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A theory is constructed of cascade capture of camers by attracting centers in a quantizing magnetic field. 
The case of an extremely strong magnetic field (hR>kT, where 51 is the Lannor frequency) is 
considered in detail. It is shown that the lifetime decreases with increasing field like T - H - ~ ,  and in the 
region of strong magnetic fields, when the inequality (hflms 2)1'2> kT is satisfied (m is the effective mass 
and s is the speed of sound) its plot flattens out. In this case the lifetime r, in magnetic field turns out to 
be shorter than the lifetime t in the absence of a magnetic field, with r,/r-(ms 2 / k ~ ) 3 .  At very low 
temperatures, when kT< ms 2, the lifetime in a quantizing field, on the contrary, increases, so that in 
strong fields we have r,/t- ms 2/kT. The theory is generalized to include the case of multivalley 
semiconductors such as Ge and Si, in which the equal-energy surfaces are ellipsoids. It is shown that the 
lifetimes of the electrons in the individual valleys depend on the orientation of the valleys relative to the 
magnetic field and diier greatly for different valleys. 

PACS numbers: 72.20.Jv, 72.10.Di 

INTRODUCTION 

In this paper we generalize the theory of cascade c a p  
ture of ca r r i e r s  by attracting centers1 to the case of 
capture in quantizing magnetic fields. We consider the 
case of an extremely strong magnetic field H, when only 
the zeroth Landau level need to be taken into account, 
i.e., when 

where 51= eH/mc i s  the Larmor frequency and m i s  the 

(assumed to be the bottom of the conduction band in the 
magnetic field) goes over, a s  i t  emits  an acoustic pho- 
non, into a bound state with energy -(fi&2ms2)'12. How- 
ever, since the electron is captured in practice if i t  
drops below a level with binding energy kT, i t  does not 
have to emit  so large a phonon and need not come very 
close to the center. The principal role in the capture i s  
played by transitions with emission of thermal phonons. 
Therefore in the limit kT << (tiSlms2)'I2 the lifetime 
ceases to depend on the magnetic field. This case i s  
considered in detail in Sec. 2. 

effective mass. We direct the external magnetic field 
Thus, in a quantizing magnetic field in the limit fZS1 along the z axis. Then the motion of the electrons 

>>kT the lifetime with respect to capture by attracting (holes) in the xy plane is quantized. If condition (1) is 
satisfied, the kinetic energy of the electrons is of the centers f i rs t  decreases with increasing field, a s  shown 

order of the cyclotron rotation energy fiS2/2. Therefore below, like 7-H", but with further increase of the field, 

the energy of the characteristic phonon emitted by the in the region (ti51rns2)'l2 >kT, i t  ceases to depend on the 
field. electrons in the field i s  of the order of (E&2ms2)'I2, 

which is much higher than the energy of the character- We consider now capture at very low temperatures, 
istic phonon in the absence of the field ( k ~ m s ~ ) ' ~ ~  (s is when kT <C ms2. In the absence of a magnetic field the 
the speed of sound). thermal electrons cannot in principle emit phonons f a r  

from the center. After i t  is accelerated in the attract- 
The process of capture in a magnetic field depends ing-center field to an energy -ms2, the electron is in a 

On whether the energy Of the car- bound state immediately after i t  emits the phonon. 
r i e r s  kT i s  larger o r  smaller than the energy of the 

Thus, the only electrons that can be captured a re  those 
characteristic phonon (fiS2ms2)'I2. that land in a sphere of radius r, (r, = e2/xms2 for  a Cou- 

Let kT>> (fiS2ms2)'I2, then the ca r r i e r  loses energy in 
small batches, and the capture process can be described 
a s  a continuous drop of ca r r i e r  energy from positive to 
negative values. The carr ier  is in practice captured if 
i t  dropsbelow the level E = -kT. Withincreasing magnet- 
ic field, the electron emits phonons of ever increasing 
energy, the rate of i t s  energy of relaxation increases, 
and accordingly the lifetime of the electron with respect 
to capture by an attracting center decreases. This case 
i s  considered in Sec. 1. 

