
where 5, is the coherence length of a pure superconduc- 
tor. The presence of two terms in Eq. (5) makes i t  
possible to distinguish intrinsic (pure) type 11 supercon- 
ductors (1 >>to) and "dirty" type II superconductors 
(1<<5,). 

Although Eqs. (4) and (5) a r e  simplified expressions 
(they a r e  obtained in the one-band approximation), they 
still give a qualitative idea of the dependences of H,, 
and Hc2 on the degree of purity of a sample, i.e., on the 
mean f ree  path of electrons, and they demonstrate the 
existence of the "upper" limit for H,, and the "lower" 
limit for H,. 

The authors a re  grateful to  Yu. M. Gal'perin and 
k. B. Sonin for  discussing the results obtained. 
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The kinetic properties of conduction electrons are considered at temperatures so low that the wavelength 
of the thermal phonon exceeds the electron mean free path for elastic collisions with the impurities. An 
important role is played in this case by the interference between the phonon and impurity mechanisms of 
impurities, so that the Mathiessen rule is violated. Since the impurities influence the electron-phonon 
interaction, the kinetic equation in its usual form is not valid. An equation analogous to the kinetic 
equation is derived and makes it possible to take the interference effects into account. It is used to study 
the temperature dependence of resistivity and the energy relaxation of the electrons. 

PACS numbers: 72.10.R 

1. INTRODUCTION 

The resistivity of normal metals a t  sufficiently low 
temperature is determined by the scattering of the elec- 
trons by the impurities. However, the temperature de- 
pendence of the resistivity and the energy relaxation of 
the electrons, and some other important kinetic charac- 
teristics of the electron system, cannot be obtained 
without taking into account the scattering of the elec- 

trons by phonons. At sufficiently high temperature, the 
Matthiessen rule, wherein the impurity and phonon scat- 
tering a re  independent, is valid (see, e.g., Ref. 1). 

At low temperatures, this rule i s  ~ i o l a t e d . ~  One of the 
mechanisms of i t s  violation is considered in Ref. 3. It 
was noted there that if the characteristic momentum 4 
transferred by the phonon to the electron becomes com- 
parable with the quantity 1/1 (1 i s  the impurity mean free 
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path of the electron; Planck's constant i s  assumed equal 
to  unity), then the character of the electron-phonon in- 
teraction changes: the phonon interacts with an electron 
that diffuses in the impurity field, and not with an elec- 
tron that travels with Fermi  velocity v,. This changes 
the characteristic time 72, of the electron-phonon inter- 
a ~ t i o n . ~  At @ >> 1 the characteristic time is ?$, - 1 / v ~ ,  
and at @ << 1 we have ?tt * l/d@, where d = 1/3vFl is the 
electron diffusion coefficient. Since 71-T/w, where w 
is the speed of sound in the metal and T is the tempera- 
ture, i t  follows that the temperature region in which 
this effect i s  significant i s  determined by the relation 

Here a i s  the lattice constant, 8 i s  the Debye tempera- 
ture, is the chemical potential, and ? = l/v, is the 
impurity lifetime of the electron. 

With further decrease of the temperature ?Zt be,comes 
of the order of l/w-1/T, where o i s  the phonon fre- 
quency. This takes place a t  

An attempt was made in Ref. 3 to take this effect into 
account within the framework of an equation similar to 
the kinetic equation. However, some e r r o r s  in that 
reference affected the result. Furthermore, no at- 
tempts were made to derive an equation with which to 
calculate any other quantity besides the resistivity. 

In the present paper, an equation is derived, similar 
to the kinetic equation both in the form and in i t s  capa- 
bilities, with account taken of the interference between 
the phonon and impurity scattering mechanisms. Just  
as in Ref. 3, besides satisfying the usual kinetic-equa- 
tion criterion 

P%=, (3) 
i t  i s  assumed also that the phonon contribution to the 
electron damping is small compared with the impurity 
contribution, and the metal is assumed for simplicity 
to be isotropic. No other assumptions a re  made with 
respect to the phonons, so  that all the results can be 
easily generalized to include the case of any other long- 
wave scattering process. We derive the temperature de- 
pendence of the conductivity and the energy dependence 
of the departure time of the energy relaxation. 

