of the Brillouin zone 1: is located 
a hole surface which is close in shape (with measure 
W,,) to a cube. At the vertices R there a r e  electron 
pockets. Finally, there is an open Fermi surface 
being shown in Fig. 3. On the A axis this surface is 
tangent to the central whole cube, a fact that is patent- 
ly of symmetry origin. 

FIG. 3. Open Fermi sur- 
face in the metallic 
''ortglnal phase" with the 
cubic lattice. The sur- 
face was constructed in 
the limit of small hybridi- 
zation for quasi-one-di- 
mensional bands (2). 
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Inasmuch a s  bismuth becomes metallic under pres- 
sure:' and probably has then a primitive cubic lat- 
t i ~ e , ~ l  one can hope to observe the open Fermi surface 
in experiment. We note also that the existence of this 
very Fermi surface was proposed by ArbikosovZ2 to  
reconcile his theory of the electron spectrum of bis- 
muth" with the Luttinger theorem.23 

3. The initial spectrum (2) is transformed into a 
spectrum of the semiconductor type if account is taken 
of the ionicity &)-a potential with the symmetry of 
a face-centered lattice with period 2a. The interaction 
of the electrons with this potential in the representa- 
tion of the tight-binding Bloch functions (1) i s  of the 
form 

where &, is the operator of creation of an electron in 
the state (1) (we omit the spin indices). The summa- 
tion over k in (6) i s  within the limits of the Brillouin 
zone of the cubic lattice. If the vector k +  Q lies out- 
side its limits, it must be replaced by the vector into 
which i t  i s  transformed when referred to the f i rs t  
Brillouin zone. The matrix elements a re  obtained in 
the form 

(7) 
where v(B + Q) a re  the Fourier components of the po- 
tential ~ ( r ) ,  4, are  the vectors of the primitive cubic 
lattice sites, and B a re  the vectors of the correspond- 
ing reciprocal lattice. The matrix elements (7) satis- 
fy the condition 

vjl(Q,k)=vij4(Q, k +Q), 

which guarantees hermiticity of the operator H,,. 

The interaction corresponding to the f i rs t  term in 
(6) reduces simply to replacement of the integrals 
V,,(p, q, r )  in (2) and (3) by the quantities V,,(p, q, r )  
= v, j ( ~ ,  4, Y) + v,~(P, q, 4, where 

We denote the electron spectrum and the hybridization 
matrid elements, with allowance for this interaction, 
by 2:') (k) and W, ,(k). Far  from the degeneracy line 
of the A bands Ly) (k), the hybridization W,,(k) and 
the second term in the interaction with ionicity (6) can 
be taken into acc0unt.b~ perturbation theory: 

I Fij (k) I' - lu,(Q, k) l 2  
,-I 

] (8) "'k'='" (')+ 2 [ trl (k)-:y1 (k) (k) +;:I (k) ' 

It is implied here that in the energy correction, the 
matrix elements and the energy denominators were cal- 
culated with account taken only 'of the first  nonvanishing 
interaction integrals. Then ti0' (k) is the sum of the 
first two terms of (2) and satisfies the condition (5). 
Inasmuch a s  in this approximation we also have 

the second-order correction does not violate the re- 
quirement (5). 

It remains now to determine how the third term in 
4, (6) transforms the spectrum (8). We note that 
since 2Q i s  the reciprocal-lattice vector, in the most 
general case the spectrum &,(k) can be represented in 
the form 

where 

Concrete expressions for f,(k) and q,(k) a r e  easy to 
obtain from formulas (2) and (8). The electron spec- 
trum is defined by the equation 

whose solution, with allowance for (9), i s  of the form 

The dispersion law E,(k) along any direction i s  char- 
acterized by a dielectric gap, and a discontinuity in 
E,(k) takes place on the surface f ,(k)= 0. Since this 
surface satisfies exactly the congruence condition for 
the vector Q, when E,(k) i s  reduced to the Brillouin 
zone of an fcc lattice i t  is "matched" exactly on the 
t,(k) = 0 surface, so  that the energy in the reduced 
band is continuous. 