Assume now that the magnetic field i s  so strong that 
(E&2ms2)'12 >> k ~ .  Then the interaction of the electrons 
with the phonons becomes essentially inelastic. The 
electron i s  now able to emit a strong acoustic phonon 
with energy larger  than kT, but this process can be 
realized only sufficiently close to the center, where the 
electron of energy -kT above the zeroth Landau level 

lomb center). The flux of such particles to the center i s  
-np2, where p i s  the impact distance corresponding to 
the closest-approach radius r,. Since the trajectories 
a re  curved, i t  turns out that p i s  substantially larger  
than r,(p2 = ms2/kTri). In quantizing magnetic fields, 
the motion is uniform because p =r,. Therefore in 
strong magnetic fields (tin>> kT) at very low tempera- 
tures (kT << ms2) the lifetime with respect to capture by 
attracting centers i s  larger  than the lifetime in the ab- 
sence of the field, by a factor ms2/kT, This case is 
also considered in detail in Sec. 2. 

The theory developed in Secs. 1 and 2 is generalized 
in Sec. 3 to the case of an ellipsoidal equal-energy sur- 
face. It i s  shown that in a quantizing magnetic field the 
levels should become non-unif ormly populated, for ex- 
ample in photoexcitation, because the ca r r i e r  lifetime 
depends on the orientation of the valleys relative to the 
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direction of the magnetic field. 

The results and the approximation employed in the 
paper are  discussed in Sec. 4. 

We note that capture by attracting centers in quantiz- 
ing magnetic fields (AS2 >> kT) was f i rs t  considered in 
Refs. 2 and 3.  The calculation was based on a different 
model. In particular, i t  was assumed that when an elec- 
tron i s  captured i t  emits a single acoustic phonon and 
goes to a ground state on an impurity center. Under 
this assumption the authors found that the lifetime in- 
creases with increasing magnetic field. It i s  known, 
however, that the cross  section for direct capture in 
the ground state i s  much smaller than that obtained from 
the cascade model of capture. 

1. CALCULATION OF THE LIFETIME UNDER 
CONDITIONS OF QUASICONTINUOUS ENERGY LOSS 

We consider the case of a sufficiently low concentra- 
tion of the capture centers, when the total recombination 
flux per unit volume z = n / ~ ,  where n i s  the concentration 
of the free ca r r i e r s  and T i s  the ca r r i e r  lifetime, can 
be represented in the form 

I=Nj .  (2) 

Here j is the recombination flux per attracting center 
and N is the concentration of the capture centers. The 
lifetime T i s  connected with the recombination flux to an 
individual isolated center by the relation'' 

7-I= ( x / n )  I. (3) 

We calculate the recombination flux j by generalizing 
the procedure of Pitaev~ki:.~) 411 

The electron distribution function in the region of neg- 
ative total energy i s  defined by 

where the diffusion coefficient kTB(E) in energy space 
must be calculated with account taken of the presence of 
the quantizing magnetic field. The solution of (4) with 
the boundary condition 

is of the form 

The recombination flux j is determined from the condi- 
tion of matching together the solution of (6) with the 
Boltzmann distribution at the point E = 0. The normaliz- 
ation of the Boltzmann function 

corresponds to the ultraquantum limit, when all the car- 
r i e r s  are  at the zeroth Landau level, which i s  taken to 
be the zeroth level in the total energy  pace.^' Thus, 
the lifetime 7 (just a s  in the absence of a magnetic field) 
i s  defined by 

i 
= N A k T  / j exp(Ef/kT)B-l(EE)dE', 

-- 

In (8) we replaced the lower integration limit -E, by 
-00 . This can be done because the main contribution to 
the integral i s  made by the region of energy values I E  1 
-kT (it will be shown below that the coefficient B(E) i s  
a power-law function). 

The coefficient B(E) is expressed in terms of the 
mean-squared energy loss  m.4*7 For  a bound elec- 
tron in a quantizing magnetic field, the coefficient B(E) 
i s  given by 

Here V i s  the volume of the crystal  and the subscripts 
i and j stand for se ts  of three quantum numbers of the 
electron (n, k,, k,), (n', k:, k:), since the state of the 
electron in a magnetic field, a s  i s  well known, i s  de- 
scribed by the function 

where x,(y) i s  a Hermite polynomial. We shall need 
subsequently to know only 

-+ ( u - Y ~ '  xo ( g )  -n-"&an exp , anz=hc/eH. (11) 

The probability w,, of the transition from the i-th quan- 
tum state into the j-th state when an electron interacts 
with acoustic phonons i s  determined in the ultraquantum 
limit (n = n' = 0) by the expression8 

Here E ,  i s  the constant of the deformation potential, p 
is the density of the crystal, q i s  the wave vector of the 
phonon, and N ,  i s  the equilibrium distribution function 
of the phonons. 