2. KINETIC EQUATION 

To derive the kinetic equation we use the Keldysh dia- 
gram t e ~ h n i q u e , ~  wherein the electron Green's function 
constitutes a matrix 

The matrix structure of the self-energy operator takes 
the form 

L)(x*, ' I )  m z ;  21) ) 
"z,, XI) - ( r (x  

) 2, 1 

The Dyson equation in the differential form can be writ- 
ten in two ways: 

where 

Here e is the electron charge, c i s  the speed of light, 
and A and a re  the vector and scalar  potentials of the 
external magnetic field, assumed to be classical. 

The derivation presented in Ref. 5 for the kinetic 
equation consists in setting up the difference between 
Eqs. (6a) and (6b), making the change of variables 

and taking the Fourier transform with respect to the dif- 
ference: 

~ ( e , p , ~ ) - ~ d t 9 ~ ~ ( x , ~ ) a x ~ { i f t [ e + e ~ ( ~ ) ] - i p [ ~ + f  A ( x ) ] ) .  

(9) 
Here p and & are  the kinematic momentum and kinemat- 
ic  energy, in contrast to the canonical variables defined 
by the expressions in the square brackets. 

As a result we obtain in the left-hand side of the equa- 
tion the field operator that acts on the Green's function: 

where v=de,/dp, and E and H a re  the electric and mag- 
netic fields. 

We note that the same procedure, applied to the sum 
of Eqs. (6), yields in the left-hand side 

~ ( e - e , ) U .  (11) 

As for  the right-hand side of the kinetic equation, thb 
quantities G and C are  taken in Ref. 5 in the zeroth and 
f i rs t  order of perturbation theory, respectively. This 
is not enough for  our purposes. We confine ourselves 
to the lowest orders  of perturbation theory in the elec- 
tron-phonon interaction, but the scattering of the elec- 
trons by the impurities must be taken into account ex- 
actly, using only the condition (3). 

To obtain the right-hand side of the equation, we con- 
sider an integral in the form 

h ( s ,  zr)= J d ' ~  f (2,. u ) ~ ( u ,  2 1 ) .  (12) 

It was easy to show that 

h ( e ,  p, X )  = f ( e ,  p, X ) g ( e ,  P, X)+* / r i ( f :g ) .  (13) 

Here Cf,g) a re  the Poisson brackets of the quantities f, 
and g: 

where 

a e a A  a aoa , = i - - d - - e - -  
ar, ar, c an ap, ar, ae ' 

It was easy to verify that Cf,g} can be written in the 
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form 3. PHONON-IMPURlT Y INTERFERENCE 

where 

Thus, 

IIG-{e-e,. 6).  (18) 

Generally speaking, we have obtained six equations 
fo r  three Green's functions. It i s  easy to show, how- 
ever, the relations obtained from the sum and difference 
of the equations in (6) a re  equivalent. It i s  more con- 
venient to obtain the equation for Ga o r  G' from the sum: 

and the equation for F from the difference between (6b) 
and (6d): 

i ( s -em,  F ) - Q ( 8 - G r )  -F (Xu-Z') +llzi{Q, @+G')+'/zi{Z'+F, F). 

It is known that at equilibrium we have 

Under disequilibrium conditions i t  is convenient to seek 
F in the forms 

which takes in the coordinate representation the natural 
form 

F ( z l , d -  j f i u [ s ( z , .  u ) Q ( u , z l ) - G ' ( z 2 ,  u ) s ( y , z , )  I .  (23) 

We now substitute (22) in (20). Using (19) and the 
properties of the Poisson brackets, we obtain 

The last term in the right-hand side of (24) should be 
neglected, since i t  can be written in the form of double 
Poisson brackets and constitutes therefore the allowance 
for the influence of the external field on the collisions. 

