
front. 

In laboratory experiments on collisionless shock 
waves transverse to the magnetic field at large Mach 
numbers, the appearance of a discontinuity in the po- 
tential and in the density of scale < l o b ,  is observed; 
this  is much smaller  than the thickness of the front- 
the so-called "isomagnetic discontinuity." 

As a possible mechanism of formation of the discon- 
tinuity, the density the dispersion of ion-sound waves 
was discussed in Ref. 4. Their role is reduced to a 
limitation of the nonlinear steepening of the density over 
a scale of the order of tens of Debye lengths. The re- 
sults of the experiments described above enable u s  to 
admit the turbulent ion viscosity as an alternative 
mechanism of formation of the isomagnetic discontinu- 
ity, not only to assure the small size of the discontin- 
uity, but only to explain the energy of the ions in the 
wave-front observed in this dissipation. 

The authors thank I. G. Shukhman for  fruitful discus- 
sions. 
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On the constancy of an adiabatic invariant when the 
nature of the motion changes 

A. V. Timofeev 
(Submitted 28 April 1978) 
Zh. Eksp. Teor. Fi. 75, 1303-1308 (October 1978) 

The motion of a charged particle in a spatially periodic field with amplitude increasing with the time is 
considered. The change of an adiabatic invariant when the particle is captured by a wave is calculated. 
The expressions obtained can also be used to describe the motion of a pendulum of variable length in a 
gravitational field as it goes from rotation to vibration about a position of stable equilibrium. 

PACS numbers: 41.70. + t 

1. It is well known that the motion of mechanical 
systems with slowly changing parameters can be char- 
acterized by a quantity which is conserved to very high 
accuracy, an adiabatic invariant (cf . , e. g. , Ref. 1). 
This assertion holds both for finite and for infinite mo- 
tions of the representative point on the phase surface. 
In many cases, however, i t  is necessary to  t race  the 
transition from one type of notion to the other. For 
example, charged particles moving in a spatially peri- 
odic field whose amplitude increases with time can be 
captured by a wave. When this happens the trajectories 
on the phase surface go from the domain of infinite 

motions to that of finite motions (see, e.g., Ref. 2). 
This problem has a simple mechanical analog, the mo- 
tion of a pendulum of variable length in  a gravitational 
field; here vibrations of the pendulum relative to a 
position of equilibrium correspond to finite motion, 
and rotations around the point of support, to infinite 
motion. 

Besides these problems there are a number of others 
whose solution requires an analysis of the transition 
from one type of motion to another. In particular, 
there are certain problems of celestial mechanics (see, 
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e. g., Ref. 3), and also the problem of the motion of 
charged particles in open magnetic traps in the pres- 
ence of electromagnetic oscillations. 4* 

One of the f i rs t  papers that dealt with the constancy 
of an adiabatic invariant when there i s  a change of the 
type of motion was one by Best. In this paper (see 
also Ref. 6) i t  was concluded on the basis of Liouville's 
theorem that in zeroth approximation in the parameter 
&= LJT)-' << 1 the adiabatic invariant remains unchanged. 
Here o is the characteristic frequency of the oscilla- 
tions of the charged particle in the field of the wave 
of electric potential, and T is the characteristic time 
for the change of amplitude of the wave. At the same 
time a numerical integration of the equations of mo- 
tion, which was carried out in Ref. 2 for one particular 
case, showed that the adiabatic invariant changes by a 
small quantity of the order of &, Numerical calcula- 
tions of the change of the adiabatic invariant when a 
particle i s  captured in the field of a wave of increasing 
amplitude were made by Aamodt and Jaeger .   he' re- 
sults a re  discussed in the text of the paper. 

In the present paper, a s  in Refs. 2, 6, and 7, the 
question of the constancy of an adiabatic invariant i s  
discussed for the case of motion of a charged particle 
in a wave of electric potential with variable amplitude. 
To and including quantities of order & the particle 
projectories on the phase surface were found near the 
separatrix that divides the regions of finite and infinite 
morions. Knowledge of the trajectories made it possi- 
ble to obtain an analytic expression for the change of 
the adiabatic invariant when a trajectory passed across 
the separatrix. 