The term q,(k) in (lo), which violates the congruence 
condition for the spectrum (9), leads to two conse- 
quences. First ,  inasmuch a s  V,q,(k) # 0 on the surface 
f,(k)= 0, the extrema of the upper and lower bands 
shift away from this surface in opposite directions. 
As a result, an indirect gap is produced near the sur: 
face t,(k)= 0. Quantitative calculations of the band 
s t r ~ c t u r e ' ~ ~ ~ ~  indeed lead to  the existence of a large 
indirect gap near the midpoint of the line rX. Second, 
qt(k) can lead to overlap of bands a t  different points of 
k-space if  

In order for the spectrum E,(k) to correspond to a 
semiconductor i t  is therefore necessary that the "non- 
congruent" term q,(k) not exceed the ionicity matrix 
element. 

3. ELECTRON-PHONON INTERACTION AND 
STRUCTURAL INSTABILITY. FERROELECTRIC 
PHASES 

An analysis of the electron spectrum allows us to  
conclude that the structural instability in IV-VI com- 
pounds is apparently connected with the approximate 
congruence of the Fermi surface following a shift by 
the vector Q= (n/a) (1, 1, 1). We have in mind here 
the Fermi surface of a hypothetical structure with a 
primitive cubic lattice. 

We consider the interaction of electrons with a wave 
of static displacements: 
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u(R.) =ucos QR,. (11) 

Here u(R,) i s  the displacement of the ion in the site R,. 
In a cubic lattice of a IV-VI semiconductor (Fig. 2) 
this wave corresponds to doubling in the system of 
planes (1 ll), which contain only the atoms A and B; 
in other words, it corresponds to a relative shift of two 
fcc sublattices of atoms A and B by a vector u. The 
perturbation connected with the wave (11) takes the 
form 

where v,(r - R,) is the potential of the ion at the site R,,. 
The matrix element of the perturbation (12) in the wave 
functions (I), with allowance for the first nonvanishing 
overlap integrals, i s  

(kilGVlk'j)=2iu z,,(a,)sin k . a y  8 (k-kl+Q+B), 
=-a,",: e 

where 

Z,,(a.) = 1 6 r  Ov,(r) [(pi(r-a.)cn(r) +cpj(r-a=)cpi(r) 1, 

a, a re  the basis vectors of the primitive cubic lattice. 

We confine ourselves to the integrals Z,,(a,)=Za Ja, 
which a re  the largest because of the anisotropy of the 
atomic p functions. Then the interaction of the elec- 
trons with the displacement wave (It) ,  in the repre- 
sentation of the tight-binding functions (I), is of the 
form 

where g,(k) = Z sink,a and the region of summation over 
k i s  limited to the Brillouin zone of the cubic lattice; 
the vectork +Q, just a s  in (6) i s  assumed to be the re- 
duced one. 

The electron spectrum in the deformed lattice i s  
similar to the spectrum (10): 

At zero temperature, the energy of the system can be 
written in the form 

where the last term corresponds to the energy of the 
elastic deformation of the lattice; 8 ( x )  = 1 at x > 0 and 
8&)= 0 if x < 0. We take into account here the possi- 
bility of doping the semiconductor, which leads to a 
deviation from half-filled bands. The chemical poten- 
tial p i s  defined by the equation 

where N i s  the concentration of the "excess" electrons. 
The coefficient 2 in (15) and (16) is due to summation 
over the spin. 

From the condition a/au,(E - gN)= 0 (it is convenient 
here to assume p fixed and to obtain the derivative 
a ~ / a u ,  by differentiating (16)) we obtain equations for 
the equilibrium values of the order parameters u,: 

We note that the equations for the different i are  con- 
nected by the condition (16), so  that the displacements 
u, in different directions a re  not independent. Each 
equation of (17) coincides with the typical self-consis- 
tency equation that appears, for example, in the prob- 
lem of electron-hole pairing. 9'11 This equation has 
been studied in quite a number of papers. a4 We a re  
interested in effects connected with "spillover" of the 
carriers from one band to the other, which makes the 
order parameters u, interdependent and, in final anal- 
ysis, causes the symmetry of the restructured lattice. 
We therefore simplify to the utmost Eqs. (16) and (I?), 
putting g,(k)= g= const, v,,(Q, k)= v= const, q,(k) = 0. 
The integration in (16) and (17) will be carried out in 
standard fashion, introducing the effective state densi- 
ty on the Fermi surface N(0). As a result we obtain 
from (17) 

The condition (16) takes the form 

We have introduced here the order parameter A = gu 
and p,,= p(A=O), 

n=!V/6h1(0) ; Ac=2a eup (-o,2/2g2N(0) ) . 