We note also that in the calculations of the quantities 
2 i t  is impossible to use the usual diagram technique in 
the momentum representation: the diagrams for 2, 
which in the coordinate representation a re  combinations 
of integrals of the type (12), yield following the Fourier 
transformation, besides the usual termsL also incre- 
ments in the form of Poisson brackets: Z = e 0 +  6Z. 
Bearing this circumstance in mind, we write down the 
kinetic equation in the following final form 

where 

In the calculation of 2 i t  must be borne in mind that 
the diagrams containing crossings of impurity lines a re  
small relative to the parameter (~7)-' (Ref. 7), and 
therefore 

The dashed line denotes here the impurity while the 
wavy lines stand for  the phonon propagator 

A triangle denotes an exact electron-phonon vertex. We 
shall study it later on, and examine for the time being 
the impurity contribution to the collision integral I , .  

For  simplicity we assume that the impurity center, 
which i s  located a t  the point ro produces a potential 
g ,d ( r  - rO)" An impurity vertex corresponds to the 
matrix a,, 

where N, is the impurity concentration. Substituting 
(22) and (30) in (26), we obtain 

dak 
~ , ~ - W t g r , ' ~ - [ s ( l i e ) - s ( p , e ) ] ~ m ~ " ( ~ e )  ( 2 ~ ) ~  

= f l ~ g d v ( s ) [ ~ - ~ ( p , e ) J .  (31) 
Here V ( E )  is the electron state density: 

d'k Im Ga(k,  e ) s ( k ,  e )  s. = 
4n'v (e) 

If we disregard the phonon renormalizations of the 
electron propagators, then we obtain directly from (19) 
and (30) 

P= 
T-I - N,grr'nv ( 8 )  , v ( e )  - - 

nZv  I S - . .  (34) 

The collision integral can be written in the form 

We shall henceforth take 6 to mean electron propaga- 
tors  not renormalized by phonons. Denoting by 6#,G the 
phonon increment to G and using (19), we rewrite (31) 
in the form 

d'k 
I,, = Z,,of W ( g d  j--- [~(k, e ) -  s (p ,  8 )  11m 6&(k, e l ,  (36) 

( 2 ~ ) '  
-. 6*@-GliCph*, A(*==O. 

Neither the phonon renormalization of the electron den- 
sity of states, which is accounted for  by the second 
term in the right-hand side of (36), nor the f i rs t  term 
of the right-hand side of (27), was taken into account in 
Ref. 3. 

We now examine the phonon part of the collision inte- 
gral. As already noted above, the diagrams containing 
crossings of impurity lines a re  negligibly small. On the 
other hand, a diagram in which a phonon line crosses 
impurity lines i s  not small. The reason is the small- 
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ness of the characteristic momentum 4 transferred by 
the phonon. In the expression for g,, 

d'q do 
&u=ij---;-~l(qo)[r~i~(-q,-o,e+o)Gi.l.(p-q,e-o)~ 

(221) 

. I$,(q, a ,  e ) +  l / z i l $ , ~ { ~ i l ~ r / n l } +  1/2i{l'iie, G , - ~ , } I $ , ]  (37) 

we must therefore take l? = l?, + 6f to mean the electron- 
phonon vertex that i s  exact with respect to the impuri- 
ties; this vertex can be determined from the equation 

d'k 
~ , ( q , o , e ) - ~ ( q ) + ~ l g i , 2 j - d . € ( k -  q ,e  - o ) f ~ ( q ,  o , e )&(k ,e )e*  

( 2 ~ )  

Here ~ , ( q )  i s  the unrenormalized electron-phonon ver- 
tex: 

As usual, we assume that the phonon system is at 
equilibrium. In this case relations similar to (21) a re  
valid and relate different phonon propagators: 

D'(q, o ) = [ D ( q ,  a )  1'-D"(-q, - o ) ,  

P ( q ,  0 )  ==(2N.+1) [ D r - D l ,  N.= (eolr-I)-'. 
(40) 