2. Let us consider the motion of a charged particle 
in a harmonic wave of electric potential whose ampli- 
tude varies with the time. In a coordinate system 
moving with the wave, the electric potential is of the 
form 

q ( z ,  t )  ==cyoA(t) (rzdos k z ) ,  

where A(t) i s  a dimensionless amplitude and k is the 
wave number. If we change in the e uation of motion 
of a particle with charge e to the dimensionless coor- 
dinates kx - x and kt(m/ eq,)" - t, the equation be- 
comes 

& - A  ( t )s in Z=O. (1) 
We shall assume that the amplitude of the wave 

changes slowly with the time, A(t) = 1 + &t, where t << 1. 
For short time intervals the solution of Eq. (1) must 
take the form of , a  power ser ies  in &, We consider the 
problem of finding the f i rs t  two terms of this series.  
The term proportional to C0 describes the solution of 
the stationary equation (1) for A(t)= const. As is well 
known, it can be expressed in terms of elliptic functions 
(cf., e. g., Ref. 2). However, i t  i s  very difficult to 
use these general expressions to find the next approxi- 
mation. Therefore we shall not give them, and to  get 
a general idea of the character of the motion we shall 
use the phase plane (see Fig. 1). On i t  we can de- 
lineate the regions of finite and infinite motions. They 
a re  separated by trajectories that pass through the hy- 
perbolic points ( i n ,  0). It is customary to designate 
particles with finite trajectories a s  trapped by the wave, 

FIG. 1. 

and those with infinite trajectories a s  untrapped. The 
energy of the untrapped particles satisfies the condition 

and for trapped particles W C2. It is  essential for what 
follows that a t  the critical energy value W= 2 the solu- 
tion of the stationary equation (1) with E =  0 i s  com- 
paratively simple in form: 

x , ( t )  =4 arctg el-a. (2) 
In the vicinity of the separatrix ( I W - 2 I << 1) the solu- 
tion of, Eq. (1) differs slightly from the form (2): 

x ( t ) = x o ( t ) + x l , ( t ) + x l , ( t ) ,  

where xl,(t) and xl,(t) a r e  the corrections to  the solu- 
tion and a re  due respectively to the difference W - 2 f 0 
and to the variation of the amplitude A(t) .  These cor- 
rections can be calculated independently: 

x , , ( t )  =z(s11 t+t ch-I t)+u'ch-I t ,  

z , .  ( t )  - h ( - s h  t th t+t2 ch-I t ) .  
2 

In Eq. (3) we have introduced the notation a = i(W - 2). 
The last  term in this equation, proportional to a', does 
not contribute to  the energy. It describes a shift of the 
origin from which time i s  measured, and hereafter we 
shall disregard it. 

The trajectory we have found describes a motion with 
the energy 

~ ( t )  =2(1+2u+et-13 th t ) .  (51 
In the neighborhood of the hyperbolic points (* n, 0) 

the solution (2)-(4) takes the form 

z- ( t )  = - i ~ + 4 e ' - ~ / ,  (a+e /2 )  e-', 

z+ ( t )  =n-4e-'+'/2(a-e/2) e'. 

Here the signs minus and plus refer to the representa- 
tions that hold in the neighborhoods of the points (- a, 0) 
and (n, 0). 

It follows from Eqs. (6) and (7) that if It l >> 1 the 
terms proportional to a and & increase exponentially. 
This can carry  us beyond the range of the method of 
successive approximations. However, if It I >> 1 the 
trajectories must pass close to  the hyperbolic points, 
i.e., within a region where Eq. (1) can be linearized in 
x ( s i n x a x i  n). If at the same time the condition &It 1 
<< 1 holds, the solution of the linearized equation (1) is 
given by the expression 

so that it i s  of the same form a s  Eqs. (6) and (71." 

Accordingly, the expressions (2)-(4) give solutions of 
Eq. (1) which a re  correct for an entire cycle of the 
particle's motion. By a cycle we mean the motion of 
an untrapped particle along the segment (- n, n) or that 
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of a trapped particle from one turning point to the other. 
We also note that the expressions (2)-(4) can be con- 
tinued onto another cycle of the motion. 

