
selective verification of the quantization conditions or  
by varying the manner in which the interaction is turned 
on (if there is no violation of adiabatic invariance, the 
final result must obviously not depend on the way the in- 
teraction is turned on). At the present time it i s  evi- 
dently impossible to calculate the spectra of these sys- 
tems in the quasiclassical approximation in any other 
way. 

The author is deeply grateful to Yu. N. Demkov for 
valuable comments, and also to  A. K. ~ a z a n s k i r  and 
V. N. ~ s t r o v s k i r  for a discussion of the results of this 
work. 
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arate regions in which a solution of the Hamilton-Jacobi 
equation has different multiplicities. 

2)~n this paper we use the atomic system of units e = m = l i = l .  
S'~ommensurability of frequencies cannot play any special 

role in the adiabatic method, since the Hamiltonian is non- 
stationary and resonance effects occur at a set of points of 
measure zero along the time axis. 

4)An example of the use of this method in the old Bohr theory 
is  the calculation of the Stark effect for the hydrogen atom.$ 
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A simple closed expression is derived, in the dipole approximation, for the cross section for radiative 
recombination of an electron into an arbitrary level of a hydrogenlike atom. The effect of a magnetic field 
on this process is estimated. The possibility of using it in experiments on electm cooling of heavy 
charged particles i s  discussed. 

PACS numbers: 34.90. + q, 29.25.Fb 

1. In connection with work now in progress on elec- 
tron cooling' there is increasing interest on the process 
of recombination of electrons with protons. For  exam- 
ple, detection of the resulting hydrogen atoms has been 
used directly in the NAP-M storage ring to bring the 
proton and electron beams into coincidence and to ob- 
tain a rough estimate of the temperature of the latter 
beam. As is shown in what follows, for  values of the 
parameters corresponding to the experiment of Ref. 1 
recombination is due to radiative transitions. For  a 
formulation of the problem and a survey of the litera- 
ture on this question, see  Ref. 2. In the present paper 
an expression in closed analytic form for the cross sec- 
tion of radiative recombination to the level n of a hydro- 
genlike atom is obtained for the f i rs t  time, by success- 
fully performing the sum over all quantum numbers. An 
analysis of the experimental situation with electron 
cooling is also made, and in particular the influence of 
a magnetic field on the recombination rate is estimated. 

Recombination can occur both through the involve- 
ment of three particles (ternary recombination) and 
owing to the emission of photon (radiative recombina- 
tion). The total number N of recombinations per unit 
time i s  given by 

iV=pn.iv,, (1.1) 

where n, is the density of electrons, N p  is the total 
number of protons, and B is the recombination coeffici- 
ent. 

In  ternary recombination there is a transfer of ener- 
gy of the order of the mean kinetic energy from one 
electron to another. The characteristic length for this 
process is p-e2/T (the temperature T of the electron 
beam is in energy units), and its probability per unit 
time "v,p2n, (v ,  is the velocity corresponding to the 
temperature T). For  recombination to occur, the elec- 
tron that loses energy must be at a distance -p from a 
proton. The number of such electrons per proton i s  
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-p3rze. From this and the definition (1.1) we get the fol- 
lowing estimate f o r  the ternary recombination coeffici- 
ent p,: 

here the temperature T is expressed in electron volts. 
As will be clear from what follows, a suitable estimate 
for the radiative recombination coefficient @,, with 
uc/v,> 1 (Q! = 1/137 i s  the fine-structure constant), is 

fin>10-13T- . cm3/sec (1.2a) 
In the experiment of Ref. 1 the parameters were ne = 2.8 
x lo8 ~ m ' ~  and T >  1/6. Under these conditions the ra-  
tio of the coefficients is &/b, < lo-', i.e., negligibly 
small, and only the radiative recombination need be 
considered. It must be kept in mind that the contribu- 
tion of ternary recombination increases with increasing 
electron density (at a given temperature), and in a suf- 
ficiently dense plasmathis canbe the governing process. 