From (15), using (18) and (19), we can obtain an 
expression for the change 6 E  of the system energy due 
to restructuring: 

Here M is equal to the number of bands in which A, 
+ 0. 

Equations (18) and (19) admit of five types of solu- 
tions with different symmetries. We present expres- 
sions for the order parameter and the energy in the 
case v = 0. Neglect of ionicity does not affect the quali- 
tative results but simplifies very greatly the formulas. 
For the concentration of electrons and for the energy 
gain we introduce the dimensionless quantities: 

z=n/Ao, W=2 16E 1 / 3 A O 2 ~ ( 0 ) .  

Thus, the following solutions a r e  possible: 

This solution corresponds to a shift of the sublattices 
along the threefold axis [ I l l ]  and to rhombohedra1 
symmetry 

l,=A,=l,, A,Z=30'(l-6z); W = ( 1 - 2 ~ ) ~ + 4 z ~ .  

This solution corresponds, generally speaking, to 
triclinic symmetry. With increasing doping x ,  the 
polarization vector A rotates in the plane (110) from 
the [ I l l ]  axis to the twofold axis [110]. 
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Here the symmetry i s  likewise triclinic, but with in- 
creasing x the vector A rotates in the (110) plane from 
[ I l l ]  to the fourfold axis [001]. 

The sublattices shift here along [I101 and the sym- 
metry i s  rhombic 

The sublattices along [OOl] and the symmetry is tetrag- 
onal . 

Figure 4 shows the dependence of the energy gains 
on the carr ier  density for all  five solutions. At zero 
doping, the rhombohedral phase i s  energywise favored. 
This situation is realized in elements of the bismuth 
group, whose crystal structure i s  obtained from the 
cubic by shifting the fcc sublattices along a threefold 
axis. z0 When structural transitions take place in GeTe 
and SnTe, the sublattices of the different atoms shift 
in eactly the same way. ' In all these substances, the 
shift of the sublattices is accompanied by acoustic 
deformation along the same [111] axis; these deforma- 
tions can be attributed to anharmonicity of the type 
cu2, where e is the acoustic deformation. Indeed, 
measurements of the elastic constants near the phase- 
transition point in GeTe - SnTe alloysz5 point to an 
anomalously strong coupling of the acoustic phonons 
with the soft optical mode. 

It i s  seen from Fig. 4 that a t  arbitrarily small 
doping the rhombohedral solution becomes triclinic. 
This does not occur in GeTe o r  SnTe, owing to the 
presence of a reservoir for the ca r r i e r s  in the vicinity 
of the L points, where the gap between the electron 
and holes bands is anomalously small. Therefore, up 
to concentrations N =  1019-1020 cml=, when this reser-  

Transitions (with increasing x )  from the rhombohedral 
phase to the triclinic (2) and from the triclinic (2) to 
the rhombic a r e  of second order. The transition from 
the rhombic to the tetragonal phase is of f i rs t  order, 
since the derivative aE/an  is discontinuous. The t r i -  
clinic (3) solution goes over continuously into the 
tetragonal solution, but i t  can be only metastable. 

All the obtained solutions correspond to instability 
of a phonon with Q= (lr/a) (1, 1, 1) (point R, Fig. I ) ,  
and have different polarizations of the unstable os- 
cillations. The lattice deformation can be represented 
a s  a doubling in the system of (11 1) planes, each of 
which contains only atoms of one sort .  Therefore, 
owing to  the ionicity, electric polarization is produced 
in the structural transition, i. e., the obtained phases 
a r e  ferroelectric. One can expect repolarization and 
stabilization of the metastable phases in the electric 
field. 

It appears that up to  now only a rhombohedral ferro- 
electric phase has been observed in IV-VI compounds 
(see, however, Ref. 5). The rhombic phase, into 
which GeTe goes over when the ca r r i e r  density is in- 
creased, is similar to the structure of the compounds 
Ge(S, Se) and Sn(S, Se), and i s  antiferroelectric. 