Substituting (12) in (9) and integrating, we obtain ulti- 
mately for the coefficient B(E) in the case of a Coulomb 
attracting center with charge eZ 

For  the lifetime in a magnetic field, using (81, we obtain 
correspondingly 

Here 1, i s  the characteristic length and i s  connected with 
the mean free path I for  scattering by acoustic phonons 
by the relation 1, = lkT/2ms2. It is easily seen that in a 
magnetic field the lifetime decreases in proportion to 
Hz, accurate to a logarithmic factor. Indeed, 

677 Sov. Phvs. JETP 48(4), Oct. 1978 Abakumov et a/. 677 



where the electron lifetime 7 in the absence of a mag- 
netic field i s  described by the formula1 

2. CALCULATION OF THE LIFETIME 
AT kT << (frSZrn~*)~ l 2  

When the temperature is lowered o r  the magnetic field 
increased, s o  that the mean thermal energy of the elec- 
tron becomes l ess  than the energy of the characteristic 
phonon, the interaction of the electron with the acoustic 
phonons becomes essentially inelastic. To calculate the 
lifetime i t  i s  then convenient to use the Lax proce- 
d ~ r e . ~ ~ '  The recombination flux per unit center j i s  de- 
termined by the expression 

Here E and a re  the kinetic energies of the electron 
before and after the capture, respectively, p ( ~ )  is the 
density of states of the free ca r r i e r s  in quantizing mag- 
netic fields, and the equilibrium distribution function of 
the phonons i s  N(c - c') = [exp((c - &')/kT) - 11". The 
probability w'"(E, E') i s  the probability of the transition, 
per unit time, with spontaneous emission of an acoustic 
phonon, while P ( E , u ( ~ ) )  i s  the sticking probability intro- 
duced by Lax. The function F(E,  r) i s  the distribution 
function of electrons with kinetic energy c at a distance 
r from the attracting center. In the case of thermalized 
carr iers ,  this is the Boltzmann distribution, while for 
the ultraquantum case i t  i s  defined by (7) and the total 
energy i s  E = E +u(r)  - fi&2/2 (the last term i s  due to the 
fact that the zeroth level of the total energy coincides by 
definition with the zeroth Landau level). In this section, 
just as above, the calculations are  carried out for a 
Coulomb attracting center (u(r) = -e2Z/xr). 

The probability w("(E, E') is connected with the prob- 
ability of the transition between the states with given 
quantum numbers i = (n, k,, k,) and j = (nl, kg, k:) upon 
spontaneous emission of an acoustic phonon tu$) by the 
relation 

In the ultraquantum limit (n =nt  = 0) the probability w:;) 
is defined b y7*" 

where 

Performing the calculations and introducing the transi- 
tion probability w,(c, c') in the absence of a magnetic 
field and the state density p,(&) in the absence of a mag- 
netic field, we obtain for the product p(&)~( ')(&, &') in 
the ultraquantum limit the expression 

where 

and in accordance with Ref. 1 

po(e) wo(e, e') - (8naAam'lo)-'(e-8')'. (22) 

From the condition that qf in (21) is positive i t  follows 
that w"'(c, c') differs from zero under the condition 

We introduce for convenience new symbols 

In terms of the new variables, the inequality (23) be- 
comes 

(z ''+ (el) "a (2nd)  ". (25) 

In the calculation of the recombination flux j by means 
of (17), we take into account the fact that w("(E, &I) i s  
the probability of the transition of free electrons (with 
total energy E >O) into a bound state (with total energy 
E1<O). We therefore have for  E = E + lu(r) 1 and E'= E1 
+ lu(r) 1 the inequalities 

From (25) and (26) i t  follows that the region of integra- 
tion in (17) with respect to the variable E is limited by 
the condition lu(r) 1 <z < and the limits of integration 
with respect to E1 depend on the relation between the 
energy 'i and 2ms2, namely 

We consider the temperature region bounded by the 
inequalities ms2 << kT << (2ms2ti62)1'2. The main contri- 
bution to the recombination flux is made here by elec- 
trons with energy -kT. The quantities -ms2 can be 
neglected (since ms2 << kT); this makes i t  possible to 
express the recombination flux j in the form 

where 

We have used in (28) expression (21) for  ~ ( & ) W ( ~ ) ( E ,  c'), 
and left out exp(-qfai/2) because the main contribution 
in the integration i s  made by the region in which q:ai 
<<I. In addition, we have used the assumption that the 
sticking probability depends only on the ratio of the 
binding energy to kT, so  that 
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This assumption i s  discussed in detail in Sec. 4 and in 
the Appendix. 