2. Let us calculate the cross  section for  radiative 
recombination. We note that for ZQ! << 1 (Z is the charge 
of the nucleus) the dipole approximation can be used 
We shall confine ourselve to this case. I t  is convenient 
to make the calculation in parabolic coordinates (x, g 
c y ) ,  in which the radius vector r has the components 
R = [(,?t~)"~ cosy, ( X ~ ) 1 / 2  simp, g(X  - v)]. The wave 
functions of the discrete spectrum corresponding to the 
level n have the form (in Coulomb units) 

Here n,, n, are  parabolic quantum numbers, 112 is the 
magnetic quantum number, and n is the principal quan- 
tum number, r z =  n,+ n,+ 1172 1 + 1, and the function f,,,(x) 
is 

where (P is the confluent hypergeometric function. The 
continuous-spectrum wave function of a particle propa- 
gated along the third axis is 

Here I=Zuc/v,  where v is the speed of the particle. In 
the dipole approximation the matrix element 1M is ex- 
pressed in terms of an integral M: mae**M,  where e 
is the polarization vector of the photon and M is given 
by 

This integral can be done by differentiating the expres- 
sion (see Ref. 3, p. 875; p. 861 in Engl. transl.) 

jd l  e-s t tc- l  m (o:c. t )  m ( a ,  r ,   ti 

with respect to a parameter; here F is the hypergeo- 
metric function. 

Following the standard procedure, i.e., calculating 
\M 1' and summing over the possible final states, we 

find the expression for  a'"', the c ross  section for radi- 
ative recombination to  the level n: 

where 

The first  sum in S,  corresponds to the value 112 = 0 of 
the magnetic quantum number, and the second to I 
= 1. Using the recurrence relations for the hypergeo- 
metric functions, we can rewrite the expression for 
S, in the form 

where 

R ! ( z )  = (k2/A,,)'F(-l,  l+iE; 2;. z ) .  

We note that according to the relation 

F(ch B; r ;  ~ ) - ( l - z ) - ~ F ( a ,  7-8; r;  z l ( z - 1 ) )  - (2.8) 

the quantity R,(z) is real. Now, by means of the formu- 
l a  

(2a-y-orz+pz)F(a, B; 7 ;  z ) + ( l - a ) F ( a - l ,  8; ' ( ;  z )  
+a(z -1 )F(a+l ,  p; r; z )  5 0  

we can put S,  in the following form: 

The summation over 12, is now trivial, and we finally 
get 

S.=-nR.-,(z) inR. - l ( z )+(n+l )R . ( z )  1. (2.10) 

The quantity S, depends on X, A:. We list the forms 
of S,(x) for a few values of n: 

In the limiting case 5 >> 1, n<< 6 the quantity S, can be 
expressed in terms of Laguerre polynomials: 

S,=l/,[Lm2(4n) - L:-, (4n) I. (2.12) 

For  n >> 5 we have S, = n. A particular case of this limit 
is the Born approximation, for which 5<< 1. 

Using the expression for the generating function (see 
Ref. 4, p. 93) 

we can derive a convenient integral expression forR,(z): 
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exp{2& arc tg (n / f ) }  (I-e-'"') ( - 1 )  "11.,12 
nR.-, (z) = 

n 

by means of which we can rewrite the expression (2.6) 
for the cross  section for radiative recombination: 

0"1' = 32naXC2f' (1-e-":) 
3z'z u ( n ,  8 .  i2.15) 

Here 

c ( n ,  E )  =3'"U,(n, f )  Uz (n ,  f ) /2n.  

dz 
U ,  (n,  /) = 7 ?S;?exp{2in arctgz-2if Arth- , (2.16) 

-:[:a "1 E 

This form is convenient for deriving asymptotic expres- 
sions. For  example, let us find the asymptotic form of 
U(n, 5) and thus also for a'"' at n >> 1 and at a fixed val- 
ue of 5. Under these conditions the main contribution to 
the integrals in Eq. (2.16) comes from small values 
X-N - ' I3 ,  where N = n ( l +  n"t2); using this fact, we 
f ind1 ' 

i 
U ( R ,  e ) =  - [ ( I - A )  (1-B)+ A B ] ,  

A' 
(2.17) 

where 

n=r(113)~5r (21 , )  (12)"=0.1728 .... 

where r ( x )  is the gamma function. We note that al- 
though Eq. (2.17) has been derived on the assumption 
n>> 1, a comparison with the exact formula (2.16) shows 
that in any case for 5 > 1 the difference is smaller than 
1 percent, even for n = 1, and decreases a s  n increases. 