4. RHOMBIC PHASE. NONCOMMENSURABILITY 

The structure of the rhombic modification of the IV- 
VI compounds can be obtained from the cubic one with 
aid of the atom displacements shown in Fig. 5. The 
relative disdacements of the sublattices made up of 
different atoms in the (001) planes a r e  directed along 
the twofold axis [I101 and have different signs for 
neighboring two pairs of planes. In addition, planes 
with identical directions of the displacements come 
closer together, and a layered structure is produced 
along the [OOl]  axis. In accordance with the preceding 
section, we can call this structure antiferroelectricmZ) 

voir turns out to  be filled, on large sections of the If the atoms of the initial lattice a re  assumed to be 
Fermi surface there a r e  no "excess" electrons, and equivalent, the displacements on Fig. 5 denote a quad- 
the semiconductor must be regarded a s  "undoped. " rupling of the period of the initial primitive cubic 
In our simplified model, the rhombohedral, triclinic lattice along [001] and doublings along [loo] and [OlO]. 
(2), rhombic, and tetragonal solutions replace each This corresponds to instability of the phonon with wave 
other in sequence with increasing ca r r i e r  density. vector Q,= ( d a )  (1, 1, 3 )  (point Z on Fig. 1) and with 

FIG. 4. Dependence of 
the energy gain on going 
into ferroelectric phases 
of various symmetry: 1- 
rhombohedral phase, 2 ,  
3-triclinic, 4-rhombic , 
5-tetragonal. 
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FIG. 5. Atom displace- 
ments that cause a cubic 
structure to become anti- 
ferroelectric with 
rhombic symmetry. 
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polarization along [110], and to a phonon Q= (w/a) 
(0, 0, 1) (point X )  with polarization along [OOl]. 

In the model of three purely one-dimensional bands, 
the Fermi surface that consists of planes i s  made 
partially congruent with itself by a displacement by 
any of the vectors that join the point J? with a point on 
the surface of the cubic Brillouin zone. One can there- 
fore expect softening of all the phonons with such wave 
vectors, particularly a t  the points X and Z (see Fig. 
1 ). 

Let us examine a structural transition from the 
cubic phase into the rhombic phase with the aid of the 
Landau expansion for the free energyz8 near the critical 
temperature. We assume that the transition is  con- 
nected with the instability of the phonon at the point Z 
(we note that when an hcp lattice is  reduced to the 
Brillouin zone, this point goes over into a point at the 
middle of the A axis). The star of the vector Q, con- 
tains six vectors. The displacement vector in the 
(110) plane i s  transformed in accordance with the two- 
dimensional irreducible representation of the small 
group C,, of the vector Q,. Consequently, the phase 
transition should be characterized by 12 order param- 
eters. Bearing in mind the crystal structure in Fig. 
5, we restrict our analysis to two vectors (u/a)  (1, 1, 
* i) of the star {Qd. The direction [I101 of the dis- 
placement is assumed given. Then the transition i s  
characterized only by two order parameters, u, and 
u,, which have the meaning of the amplitudes of sine 
and cosine electron-density waves: 

6p.0.11, cos x x  cos z y  s in(nz/2) ,  6p,mu, cos srz cos ny cos (srz/2). (20) 

Here x, y, and z a re  the coordinates along the cubic 
axes, measured in units of the period of the cubic 
lattice. Doubling in the system of planes (001) cor- 
responds to the wave 

By making up invariants out of functions that trans- 
form in accordance with (20) and (21), we obtain for 
the free energy the expansion 

Minimization of this expression yields: 1) at BZ - Bl 
- yZ/4a>0 

This solution is  obviously of no interest to us; 2) at 
82'  81 -~z /4a<0  

Owing to the presence in (22) of a third-order invari- -. 
ant, the appearance of u,,,# 0 induces a displacement 
y, so that the antiferroelectric phase becomes auto- 
matically layered. An analogous situation is  realized 
in impurity ferroelectrics, where the spontaneous 
polarization is induced by the true order parameter. z9 

We note that the sign of y determines the phase of the 
wave (21): the layers that come close together have 
the same displacement directions along [I101 at y < 0 
(as in Fig. 5), and opposite directions at y > 0. 

