
Gyrotropic turbulence spectra 
E. A. Kuznetsov and N. N. Noskov 

Institute of Automation and Telemetry, Siberian Department, Academy of Sciences USSR 
(Submitted 5 May 1978) 
Zh. Eksp. Teor. Fiz. 75, 1309-1314 (October 1978) 

Stationary gyrotropic turbulence spectra are investigated by means of the Wyld diagram technique. The 
spectra corresponding to a stationary helicity flux in the direct interaction model are found under the 
assumption of weak gyrotropy. The result is confirmed by dimensional estimates. 

PACS numbers: 47.25. - c 

1. It is well known (see Ref. 1, the review in Ref. 2, 
and the literature cited therein) that the generation of a 
magnetic field by random motions of a conducting liquid 
is possible only for gyrotropic turbulence. The exis- 
tence of such generation frequently explains the origin 
of large-scale magnetic fields in astrophysical objects. 
In this connection, the problem of the spectra of gyro- 
tropic turbulence, to which the present research is de- 
voted, is of interest. 

The spectral tensor of the velocity field of such tur- 
bulence 

For homogeneous turbulence, the density of the inte- 
gral (2) is explicitly expressed in terms of A(k): 

In other words, the quantityA(k), with accuracy to with- 
in a factor k, represents the helicity density in k space. 
Just as in Kolmogorov spectra, which corresponds to a 
constant energy flux P, (a quantity conserved in the in- 
ertial interval), there should exist a helicity spectrum 
corresponding to a constant flux of helicity. 

We determine this spectrum from considerations of 
dimensionality. We assume that the gyrotropy is weak 
and regards the second term in (1) as a perturbation to 

includes in it the scalar quantitydk) which character- 
the Kolmogorov spectrum. Such an assumption corre- 

izes the energy spectrum of the turbulence, and the sponds to the real astrophysical situation, in which the 
gyrotropy is due to weak Coriolis forces (see, for ex- pseudoscalar quantity A(k), which is closely connected 

with the topological structure of the flow. It is knownS ample, Refs. 2 and 5). 

that the topology of the flow of an ideal liquid can be 
characterized by the conserved quantity 

I= j (v, rot v) dr. 

The fact of the conservation of this integral is a direct 
consequence of Thompson's theorem, according to 
which the circulation vector along any "liquid" contour 
r conserved. In order to illustrate the foregoing, we 
consider, following Ref. 3, a velocity field consisting of 
two closed vortex lines: 

It is obvious that in this case the characteristic time 
T of the nonlinear process which leads to a change in the 
helicity will be of the order of the time of the energy 
scale redistribution in the inertial interval, i.e., 

Then the helicity flux P, over the spectrum is estimated 
in the following fashion: 

rot r=n,x,6(r-l,(s,))+nlx26(r-l2(sZ)), It then follows from the condition Ps = const (cf. Ref. 6) 
where n is a vector tangent to the vortex line. We cal- that 
culate next the circulation of the velocity along the con- 
tours I ,  and &. Then P '3 1 1 

A(k) -k-*lfs (f) - - j(k)- 
kL kL ' v -  

$I (V dll) =mxl, $I (v a , )  =mxl, where the pseudoscalar quantity L = P , / ~ P ,  is the mean 
where rn is an integer, equal to zero if the vortex lines scale characterizing the total helicity of the system. 
do not form a knot and different from zero if these two Thus the gyrotropic contribution to the spectrum is lines cnnot be uncoupled. Multiplying the first equality damped out within the inertial interval more rapidly by K,  and the second by K, and then adding these two ex- than the energy spectrum. pressions, we obtain the integral (2): 

I (v, x ,  dl,+x, dl,)= 5 (v. rotv)dr=2mx,xZ. 2. We now show how this result can be obtained di- 
rectly from the statistical equations in the direct inter- 

This formula can be generalized without difficulty to the action 
cases of N vortices and then to a continuous distribu- We consider the equation of ideal hydrodynamics in tion. the k representation: 

Thus the integral I characterizes the topplogy of the 
flow-the degree of its "knottedness." This is the so- auka 

-=- ' i j 1 ' ~ ~ 1 ~ . ? ' ~ ~ ~ 6 ~ + k . + ,  ax. ax2. 
at 2 

(3) 
called Hopf i n~a r i an t .~  In particular, this integral is 
therefore conserved also in a compressible liquid. Here the vertex I' is a homogeneous function of two 
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arguments k, of degree 1; 

satisfying the two identities 

(r,a1~+r~61E+r~C,.3 6h+h,+b-o, 

(RP 1 : , + R , ~ I ~ + R , ~ ~  6h+,+,-0, 

where 

the first of which expresses the fact of energy conserva- 
tion and the second, conservation of helicity. 

The equations which describe the evolution of M(k) and 
A(k) follow directly from (3): 

where 

these equations obviously conserve the total energy 
$J(k)dk and the total helicity Il trl(k)dk.  Thus the right 
sides of Eqs. (5) and (6) can be represented in the form 
of divergenceswith respect to k of the corresponding en- 
ergy and helicity fluxes. A constant energy flux, as  is 
well known, corresponds to a Kolmogorov spectrum. 
This result, a s  was shown in Ref. 8, can be obtained 
directly from the statistical equations in the direct in- 
teraction model. This approximation is most simply 
formulated by means of the Wylde diagram te~hnique,~ 
which operates with two quantities: JE -the Fourier 
component of the correlator of the velocity of stationary 
turbulence, and G", -the Green's function, which rep- 
resents the linear response of the system to an infinite- 
simally small force. Allowance for the first diagrams 
corresponds to the direct interaction model. However, 
this approximation, which was first considered by 
Kraichnan,' overstates the role of long-wave pulsa- 
tions'' and leads to the spectrum Jk- k-'I2, which does 
not agree with experiment. 