The total recombination cross  section is the sum of 
the partial cross  sections 

It does not seem possible to perform this sum in ana- 
lytic form. In the case <>> l we can obtain an asymp- 
totic formula for  a, starting from the expression (2.17): 

32xai..?E2 
0"- 

b b l  
3 Ya [ln t+bo + 4 6/ '  + ' ; + - ( b . - b & h  f' f z  1. (2.18) 

Here 

where C is Euler's constant, t(z) is the Riemann zeta 
function, and 

Here the values n s 5 make the main contribution to the 
sum. 

3. Since the experiment on electric cooling of protons 
is done without a magnetic field, it seems useful to 
consider the effect of such a field on the radiative re- 
combination process. 

Let us compare the forces exerted on an electron 
which is on the level n =  1 by a magnetic field, f,, 
-eH(Za), and by the Coulomb force center, f,,,, - e ~ , ( Z f f ) ~ .  where H, = m2c3eK -4.4 x loi3 Oe. For  fields 
that satisfy the condition 

H<He(Za) ', (3.1) 
which certainly holds in all actual installations, the ef- 
fect of the magnetic field on an electron in any state, 
with n - 1 is negligibly small compared with the Cou- 
lomb force. 

As the principal quantum number increases the Cou- 
lomb force decreases, but since for 5 S 1 the recom- 
bination goes to the lower levels (in this case the con- 
tribution of states with n>> 1 falls off a s  l/n3), if fields 
satisfying the condition (3.1) can have any effect on the 
recombination it must be for  5>> 1. In that case, a s  we 
have already noted, values n a 5 give the main contri- 
bution. 

Accordingly, it is sufficient to solve this problem for 
5, n>> 1, and the problem can be treated essentially in 
the framework of classical electrodynamics. In the ab- 
sence of a magnetic field we can directly use the formu- 
l a  for the spectral density of the radiation froman elec- 
tron passing by with initial impact parameter p (see 
Ref. 5, Sec. 70); dividing this expression by the energy 
tiw of the emitted photon, we have for the probability of 
emission at the given impact parameter 

where 

In  our case v>> 1 and we can replace the Hankel func- 
tions with their asymptotic expressions 

From Eqs. (3.2) and (3.3) i t  follows that the main con- 
tribution to dW, comes from nearly parabolic trajector- 
ies (c - 1 - v-2/3<< 1) corresponding to large orbital an- 
gular momenta Z .  

Fo r  n, I >> 1 we can use the approximate relations 

We have taken the conservation of energy in the recom- 
bination into account: Awn = &mu2 + I,, where In 
= (Zff)2mc2/2n2is the ionization energy of the n-th level. 
Substituting Eqs. (3.3) into Eq. (3.2) and expanding in pow- 
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e r s  of (c -I),  on using (3.4) we get an expression for 
the partial cross section a:"' for transition into a state 
with definite (large]) values of n and I 

It follows from Eq. (3.5) that the values of I that contri- 
bute to the cross section satisfy the inequality I < <  n2I3. 
Summing the a:"' given by Eq. (3.5) over I (this opera- 
tion can be replaced by an integration) we find 

This expression, obtained by Kramers,= corresponds to 
the first term of the expansion (2.17) of the quantity 
U(n, 5); if we set A = B = 0 in this expression, we get the 
expression (3.6) for a'"'. 

We now take account of the effect of a magnetic field 
H, assuming that the corrections due to H are small. 
Then the Fourier components of the velocity, in terms 
of which the probability of emission of radiation is ex- 
pressed, will be of the form 

where v, is the corresponding Fourier component of the 
velocity for H= 0 and a,= eH/f~zc; 

and h gives the direction of the magnetic field. In the 
case when the magnetic field is perpendicular to the 
plane in which the electron moves, we find, proceeding 
as in the derivation of Eq. (3.6), 

We note that the terms linear in H have gone to zero in 
the integration over the azimuthal angle. 