The small group C,, of the vector Q, does not have 
a central point. Therefore the homogeneous solution 
(23) is  generally speaking unstable, and the order pa- 
rameters become functions of the coordinate 2." The 
expression for the free energy (22) must be svpple- 
mented by invariants that contain arbitrary u\,= ha,=/ 
dz.  Instead of (22) we have the functional 

Here L is  the crystal dimension. In (24) we have 
omitted the connection with the X phonon, which i s  in- 
essential for subsequent arialysis of the transition into 
the inhomogeneous phase. ') Equating the variational 
derivatives bfliu,, to zero, we obtain the system of 
equations 

For the complex-conjugate order parameters u,= uc 
* iu,, Eqs. (25) take the form 

where B1 = (38, + 8,)/4, B, = (8, - &)/4. These equa- 
tions reduce to an integral equation - 

u + ( z )  =- ..- j d z r ~ + ( z - z ' )  [Blu-(zr)u+'(z1)  + B g - a ( ~ ' )  1, 

u- ( z )  =u, . (z) .  
(26) 

The Green's function is given by 

where b-- + 0 and 

a ( q )  =!%-cq+s'q2. 

The direction of circling around the poles in (27) i s  
determined by the requirement that the exact solution 
of (26) at Bz=O be of the form 

where 

The function G+(z) satisfies the condition 

f ~ z ' G +  ( 2 - 6 )  e""=ei"/a(k) . 
-- 

(31) 

Equation (26) can be solved by successive approxi- 
mations, using relation (31). The first  iteration is  
the solution of (29), (30). As a result of successive 
iterations, the solution of (26) will assume the form 
of a series in odd powers of u,, containing odd har- 
monics. For example, accurate to third order we 
have 

Near the transition temperature T,, which is defined 
by the equality a(q)= 0, a value q, = o/2s2 is  realized 
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at which a(q) has a minimum. The inequalities 

a re  then satisfied, and the series in powers of u, con- 
verges rapidly, s o  that the f i rs t  harmonic (29) suffices. 
If the coefficient a has the usual temperature depen- 

. dence (Y = ao(T - T,), then equating a (q) (28) to zero, 
we get 

At a temperature below T,, atom displacements a re  
produced in the crystal and a r e  characterized by the 
values 

u.(z) -uqmsin q,,z, r l ,  ( z )  =u,,cos qmz. (33) 

Since the period 2a/qi of the superstructure i s  gener- 
ally speaking not a multiple of the period a of the cubic 
lattice, the system becomes inhomogeneous. It is of 
interest to note that x-ray diffraction studies of the 
rhombic modification of GeTe (Refs. 1, 3) indicate 
that the atoms a r e  shifted somewhat from the ideal 
positions of the rhombic lattice. This can be attributed 
to the presence, in the GeTe rhombic phase, of a 
superstructure that is not commensurate with the fun- 
damental period. 

Substituting (33) in (24), we obtain the change of the 
free energy on going to an inhomogeneous antiferro- 
electric phase 

6Fm,=-2a2(qm)/(3p1+~).  (3 4) 

Equations (25) admit also of a homogeneous solution: 

and the corresponding gain in the free energy is 

Since T, > To, the transition into the inhomogeneous 
phase occurs before a transition into a homogeneous 
antiferroelectric becomes possible. However, with 
further decrease of the temperature, the homogeneous 
phase may turn out to be more convenient than the 
inhomogeneous one. Using (28), (34), and (36), we 
obtain 

Therefore a t  0, > B,, when the coefficient of the tem- 
perature factor in (37) i s  l e s s  than unity, a t  the tem- 
perature 

(here = ( 3 4  + &)/2(/3, + &), the free energies of the 
homogeneous and inhomogeneous phases become com- 
parable and the system should go over, via a first-or- 
der transition, into a commensurate phase. Of 
course, all these arguments a re  valid only if the tem- 
peratures To, T,, and T, a r e  close enough to one an- 
other, so  that the Landau expansion is valid in the 
entire considered temperature region, and the con- 
dition (32) is not violated. 

We have assumed that the transition to the rhombic 

phase i s  of second order. It is possible, however, to  
advance arguments in favor of the assumption that the 
coefficient 8, of the fourth-order invariant in (22) is 
negative, and consequentIy a first-order transition 
into a commensurate phase i s  possible. The expansion 
(24) of the free energy i s  no longer valid in this case. 