Introducing the dimensionless variables 

e-lul ==- ~PI-e' 
kl' ' 2'-- 

rr eZZ ' 
we obtain ultimately 

where Y is defined by an integral that contains the stick- 
ing probability 

The internal integral with respect to R in (32) can be 
evaluated and has a singularity of the type (x ' ) '~ /~  at 
small x'. It will be shown in the Appendix that P(xt) 

at x'<< 1. Thus, the integrand in (32) has no sin- 
gularity and y is a number of the order of unity. We ob- 
tain ultimately for the lifetime in the temperature region 
ms2 << kT << (ms2KSJ)'/2 the expression 

It is seen from this formula that even before the mag- 
netic field becomes strong enough to make fin>> (kT)2/ 
ms2, the lifetime ceases to depend directly on the mag- 
netic field. However, 7, is shorter than in the absence 
of a magnetic field at the same temperature by a factor 
(ms2/kT )2. 

We consider now the case when kT << ms2 and assume 
that in this case ms2 << ( K S l r n ~ ~ ) ' ~ ~ .  When setting the 
integration limits in the calculation of the recombination 
flux in accordance with (17), i t  i s  then necessary to take 
into account the inequalities (27), since ms2 i s  now large 
compared with the mean thermal energy of the carr iers .  
The region of integration with respect to r breaks up in 
natural fashion into two regions, in one of which lu 1 
> 2ms2and in the other lu I <2ms2. In the f i rs t  region we 
have automatically E >2msZ, and the limits of integration 
with respect to E' a re  determined by (27a). In the sec- 
ond region t can be either larger  o r  smaller than 2ms2. 
Accordingly, the region of integration with respect to 
'it is determined by (27a) o r  (27b). We note that if lu I 
< 2ms2 and Z < 2ms2, then i t  follows from (27b) that 

I U  I >ms2/2. Taking the foregoing into account, we rep- 
resent the recombination flux (17) a s  a sum of three 
terms, j = j ,  + j2 +j,. Each of these fluxes is described 
by (28), but the limits of integration with respect to the 
variables r ,  E, and 'it a re  determined by the following 
inequalities. For  j ,  we have 

For  j ,  we have 

For j , we have 

The flux j, is smaller than j, o r  j2 by a factor on the 
order  of (kT/ms2), so  that i t  can be neglected. In the 
calculation of the fluxes jl and j, we can assume the 
sticking probability P ( ( lu  I - zt)/kT) to be equal to unity, 
and the quantity exp(-(E - Et)/kT) can be neglected com- 
pared with unity, since the main contribution to these 
fluxes i s  made by the region where all the characteris- 
tic energies a re  of the order of ms2, 

Carrying out the calculations we obtain for the life- 
time, in the limit of very low temperatures and suffi- 
ciently strong magnetic fields kT << ms2 << (KS2ms 2)112, 

For  comparison we present the expression for the life- 
time 7 in the limit kT << ms2 in the absence of a magnet- 
ic field1 

Thus, a t  kT << ms2 and in the limit of strong fields 
fin>> ms2 the lifetime does not depend on the magnetic 
field, but is ms2/kT longer than the lifetime in the ab- 
scene of a magnetic field. 

3. GENERALIZATION OF THE THEORY TO THE CASE 
OF AN ELLIPSOIDAL EQUAL-ENERGY SURFACE OF 
THE CONDUCTION ELECTRONS 

The cascade model of the capture was most convinc- 
ingly confirmed by experiments on Ge and Si.' These 
a re  multivalley semiconductors. The equal-energy sur- 
face for the conduction electrons in each valley i s  an 
ellipsoid of revolution. Ge has four valleys whose axes 
a re  equivalent to the direction [ 1,1, I]. In Si, the con- 
duction band consists of six equivalent valleys, and the 
axes of the ellipsoids correspond to the direction [I, 0, 
01. It i s  therefore natural to generalize the theory de- 
veloped in Secs. 1 and 2 in such a way as to make i t  
applicable directly to the capture of electrons in Ge and 
Si . 