3. In the nonstationary case the condition for capture 
of particles by the wave is W(t) <2A(t). It follows from 
Eq. (5) that particles with l a I < t /2 ,  which a r e  "un, 
trapped" a t  x =  - a are  captured by the wave before they 
can get to the line x =  a on the phase surface (for def- 
initeness we a r e  considering particles with positive 
velocity). Let us examine how the adiabatic invariant 
changes in such a transition. As i s  well known, an 
adiabatic invariant characterizes a quasiperiodic mo- 
tion whose period T changes by an amount A T  << T during 
a time equal to T. Froms Eqs. (2)-(7) i t  is not hard to 
find that this condition i s  satisfied if I & I > > & ,  i .e., for 
motions along trajectories sufficiently far  from the 
separatrix. In this region the adiabatic invariant 
changes exponentially slowly: 1 -exp(- I a I/&). We 
emphasize that there exists an expression, an infinite 
series in powers of C<< 1, which has this property (cf., 
e. g., Ref. 8). In practice one can find only one or two 
terms of the series.  The derivatives of the truncated 
expression for I a re  of the respective orders of C/ I a I 
and (&/a). '  

The adiabatic invariant for Eq. (1) hasbeencalculated 
to  terms of order & in Ref, 2. We present these ex- 
pressions; 

4(2W)"E ( i lk) .  k > i  
8(A(t))"'(E(k)+(k2-i)K(k)),  k < i l  (8) 

(9) 
Here k= (W/2A)'I2, j.= arc  sin(k'l sinx),  and K and E 
a r e  elliptic integrals of the f i rs t  and second kinds. ' 

Their values when the first  argument i s  equal to n/2 
a r e  denoted by K, E. We note that I, goes to zero at 
x =  * n for untrapped particles and at the turning points 
(x= * arc  sin k) for trapped particles. 

In the neighborhood of the separatrix ( I k - 1 I << 1) the 
expression (8) takes the simple form 

We calculate how much this quantity changes when the 
particle goes from untrapped to trapped. It follows 
from Eq. (6) that the particle crosses the line x =  - n 
at  the time 

Using Eq. (5), we find that a t  this time the quantity k 
has a value k, = 1 + a + &/2. 

From Eq. (7) we find the time when the particle is  
reflected from the potential hump: 

and here k i s  k+ - 1 + a - &/2. Since I, vanishes at t 
= t,, the change of I during the interval of time (t, < t 
< t,) can be obtained, up to terms of order c inclusive, 
by means of Eq. (10): 

This expression has been derived on the assumption 
I a 1 <c/2,  since only in this case will the particle be 
untrapped (k- > 1) a t  t =  t, and become trapped (k+< 1) 
a t  t - t+. The further evolution leads to  the descent of 
the particle to the bottom of the potential well; mean- 
while, s o  long a s  I k - 1 I i s  comparable with c the mo- 
tion does not satisfy the adiabaticity condition. In fact, 
during one passage between the turning (reflection) 
points the quantity k changes by &, and the period of the 
motion, determined formally for a constant value of k, 
is given by 

T=aId1aJVz1n(8/ 1 k - i  1 ). 
There is an analogous band of nonadiabatic behavior in 
the region of infinite trajectories with k - 1 >0. 

Proceeding a s  in the derivation of Eq. ( l l ) ,  we find 
that the change of the adiabatic invariant during one 
cycle of the motion i s  given, both for untrapped (k- 1 
>&/2) and for trapped (k-  1 < - &/2) particles by the 
same expression: 

In the expressions (11) and (12) the quantity a i s  equal 
to the difference k- 1 evaluated a t  the time of crossing 
the line x =  0. During one cycle of the motion i t  de- 
creases by c. Summing over all cycles, we get 

Here we have introduced the notation @= 2 a d & ,  where 
the quantity a, i s  the value for the cycle in which the 
particle changes directly from untrapped to trapped, 
and i s  connected with the energy a t  the time of passage 
across the line x =  0 by the relation W= 2(1+ 2 a,), 
By means of Eqs. (2) and (5) we can express a, in 
terms of the coordinate x,  of the point where the tra- 
jectory of the particle intersects the separatrix: 

Using a summation formula (see ref. 9)  and some 
simple transformations, we can put Eq. (13) in the form 

By means of asymptotic representations for the I? func- 
tions we finally get 

AI=-4e ln(2 cos(rtao/e)). (15) 
Our discussion has been for the case of a wave of in- 

creasing amplitude, in which charged particles a r e  
trapped by the wave. It is not hard to show that the 
expression (15) i s  valid also for the opposite process, 
in which particles change from trapped to untrapped a s  
the amplitude of the wave decreases, with & = dA/dt < 0. 