We turn now to model with a Fermi-surface con- 
sisting of planes. Displacement by a vector Q makes 
congruent two pairs of planes perpendicular to the axes 
x and y. This leads to a logarithmic singularity of the 
coefficient a at  T = 0 and to a reversal  of i ts  sign a t  
T = To. The third pair of planes perpendicular to the 
z axis is made congruent by a displacement by a vec- 
tor 2Q,. Therefore, if account is taken, in the elec- 
tron-phonon interaction (12), of the next term of the 
expansion, which i s  proportional to the square of the 
displacement, the coefficient 4 for this interaction 
will behave in analogy with the coefficient (Y for a first- 
order interaction. (We note that in the model of plane 
sections there is no interaction linear in the displace- 
ment a t  all for the &, band. ) Consequently, at T = 0 
the coefficient 13, < 0 and has a logarithmic singularity. 
It i s  possible that j3, < 0 also a t  T = To. In this case 
the system, bypassing the noncommensurate phase, 
becomes jumpwise restructured into a commensurate 
phase. 

The negative 8, can, however, be compensated for 
by "excess" carriers.  Indeed, in the presence of 
doping, the appearance of order parameters u,,,+ 0 
is accompanied by a shift of the chemical potential p, 
which is determined by the mean values (<,). The 
coefficients of the expansion (24) a r e  functions of p ,  
and can therefore be expanded in powers of (g,,). As 
a result, the following invariants a re  added to the func- 
tional (24): 

Minimizing F and taking (39) into account, we obtain in 
place of (30) 

~ , " = - a ( ~ ) / [ R , - i ( ~ , + y , ) / 2 ] .  

Thus, in the case of sufficiently strong doping, we can 
have Bl + (y, + y,)/2 > 0 and the structural transition is 
of second order. 

The foregoing arguments make i t  possible to inter- 
pret qualitatively the resuIts of an investigation of the 
phase transition in the ternary compoundSo Pbl,Sn$e. 
In this compound, a t  sufficiently large x = 0.5, one 
should expect a structural transition from the cubic 
phase, which is typical of PbSe, into the rhombic phase 
into which SnSe crystallizes. From the dependence of 
the resistivity on the temperature we can conclude that 
a first-order transition takes place in samples with 
sufficiently low carr ier  density. With increasing 
carr ier  density, a second-order transition is ob- 
served, probably into a noncommensurate phase. With 
further cooling, a jump of the resistance takes place- 
the system becomes realigned, via a first-order tran- 
sition, into a commensurate phase, In samples with 
still larger carr ier  density, only a continuous change 
of the resistance is observed, inasmuch a s  the tran- 
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sition to the homogeneous phase is already completely 
suppressed. 

5. CONCLUSION 

Among the elements of the fifth group, a rhombic 
structure, analogous to  that considered above, is 
realized for black phosphorus and for the rhombic 
modification of arsenic. In this case, just a s  for the 
rhombic modifications of IV-VI compounds, the dis- 
placements of the atoms from their positions in the 
cubic lattice a re  quite large. Therefore a theory 
based on expanding the free energy in powers of the 
displacements can claim only qualitative results. 

In IV-VI semiconductors, the essential factor that 
suppresses the phase transition i s  the ionicity. An 
analogous role is played by spin-orbit interaction, 
since it splits the triply degenerate atomic p term and 
consequently, upsets the congruence of the Fermi sur- 
f aces. This is particularly large in lead chalcogenides, 
and must be taken a s  the reason why no structural 
transitions a r e  observed in them. An investigation 
of the phonon spectrum, however, shows that there is 
a strong softening of the optical phonon at  the point r. 
In elements of the fifth group, owing to the lack of 
ionicity, the.instability of the cubic lattice manifests 
itself much more strongly and they crystallize immedi- 
ately into distorted cubic structures. 

Besides the congruent sections of the Fermi surface, 
an additional (although not a principal) contribution to 
the lattice instability is made also by electronic states 
near the L points of the Brillouin zone. The maximum 
contribution of this state shouldbe expected at the mini- 
mal value of the energy gap at the L point. It i s  known1 
that in the triple compound Pb,,Sn,Se the width of the 
forbidden band decreases to zero with increasing x, 
and then begins to increase. Measurement of the fre- 
quency of the soft optical phonon31 shows in fact that 
a noticeable additional softening occurs in the region 
of compositions with minimum forbidden band against 
the background of a monotonic decrease of the fre- 
quency with increasing x. 

The microscopic model of the transition into the 
ferroelectric phase was investigated by us a t  zero tem- 
perature of the transition is determined by anhar- 
monicities, which, incidentally, a r e  also of electronic 
origin," and cannot be obtained in the Hartree-Fock 
approximation. 