We consider one valley-an ellipsoid. The motion of a 
f ree  electron in such a valley, following application of a 
quantizing magnetic field, was considered in Ref. 10. 
Let the magnetic field H be directed along the z axis and 
le t  i t  make an angle 9 with the revolution axis of the 
ellipsoid. The kinetic energy & of the electron in the 
valley i s  then given by 

where m,, and m, a re  the effective masses of the elec- 
trons moving respectively along the revolution axis of 
the ellipsoid and in a plane perpendicular to the axis. 
The wave function of the electron is determined in this 
case by the expressions (10) and ( l l ) ,  but the length a~ 
must now be taken to be the quantity 

In addition, the center of the oscillatory function X, de- 
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pends not only on k, but also on k,, so  that now y o  i s  de- 
fined by 

tic (m,,-m,)sinecos 6 - [L-X. 
eH m,, cost 8+m, sin' 6 1 (41) 

It i s  known that in multivalley semiconductors the con- 
duction electrons interact with both longitudinal and 
transverse phonons. It has been shown11112 that in the 
absence of a magnetic field the square of the modulus of 
the matrix element of the operator of the interaction of 
the electron with the acoustic phonons has the standard 
form, the only difference being that the deformation- 
potential constant E, contains a combination made up of 
two independent constants Z, and Z,, which were intro- 
duced by Herring." For  the interaction with the longi- 
tudinal acoustic phonons, E: is replaced by the expres- 
sion 

while for the interaction with the transverse phonons it 
is replaced by 

9.' sin' 0 cost 8. (43) 

In (42) and (431, 0 is the angle between the wave vector 
q and the axes of the ellipsoid of revolution. 

For  simplicity, we carry  out the subsequent calcula- 
tion in the approximation of the averaged deformation 
potential, and in addition we neglect the anisotropy of 
the sound velocities and the difference between the ve- 
locities of the longitudinal and transverse sound, and 
use for (EE) an expression obtained by summing the 
angle-averaged relations (42) and (43) 

The use of the approximation of the averaged deforma- 
tion potential is reasonable, since all the qualitative 
consequences that follow from the anisotropy of the 
electron spectrum are  obtained already within the 
framework of this approximation. In addition, in Ge the 
mass  anisotropy i s  substantially larger than the anisot- 
ropy of the deformation constants. 

The lifetime of conduction electrons with ellipsoidal 
equal-energy surfaces in a quantizing magnetic field is 
calculated by the procedures developed in Secs. 1 and 2. 

If kT >> ( t i~ lm,s~) ' /~ ,  i.e., the energy is lost by the car- 
r i e r s  quasicontinuously, then we have for the lifetime 

sinZ6 cos' 6(m,,-m,)'+m.' 
Q (8) = 

m,[ (mlmz)'k+mzl 

The obtained lifetime is connected with the lifetime 7 in 
the absence of a magnetic field, calculated in the same 
approximation, by the relation 

which i s  analogous to (15) of Sec. 1. 

As seen from (46), the lifetime in the magnetic field 

depends substantially on the orientation of the valley 
relative to the magnetic field, since m, and the cyclo- 
tron mass  m,, which enters  in the definition of a, de- 
pend on the angle 9 (see (39)). We note that the second 
term in the curly brackets can be significant even though 
fin>> kT, because at small 9 we have +(a)= (m,,/m,)2>> 1. 
In this case the lifetime 7, decreases in proportion to 
H" and not H". 

In extremely strong magnetic fields, when the inter- 
action with the acoustic phonons becomes essentially in- 
elastic (kT << ( m , ~ ~ f i S 2 ) ~ ~ ~ ,  the lifetime ceases to depend 
on the magnetic field, just as in the isotropic case. 
However, i t  still remains dependent on the direction of 
the magnetic field. 