Leaving out the straight forward albeit long calcula- 
tions, which consist of solving (38), substitutint this 
solution in (37), and subsequently substituting Z,, in 
(26), we write down the total phonon increment to the 
collision integral in the form 

~ J = = I ~ ~ + I ~ ~ * ~ .  (41) 

Here IC' i s  the elastic part of the collision integral, 
which vanishes if s i s  an arbitrary function of the ener- 
gy, and 1'"" is the inelastic part, which vanishes only 
at s =so(&): 

We note that in the case ql<< 1 and wr << 1 we have 
[ I -6 (q ,  o ,  e )  1-'-[T(-lo+dq2) I-'. (45) 

We obtained, as expected, the usual diffusion pole. In 
the opposite limiting case ql>> 1 we have f - (ql)". 

The f i rs t  term in 1'"" differs from the usual phonon 
collision integral only in the presence of damping in the 
electron Green's functions. The second term, on the 
other hand, can be regarded a s  a manifestation of the 

scattering of a certain impurity-caused electronic state 
by the phonon. 

In addition to 6,,J,, the quantity I" includes also a 
certain part of I,,. Thus, the influence of the phonons 
on the elastic impurity scattering of the electrons mani- 
fes ts  itself both via renormalization of the electron state 
density, and via renormalization of the impurity vertex 
by the phonon. Calculations show that 

d'q d o  d3k 
I" = N,g, Re j- ( 2 4  ' k ( q )  l l D ( q ,  0 )  

d'k, 
+Nil..' ! m ~ ( k t + q .  e + o ) D . R I .  e )  [ s ( e ,  k ) - s ( e ,  k . ) ]  

Gr(p+q, e + a )  
x [ s ( e + o .  k + q ) - s ( e + o ,  k ,+q) ]  ---;-- 11-61 

F o r  A we can obtain 

d'q do 
A = ~ r n J  - ~ g ( q )  l 2 ~ . ( q .  u )  [ s (e+a .p+q)  

(23)' 
Nigrm2 d'k 

X { ~ ' ( p + q ,  e + o ) , ~ ( e , ~ ) } + - j  1-6 ---;s(e+o. ( 2 a )  k+q)  

NIg,=' ' 
X ( G ' ( ~ + ~ ,  E + m ) , s ( e . p ) } ~ r ( k + q .  e + o ) ~ e ( k ,  e ) - ( - 1  

1-5 
b k  6 k ,  

x j W s ( e .  ~ ) ~ . ( k , + q .  e+olGa(kl ,  8 )  

X( {G'(k+q, e + o ) ,  s ( e + o ,  kI+q))Ga(k,  8 )  

+ ( G ' ( L + ~ .  e + u ) s ( e + r .  k.+q). @(k,e)))]. (47) 

We write down also an expression f o r  c;, = (C;), + 6Cf,: 

d'q d o  
( x , , , , ~ ) ~  = J7 (2n)  lg (q )  l 2  { ~ ( p + q ,  e+a)Dk(q9  

d3k - 3 N , ~ , :  G'(k+q, e+o)G' (k .  e )  
1-E 

Eq. (25) together with (35), (41), (42), (46), (47) de- 
scribes completely the kinetic properties of the system. 
It can be verified that the conservation laws for the num- 
be r  of electrons and for the sum of the electron and pho- 
non energies follow from this equation (an analogous 
equation holds true for phonons). 
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4. ENERGY RELAXATION OF ELECTRONS 8,g,(e, p)  - -T [GMI{~ ,O}+A{SO)  I ,  (58) 