APPENDIX 

We consider a structural transition under the as- 
sumption that it is connected with electron instability 
a t  the L points of the Brillouin zone. The order pa- 
rameter u is the vector of the relative displacement 
of two fcc sublattices, each of which contains only 
atoms of one sort. The Landau expansion in this case, 
with allowance for the cubic symmetry, is well known29 

where i, j=x, y, z .  Minimization of this expression 

leads to the equations 

whtch admit of the following nontrivial solutions: 

1) u:= d= d ( @ ,  + &), u.= 0 is the sublattice shift 
along the (1101 axis, rhombic symmetry. This s o h -  
tion corresponds to an energy gain. 4= - a2/(B1+ &). 

2) u, = 0, u:= a/dl,  F2 = -a2/2p1 is the shift along 
the [001] axis,, tetragonal symmetry. 

3) u:= U2,=4=a/(fll + 2P2), &= - 3 1 ~ ~ / 2 ( 8 ~  + 2b2) is 
the shift along the [Ill] axis, rhombohedral symme- 
try. 

From a comparison of Fl, F,, and F3 it  follows that 
the tetragonal solution (2) is realized a t  0, < o,, and 
the rhombohedral solution (3) is realized a t  P, > 4,. 
Thus, the symmetry of the low-temperature phase is 
determined by the ratio of the coefficients fl, and 6,  in 
the expansion (A. 1). To find this ratio, we turn to 
the microscopic model. 

The symmetry group D, of the L point has four one- 
dimensional (L,, L;, L,, Li) and two two-dimensional 
(L,, Lj) representations, 33 Assume that in each of the 
four nonequivalent L points there a r e  two levels, upper 
(a) and lower (b), belonging to the representations a 
and b. The interaction of the electrons with the sub- 
lattice displacement is of the form 

where g:, is the matrix element of the gradient of the 
crystal potential V(r) 

gY?= j I$;'"' (r) v v (r) I$?' (r) d3r: 

the subscripts and v number the basis functions of 
the representations a and b, and the superscript j 

' 

labels the nonequivalent L points. ' The operator a(')' 
produces an electron in a state J I ; ) ~ " ~ ,  where the 
quasimomentum k is reckoned from the j-th L point. 
Actually we a r e  using the Luttinger-Kohn represen- 
tation with allowance of only the two nearest energy 
levels, a s  was done in Ref. 11. 

There a r e  three possible variants: 1) both levels a 
and b a re  nondegenerate, i. e., they belong to one-di- 
mensional representations; 2) one of the levels is 
doubly degenerate; 3) both levels a r e  doubly degenerate. 
We consider these possibilities in succession. We 
introduce f i rs t  four unit vectors n, directed along the 
axes A,: 

1) In the case of one-dimensional representations 
a and b i t  follows from symmetry considerations that 
the matrix element (A.4) is of the form gn,, where g 
is a constant. Putting gu=A,  we express the inter- 
action (A. 3) in the form 
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We assume for simplicity that the electron spectrum 
at the L point i s  symmetrical: c,(k)= - c,(k)= c (k). 
When account i s  taken of the interaction (A. 6), the en- 
ergy spectrum i s  determined by the equation 

e(U-E (An.) I =0, I (Anj) - r ( k ) - E  

from which we get 

~ ( k )  =*[eZ(k) ". 

The energy of the ground state consists of the energy 
of the elastic deformation and the energy of the elec- 
trons in the valence band (we assume that there i s  no 
doping): 

From the condition a F/aAx = 0 we obtain 

Taking into account the smallness of A, the integral in 
the right-hand side can be represented in the form of 
the expansion a+b(Anj)'. We then obtain from (A.7) 

With the aid of (A. 5) we can verify the validity of the 
following expressions: 

Using these equalities, we can transform (A. 8): 

.Q2 4 4 A,=-aJ.+ - bA.[J,t+3(J,l+lXz) 1. 
2A1(0)d 3 9 (A.10) 

It suffices now to compare (A. 10) with (A. 21, and we 
obtain /3JBz=+, from which it follows that in this case 
a tetragonal solution i s  realized. 