Accordingly, the effect of a magnetic field on the pro- 
cess of radiative recombination becomes important at 
field strengths 

In particular, in the NAP-M accelerator H-109 Oe, 
T - (1/6) eV, and the effect of the magnetic field on the 
process can be neglected. 

4. The recombination coefficient 8, is expressed in 
terms of the known cross section a of the process and 
the velocity distribution of the electrons (in the rest 
system of the proton) in the following way: 

To find f l ,  in the general case one must carry out a nu- 
merical calculation. This is especially simple if for 
U(n, 5 )  we use the approximate expression (2.17), which 
i s  very accurate. If also the quantity 5,= Zac/v, (vT/c 
= 2 x 10'3~1'2 [ e ~ ] )  i s  large, we can use the expression 
(2.18) for o. In this case, we can find 8, in analytic 
form. 

For example, for the isotropic velocity distribution 

we find 

here re= e2/17zc2 is the classical electron radius. 

For electron cooling in the NAP-M machine the 
spread of longitudinal (relative to the motion of the pro- 
tons) velocities is much (two o r  three orders of magni- 
tude) smaller than that of transverse velocities, so that 

With Eq. (4.4) we find 

In the experimental study of the effect of the relative 
longitudinal velocities of electrons and protons on the 
cooling effects a modulation of the longitudinal velocity 
(energy) of the electron beam was produced. This 
means that in Eq. (4.4) we make the replacement 

6 (v,) +6 (vr-uo cos 9).  

The resulting value of the recombination coefficient 
must be averaged aver JI. We give the result for the 
case in which the quantity y =v,/v, i s  small (y<< 1): 

+b,nS2r (f) g"/ u (4) (P)' 

The experiments on electron cooling a r e  carried out in 
the presence of a magnetic field, usually directed along 
the proton beam. The electrons move along helical 
lines with the axis along the direction of the field. To 
investigate (see Ref. 1) the influence of the transverse 
velocities of the electrons on the cooling effects, one 
either produced a change of the velocity of revolution 
of the electrons, or  else, by slightly turning the mag- 
netic field, imparted to the electrons a systematic 
transverse velocity. In both cases one obtains the corre- 
sponding distribution function from Eq. (4.4) by the re- 
placement v , -~ , -  v,, except that in the first case v, is 
a rotating vector and in the second case it is constant. 
However, after intergration over the angles of the vec- 
tor v, the only remaining dependence is that on lvo 1 =v,, 
and the recombination coefficients in the two cases are  
identical2': 
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1 b' 
P:"=~{[lnir+ba+-~+1n2+- 2 

(4.7) 
(2n-I)!! "-' 

"-1 

For  y<< 1 we find f rom Eq. (4.7) 
A i k:" = P:" - - r2{ln gr+bo + ?-C+ln 2+i 
2 

+b,r  (+) / 3n'.gr *-b2r  ($1 / 3n"*g;1: 

(4.8) 

For y >> 1 the main contribution to the integral (4.1) 
comes from values [vL 1 =vo, and in this case the coef- 
ficient j3, differs from voo(v,) by a quantity -l/yZ: 

At present the experimental results  donot have the com- 
plete clarity necessary for a detailed comparison with 
the theory. Nevertheless, the results  obtained s o  f a r  
show that the process of radiative recombination can be 
used effectively for  monitoring in various situations 
which occur in experiments on electron cooling. In  par-  
ticular, the effective temperature of the electron beam 
can be determined with high accuracy. If, as was  the 
case in the experiment of Ref. 1, the size of the proton 
beam is much smal ler  than that of the electron beam, 
then by shifting the proton beam across  the section of 

the electron beam one can in principle study the struc- 
ture  of the lat ter  beam. 
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*)The first two terms of this expansion were previously Imown 
(see Ref. 2, p. 226). 

2$f the electron beam is radially inhomogeneous, for example, 
with v~depending on r, these coefficients will be different, 
since in the second case the proton beam moves at an angle 
to the electron beam and the expression (4.7) has to be 
averaged over r. 
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