8+j - 2 e j v 1 8 , ~ g ,  h @ ( p ,  e)+cpo ~ m f i , h ~ " ( p , e )  
As the first  example of the use of the derived kinetic d'p de  

equation, we consider the energy relaxation of the elec- + s o  Im 6Ga(p,  e )  + so Im 8.G'(p, e )  ] - 
(221)' . (59) 

trans. Assume no external field o r  spatial inhomoge- 
The symbols and 6,h denote, as before, the incre- neity. During a time on the order of T, momentum re- 
ments due to the Poisson brackets and the renormaliza- laxation takes place, and the energy relaxation con- 
tions by the phonons, while 8,Ga is the nonequilibrium 

nected with the phonons will be much slower. There- 
increment to Ga on account of the direct dependence of fore,  in the study of the latter, we can assume that 
this Green's function on s (due to the dependence of Z; 

s  ( e ,  p) =F.. (49) on s). 
In this case P, =I" = 0. The quantity A need likewise not 

Calculations show that the ratio of the phonon incre- 
be  taken into account, since we are  considering first- 

ment to the conductivity and the impurity value of the order perturbation theory with respect to the phonons. 
conductivity can be written in the form For  n, = (5, + 1)/2 we obtain the equation 

6 4 4  1  d 3 q d o  o 6 i r a  
an. dsq d o  6 - - ) -  (60) -=?~j---- , g (q )12Re- - - ; - ImD' (q ,o )  (TO 00 
at ( 2 ~ ) -  I-, o I 

2 0  . . 
(50) ( )  = ( + E = - N + -  '(61) X~AV.nc ( l -nc+m)-  (l-r.Vu) ( i -ne )n .+u l .  T  

It i s  easily seen that the relaxation time of a state with 
energy & i s  determined by the integral 

If the Debye approximation is valid and there i s  no 
electron damping, then 

We assume furthermore, a s  usual, that 

The second term in (60) i s  the contribution of the inelas- 
tic part of the collision integral, which we considered 
previously. 

We shall not write down the long expression fo r  the 
J(q,  w ,  E ) ,  which i s  valid for  all q and w, and consider 
two limiting cases ql<< 1 and ql>> 1. In the f i rs t  case 
i t  is necessary to take into account only t e rms  with the 
very lowest power of q, i.e., those which contain the 
diffusion pole (1 - t)" to the highest degree-squared. 
It turns out that in the f i rs t  term of (59) these t e rms  
have "extra"q2, since they contain the factor 

L 

where o! i s  the dimensionless electron-phonon coupling jde,@(p,e)G'(~,e)[~"(~,e)+~(~,e)~ 

constant. We can then show that - - i ~ j  d ~ ~ [ C ' ( p ,  e ) - C " ( p , e ) l ,  

--- I& (ii!)' , ( e - p )  a Tl ,  

3a T,(e-p) '  r1 a e - p  < T* ,  
23 8' ' 

-- 
3 8' ' ( 8 - p )  W T I .  

5. CONDUCTIVITY 

which vanishes as a result of the analytic properties of 
the functions Ga and G'. The second term of (59) is 

(54) similarly cancelled by that part of the third term which 
is connected with the f i rs t  term of (48). The main con- 
tribution to the conductivity i s  made by the remaining 
part  of the third term of (69). At ql<< 1 and WT << 1 we 
have 

We now calculate the temperature-dependence correc- and at ql>> 1 we have 
tions to the electric conductivity of the metal. The elec- 
t r ic  current is equal to J ( q ,  o, e)-1'LZIg(q) 1'. (63) 

dJp de d'p de We note immediately that since J(q, w, t) does not de- 
p e 2 e v s e p h p e  (55) pend on temperature, and f(w/T) tends to unity a s  w--, 

The tilde over the Green's functions means here that the quantity bpho/o, contains a temperature-independent 

they take into account the phonon renormalization. In part  c,. Formally, the integral with respect to q in (60) 

the case of a constant electric field, in the approxima- diverges a t  the upper limit. It is clear, however, that 

tion linear in p(&, p) =s(E, p) - so(&), the kinetic q u a -  the integration with respect to q is carried out up to q,, 

tion is of the form =n/a. It turns out that co"8/p.  