2) Let one of the representations, a or b, be two- 
dimensional. Using the symmetry, we can show that 
the interaction (A. 3) takes in this case the form 

1-1 t 

Here Ax, and A,, are  the projections of the vector A 
on the axes x ,  and y, of a coordinate system whose z, 
axis is directed along the vector n,. The spectrum is  
determined by the equation 

3) In the case when both levels a and b a re  doubly 
degenerate, the interaction of the electrons with the 
sublattice displacement takes the form 

e - E  A,+iA,  A=- ib ,  

where 

4 - i A ,  -8-E , 0 
A,+iA,  0 - e - 6  

where u,,, us,, and u a re  the projections of the vec- 
Yf  

tor u on the axes of the coordinate system for the j-th 
L point with z ,  axis along the vector n,. 

= 0 ,  

Solving the corresponding secular equation, we ob- 
tain the electron spectrum: 

E=*[e"( IA,l*jJ,/)']'~. 

Using this spectrum to calculate the energy of the 
ground state with the aid of the procedure described 
above, we get 

. .  - 
from which we get 

In the interval (3 - J8)'f ' C gdg, < (3 + J 8 ) l f  the ratio 
of the coefficient i s  &/fie > 1. If the ratio of the cou- 
pling constants does not fall in this interval, then 
Sl/S,< 1. 

Consequently, in this case the rhombohedra1 solu- 
tion turns out to be possible, but only in a definite 
range of the values of the ratio gig,. 

"In Ref. 16 it was assumed, in accordance with the band cal- 
c~lation'~*'~, that the "interacting" zones belong to one-di- 
mensional representations LI and L2 of the group DS of the 
point L. Consequently, the electrons at a point Lt interacts 
only with the relative displacements of the atom sublattices 
A and B (Fig. 2) along the A, axis (Fig. 1). The spin- 
orbit interaction mixes the states L, and L2 with two-di- 
mensional representations L3 and L,,. l2 As a result, the ' 

matrix elements for the displacements perpendicular to !q 
. differ from zero. However, a s  shown in the Appendix, even 

if the bands were to belong entirely to the representations 
L, and L,,, a rhombohedra1 structure can appear only if the 
inequality 3 -a < (g,/g,)2 < 3 + n  is satisfied, where g,, z 
are the coupling constants. 

21~n real structures, neighboring pairs of planes with identical 
displacements along [1101 are shifted relative to each other 
along the same direction by half the diagonal of the (110) 
face of the cubic lattice. This shift can be attributed to the 
fact that the charge-density waves in the neighboring pairs 
of planes tend to become aligned in co~nterphase .~~ The 
structure described above is physically the structure of 
black phosphorus and of the corresponding modification of 
arsenic. 27 In the lattice of rhombic modifications of the 
compounds lV-VI there are additional small  distortion^.'.^' 
which are  due to the difference between the masses of the 
atoms and to the electroatatic interaction. 

"~earrangement into a rhombic structure can in principle be 
due to instability of the X phonon if the coefficient a has a 
critical temperature dependence. In this case the question 
of the transition to an inhomogeneous phase does not arise, 
since the small group of the vector X contains a central 
point. 
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Electric-field effect in electron-nuclear double resonance of 
Cr'+ ions in ruby 

Yu. A. Sherstkov, N. V. Legkikh, and A. I. Rokeakh 
A. M. Gorki Uml State University, Swrdlovsk 
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Zh. Eksp. Teor. Fi. 75, 1380-1388 (October 1978) 

External static electric fields up to 800 kV/cm were applied in a study of the linear effect of these fields 
on the spectra of electron-nuclear double resonance of impurity ion nuclei and "distanttt 1 7 A l  
nuclei in ruby. The measured splitting of the spectral lines was used to find the electric-field-induced 
changes in the hyperfme interaction parameter of the impurity ions and in the electric field gradients at 
the "Cr and 17Al  nuclei. The results indicated that the mechanisms responsible for the changes in the 
electric-field gradients were the same for both nuclei. Estimates were obtained of the orbital contribution 
and the contribution of the polarization of the ion cores to the change in the hyperfine interaction 
parameter. The change in the electron g factor of the impurity ions was estimated. 

PACS numbers: 76.70.Kd, 71.70.Ej, 71.55.Ht 

INTRODUCTION centers in crystals can be greatly extended by the use of 
external agencies and, in particular, by the application 

The capabilities of the electron-nuclear double reso- of static electric fields.'*' High fields of lo5-lo6 V/cm 
nance (ENDOR) method in investigations of paramagnetic intensity are  needed to observe and measure the elec- 
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