If m p 2  << kT << (fi~2rn,s~)'/~, then the electrons interact 
mainly with phonons whose momentum is perpendicular 
to the direction of the magnetic field (q,/q a ( m p 2 / k ~ ) 1 / 2  
<<I). In this case i t  is easy to ca r ry  out an exact aver- 
aging of the expression for  the reciprocal lifetime, since 
cases sin9sinrp, where cp is the azimuthal angle in the 
plane normal to the magnetic field. We obtain for  the 
lifetime 

where 

Here s and s t  are  the velocities of the longitudinal and 
transverse sound. 

Finally, if the temperatures a re  so  low that kT << m s 2  
but the magnetic field i s  strong enough to make 
(m,s2fiS2)"2 >> m p 2 ,  then in the approximation of the 
averaged deformation potential we obtain for  the life- 
time the expression 

4. DISCUSSION OF RESULTS 

The general character of the behavior of the lifetime 
with changing magnetic field is shown schematically in 
the figure, where the ordinates represent the capture 
coefficient (N,)" (N is the concentration of the capture 
centers) and the abscissas represent the magnetic field 
H. The capture coefficient begins to increase at values 
of the magnetic field at which quantization se ts  in, and 
saturates when ( f i n m ~ ~ ) ' ~ ~  i s  already larger  than kT. 
Curves 1 and 2 correspond to the temperatures T, and 
T,, with T, >T2 >ms2. The drop in the values of the 
capture coefficient increases with increasing tempera- 
ture and according to estimates, i t  amounts to two or- 
de r s  of magnitude in Ge at T =4K. With decreasing tem- 
perature, in the region kT <ms2, the dependence of the 
capture coefficient is reversed, a s  demonstrated by 
curve 3. 

It should be noted that in a multivalley semiconductor, 
since the recombination rate depends strongly on the 
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FIG. 1. General character 
of the behavior of the c a p  
ture coefficient in a mag- 
netic field (explanations 
in the text). 

orientation of the valley axes relative to the direction of 
the magnetic field (see (46), (47), and (49)), the valleys 
can become unevenly populated, for example in the case 
of photoexcitation. Consequently the photoconductivity 
in Ge, in quantizing magnetic fields, should be aniso- 
tropic even when a weak electric field i s  superimposed. 
We know of no measurements of the lifetime in strong 
magnetic fields. It appears that the performance of 
such experiments entails no difficulties in principle. 
These measurements could serve a s  a good check on 
the cascade theory of capture and, in our opinion, would 
lead to interesting new effects. 

It should be noted that in the present paper, just a s  in 
Ref. 1, we essentially used the fact that in the region of 
negative total energy the distribution function and the 
sticking probability depend only on the total energy E. 
For  this approximation to be valid, i t  i s  necessary that 
the spatial mixing take place more rapidly than the en- 
ergy diffusion. In the absence of a magnetic field, this 
condition i s  satisfied.I3 In quantizing magnetic fields, 
however, the spatial mixing across the magnetic field i s  
hindered. 

Indeed, during the time of energy diffusion over an 
interval of the order of kT, the bound electron negoti- 
ates in space, in a direction perpendicular to the mag- 
netic field, a distance A =  (DT,)"~, where the diffusion 
coefficient in the transverse direction i s  D = ai/r,, 
while 7, and 7, a re  the energy and momentum relaxation 
times of an electron with kinetic energy kT. For  the 
length A we have 

In order for spatial mixing to be possible, i t  i s  neces- 
sary  to satisfy the inequality A >> r,, and the character- 
istic capture radius i s  ?-,= eZZ/xkT. 

On the other hand, our approach to the description of 
the capture in a quantizing magnetic field i s  valid i f  
a,<<r,. Estimates show that this inequality i s  usually 
well satisfied in quantizing magnetic fields. In this 
case, however, there i s  no sufficiently large region in 
which the inequality r,<< A could be simultaneously 
satisfied. 

Thus, in quantizing magnetic fields the distribution 
function and the sticking probability depends, generally 
speaking, on the coordinates x and y. An exact calcula- 
tion with such functions is much more difficult than our 
calculation, in which we used quantities averaged over 
the coordinates x and y. On the other hand, the result 
of the exact calculation can differ from ours only by a 
number of the order of unity, and not parametrically. 

The absence of spatial mixing may affect the character 
of the behavior of the capture coefficient in a magnetic 
field only in the region of the s tar t  of quantization, and 
can lead here to a certain decrease of the capture co- 
efficient. 

The authors thank V. I. perel'  for useful discussions. 