Substituting (521, (531, and (62) in (60) we obtain at 
(56) T << T, 

In the absence of ~honons  6.a I T \ -.- 
as d'p de  -=F\r,-, 00 

p)= - e r v ~ l ,  O E  jo - 2e jvcp0(e, p ) h  ~ ( p ,  e )  -. (57)  3a T " d y  , 8-l5 ( i l l y )  -+lO(i/zy)"-3(i/zy)"z 
(64) 

~ ( z ) = - - G ~ e ! - ~ ( y )  

In the lowest order  of perturbation theory with respect 16 P-T , Y ( i - i / y ~ ) ~  

to the phonons we have At T << T, we have 
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and at T, << T << Tl 

In the temperature region T >> T, the substitution of (63) 
in (60) yields 

Thus, when the temperature changes from zero to T,, 
the resistivity of the metal increases like TI/', and in- 
creases  logarithmically up to T,; with further increase 
of temperature, the resistance increases like T2. 

The effects considered by us a r e  best  observed in 
beryllium, where 8 =1500"K and p = 0.7 eV.8 Estimates 
based on formulas (64) and (65) yield 6 ~ / ~ , , - 1 0 ' ~ - 1 0 ~ ~  
at  r1 - 100%. 

We note that the considered increment to the resistiv- 
ity, which represents the influence of the interaction 
with the virtual phonon on the impurity scattering can 
be estimated from the formula 

Here Tph is the characteristic phonon emission time 

At T << T, we have 7Zt - 1 / ~  - 1/T; inasmuch a s  the main 
contribution to the integration with respect to q in (60) 
is made by the region near the diffusion pole q - ( ~ / d ) ' / ~ ,  
i t  follows that D- (wq)" and r,," - a ~ ~ ~ ~ / p ~ ~ ~ ~ ~ .  In the 
two other cases the main contribution is made by the 
region near the pole of the phonon Green's function D, 
namely q-T/w, in which case GD= 1 and rph-re [(c - p )  
-TI. 

We consider now the contribution of the inelastic part  
of the collision integral to 6,u. It is easy to show that 
only the f i rs t  term in (42) contributes to the conductiv- 
ity. Calculations show that 

This is natural, inasmuch a s  the entire change amounts 
to replacing rZt - l/qvF-w/vpT by a quantity of the 
order of 7 a t  T << T,. 

Thus, the contribution made to the conductivity by the 
effects connected with the change of the impurity scat- 
tering on account of the phonons is larger  than the usual 
Bloch contribution, up to temperatures on the order of 
e ( p ~ ) - l ' ~ *  

6. CRITERIA OF THE APPLICABILITY OF THE 
KINETIC EQUATION 

In the derivation of the kinetic equation we have as- 
sumed all the phonon corrections to be small. As seen 
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from (68), this means that ~2~ << rph. The condition p r  
>>I has the same meaning a s  r & - p-l. Thus, the equa- 
tion is valid if the characteristic interaction time for 
each scattering process i s  much shorter than the relax- 
ation time due to this process alone: 

In addition, discarding t e rms  such a s  the last  term in 
the right side of (241, we have resorted to the fact that 
the external field i s  classical and therefore does not 
influence the interaction process. This means, for ex- 
ample, that the energy given up by the electric field to 
the electron during the interaction time should be much 
smaller than p: 

eEvz'lpK 1, 

where 

7, is the characteristic momentum relaxation time, and 
in our case i t  is equal to r. We note that 

Since T* << ( T T ~ ) ' ~ ~ ,  the kinetic equation makes i t  possi- 
ble to solve all the problems connected with the heating 
of the electrons. 

The condition imposed on the magnetic field takes the 
form 

Unfortunately, in investigations of say, the Hall effect, 
the phonons cannot b e  taken into account within the 
framework of our kinetic equation: when T$ r the 
quantum phonon corrections become of the same order 
as the classical corrections. 

In order that the external field be classical, i t  i s  nec- 
essary  also that i t s  wave numbers kf and frequencies of 
be small  enough. These limitations a re  quite natural: 

kt<& o,r'<l. (75) 
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