We note that the values of A I  for particles crossing 
the separatrix a t  the same point but moving in opposite 
directions a r e  equal. This follows from the spatial 
symmetry of the potential in which the particle moves 

- .  
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and from the symmetry of the expression (15) in the 
sign of a,, and also follows f rom the connection between 
Q, and x,[Q,= i c  sin(x/2)]. 

The expression (15) diverges logarithmically a s  I a, I - ~ / 2 .  This singularity can be very simply explained. 
If I a, I = & / 2  the trajectory intersects  the separatr ix 
close to the hyperbolic points, in whose neighborhood 
the particles linger for  considerable times: 

(see the foregoing arguments). During this t ime the 
a r ea  of the region bounded by the separa t r ices  in- 
c reases  by 8cAt  [see Eq. (8)]. The adiabatic invari- 
ant, which i s  approximately equal to half of this a rea ,  
also increases with this a rea .  

It must be pointed out that the expression (15) be- 
comes inaccurate if I a, I i s  very nearly equal to & / 2 .  
In fact, we have been assuming that the time spent in 
one cycle of the motion i s  smal l  in comparison with &-'. 

This assumption i s  violated if 1 - l2adc  I < e-lIC ; here,  
according to (15), A1 will be of order  of magnitude 
unity. However, if we assume that part icles a r e  dis-  
tributed uniformly over the phase plane, then the f rac-  
tion of them for which our argument i s  not justified 
will be exponentially small ,  -e-'IC . 

This problem has also been analyzed in Ref. 7 by 
numerical methods. For  l f f , l  5 c j 3  the two approaches 
give practically the s ame  result.') In the greater  part  
of the range ~ / 3  5 1 a, I 5 c / 2  the quantitative results  
a r e  also very nearly the same. However, they differ 
qualitatively in two respects .  F i rs t ,  the values of A1 
calculated in Ref. 7 a r e  finite even a t  I a, I = & / 2 .  Sec- 
ond, the numerical calculations give different values of 
A1 for particles crossing the separa t r ix  with different 
signs of the velocity. The f i r s t  of these differences 
is due to the very nature of numerical calculations. 
Indeed, numerical methods permit  analysis of the be- 
havior of a system only over finite t ime intervals. 
Therefore i t  was assumed in Ref. 7 that the amplitude 
of the wave changes during some finite t ime At.  But 
during this time particles with a sufficiently small  value 
of the difference c / 2  - I a, I can fail to get through the 
band where the behavior i s  nonadiabatic. The result  is 

that the calculated values of AX a r e  too low. We point 
out that the boundaries of the band in question cannot 
be  defined exactly. Consequently, even for  part icles 
that intersect  the separatr ix f a r  f rom the hyperbolic 
points, the resul t s  of a calculation must depend on the 
way the t ime dependence of the wave's amplitude i s  
specified, and a r e  not of universal significance, 

The difference between values of AX for  particles 
crossing the separa t r ix  with different s igns of the ve- 
locity i s  possibly due to an substantial simplification 
used in Ref. 7. Namely, in that paper the adiabatic in- 
variant was identified with the zeroth t e rm of the ex- 
pansion of the exact expression in  powers of c [cf. Eqs. 
( 8 ,  ( 9 )  Since the change of the adiabatic invariant is 
itself of the order  of magnitude of e, the calculations 
made in Ref, 7 must, s tr ict ly speaking, be  regarded 
a s  incorrectly formulated. It cannot be excluded that 
this may be  the very reason for  the splitting of the de- 
pendence of AI on ,E. In fact, the t e rm of order  E is 
antisymmetric in  the velocity [cf. Eq. (9), and also the 

' 

work of ~ e s t ~ ] .  Including i t  might eliminate the 
splitting. 

"calculations show that to take effects of the nonlinear terms 
in Eq. (1) as  I x I -  T into account one must go to higher 
orders in E .  
h comparing our results with those of Ref. 7 it must be 
noted that the quantities I and E introduced in that paper 
differ from those used here: I- a,Z, & - 0.141a$, where 
a,=2.65. 
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