APPENDIX 

The sticking probability P(IE 1 )  of an electron in a 
bound state with total energy E <0, averaged over the 
permissible values of the spatial coordinates, is de- 
fined by the integral equation 

0 +- 
P ( E ) =  j w ( E . E ~ ) P ( E * ) ~ E J /  J W ( E . E , ) ~ E ~ ,  (A.1) 

- = -- 
where W(E, E ' )  is the total probability of the transition 
from a state with energy E into a state with energy E'. 
It i s  connected with the probability W"'(E, E t )  of the 
transition in spontaneous emission of a phonon and with 
the phonon numbers N ,  and N,+ 1 in the usual manner. 
The probability W")(E, E') i s  obtained, in turn, by av- 
eraging over the microcanonical distribution of the 
transition probability between states with fixed kinetic 
energy W ' ~ ) ( C ,  c*) (formula (18)). 

Wc'l (E, E') = ( p ( E ) ) - " j ~ ( ~ ) ( e ,  e l )G(E-e -u(r ) )  

XG (El-E'-u(r)) p ( e )  de p (8') de' k r .  (A.2) 

Of course, the absence of spatial mixing in a plane per- 
pendicular to the magnetic field. To obtain the final 
form of the equation for  the averaged sticking function 
we need to know the probability W")(E, E') at negative 
values of both energies E and E', as well a s  under the 
condition that E < 0 but El > 0. Integrating (A.2) in the 
case E <0, E' <0, we have 

m u l = . i ' l  

In the case E < 0, E' >O we have 

In (A.3) and (A,4) 

IEl IE'I z'=- r= (2msLtrQ) ''. 
, p- (Bn'Nrn~' l~) -~ ,  (A.5) 

kT ' kT ' kT 

with T' >> 1. The final expression for the sticking func- 
tion, in the dimensionless variables x, is 
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We have left out here the factors expi-(x -xt) / r3 be- 
cause l? >> 1, and the significant x and x' a re  of the 
order of unity. The function G(u) is defined by 

It is seen from (A.6) that the sticking probability P(x) is , 
in fact a function of the dimensionless argument x, i.e., 
according to (A.5) i t  depends only on the ratio of the 
binding energy to the temperature. The solution of the 
homogeneous integral equation (A.6) at large x(x>> 1) 
tends to P(x) = const. We a re  interested in a solution for  
which the constant is equal to unity, i.e., P(x) - 1 at  
x>> 1. 

Let us investigate the behavior of P(x) a t  x << 1. In 
this case the principal term in the denominator of (A.6) 
is I,, and in this case 

where E(5/2)= 1.34 i s  the Riemann zeta function. The 
principal role in the numerator is played by the second 
term I,, and in the limit-x << 1 we have - 
Zz-2 $~(z*)- ! 4' 96 ' P (x') az' 

= x'- 
x'=(l-e-.') , y"(y-i)" 

o ia(i-e-x') 

We ultimately get at x << 1 

where the constant C is determined by the integral of the 
sticking function over the entire range of variation of 
the argument 

An approximate calculation yields C = 1. 

"1t i s  shown in Ref. 1 that the recombination proces.s can be re- 
garded as  capture by individual isolated centers under the 
condition that the thermal energy kT of the electron exceeds 
the Coulomb interaction energy e2x"hr'/s a t  the average dis- 

tance between the capture centers, i.e., the inequality 
k~ >>e2%-'iT1l3 is satisfied. Satisfaction of this condition 
means simultaneously that an equilibrium distribution in the 
electron system manages to be established during the life- 
time. Otherwise, when the carr iers  a r e  excited by light, the 
electrons have essentially a nonequilibrium distribution, and 
the lifetime i s  simply the time of energy relaxation to the 
percolation level. This question is discussed in detail in 
Refs. 1 and 5. 

2 ' ~ h e  authors a re  grateful to the referee for pointing out the 
paper by Belyaev and Budker, who considered for the first 
time, using the classical kinetic equation, the transition of a 
free electron to the ground state of an atom in an ionized 
plasma via multiple collisions with other electrons and ions, 
a s  well a s  via multiple emission of small quanta. 

3 ) ~ e  disregard in our calculation the spin state of the electron. 
For a simple band the change of the electron spin can be ne- 
glected in electron-phonon collisions, s o  that the presence of 
the spin does not come into play in the recombination and does 
not lead to a change of the lifetime. 
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