As has already been shown in Ref. 11, this model can 
be improved by partial summation i s  carried out over 
the diagrams, which reduces to complete account of the 
effect of dragging of vortices of small scale by large 
vortices. The Kraichnan equations, improved in such 
fashion, already contain solutions with the Kolmogorov 
values of the indices:" 

where J(q) =(S(k, w-k.v)), and ~ ( q )  =(6(k, W-  k T),. Here 
the symbol (. . .) denotes averaging over the ensemble of 
the rangom field velocity v at an arbitrary point Y ,  t 
with help of the procedure of Wyld, and q= (k, w).  

A similar program can be carried out for the deter- 

mination of the indices of the stationary spectrum of the 
helicity. For this, we linearize the Dyson equation and 
the Wyld equation for the Green's functions G and J 
(Ref. 9) 

e=e,(i+ze) =-*, 
S = B @ G + =  - 

against the background of the Komogorov solution (7), 
setting 

for the perturbations. Since the functions G, and Jq are 
scale-invariant, then i t  is natural to seek a solution of 
the linearized equations in the form 

Then it follows from the similarity relations of the lin- 
earized equations that 

t = - ~ + ~ ' / , .  

The second relation between the indices t and s deter- 
mine from the stationary linearized equations (5 ) ,  (6). 
For this we first express the correlation function Jkklk2 
in the form of a power series in 2 and j. Graphically, 
this dependence is written in the form 

The direct-interaction approximation corresponds in 
this series to account of the first  three terms. It is 
seen that these terms go over into one another by rota- 
tion of the graph, which corresponds to cyclic permu- 
tation of the arguments; for example, the second graph 
transforms into the first after the substitutions 

k-.kl, kz-ck,, kt-.). 

Carrying out linearization of JkkIk2 and then substituting 
bJkklk in Eqs. (5) and (6), we convince ourselves, after 
simpfe transformations, that the right side of the first 
equation is identically equal to zero, while that of the 
second is different from zero: 

We note that the function bJkk,, is a homogeneous func- 
function of k, of degree y = -s - 4. For the determina- 
tion of this degree, exactly as  in Ref. 8, we carry out 
conformal transformations12." that keep the region of 
integration unchanged. For this it is convenient to in- 
troduce, in an arbitrary plane specified by the external 
vector k, the complex quantity 

w=k,+ik,, 

in terms of which this transformation i s  written in the 
form 
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A s  a result of this, "rotation" of the vertex R,l,,,, : R,J,,,, 
-&,Ikk? takes place in (7) and the factor (k/k,)*Wises 
in the integrand. 

Carrying out the "rotation" k,-k,, k-k,, k,-k, in 
analogous fashion, and adding all three expressions (the 
expression (8) plus the two "rotated" ones), we obtain 
the equation 

By virtue of the identity (3), this expression vanishes 
at y +8  =O. The result t = I l l 3  + 1 then follows, in com- 
plete accord with the dimensional estimates. 

3. The solutions obtained above have meaning only 
under conditions of the convergence of the integrals in 
Eq. (8). The requirement that the integrals converge is 
equivalent to localization of the spectra, since Eqs. (5) 
and (6) describe the interaction between vortices of dif- 
ferent scales. In this sense, the linearized equation (8) 
plays the same role as the kinetic equations of weak 
turbulence for the drift spectra.'= 

To verify the convergence of the integralsin (81, it is 
necessary to know the asymptotic form of &JM , when 
one of the momenta k, or k, is either large of 's%all in 
comparison with k. Simple study of the first diagrams 
shows that the integrals converge at the upper limit. 
Verification of the convergence in regions of small mo- 
menta, however, requires analysis. 

It is clear that the greatest divergence is connected 
with the diagrams in &Jkk,,, for which the terms portion- 
al to &J, have small momentum K, i.e., 

(q >>K). This expression simplifies to the form 

by virtue of the properties of the vertex (3) and G_',= -G,. 
Thus, an additional small factor proportional to x be- 

cause the vertex appears in this expression. 

Substituting now (9) in (8), we obtain the integral 

xk 
Simple calculation of the powers in this integral gives a 
divergence at zero. However, using the explicit form 
of r we can show that the convo1utionR.R contained 
here vanishes identically. 

The product of the two vertices R thus varies at small 
momenta a t  least as  xS and therefore the integral con- 
verges like xl" at the lower limit. 

It should be noted that the integrals for the Kolmo- 
gorov spectrum converge in this approximation in sim- 
ilar fashion.' 

All this provides a basis for expecting convergence of 
the integrals in the general case through cancellations 
due to the properties of the vertex I?. This possibly 
leads to a rigorous solution of the Kolmogorov problem 
of strong turbulence. 

In conclusion, the authors thank V. E. Zakharov for 
interest in the work of V. S. L'vov for useful discus- 
sions. 
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