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The quasienergy method, developed earlier for the interaction of a system with a periodic field in which 
the level broadening effects are neglected, is reformulated for the calculation of quasistationary states in a 
strong optical field. The perturbation theory is developed for the real and imaginary parts of complex 
quasienergy and singularities which appear on allowance for corrections to the first nonvanishing order are 
considered. The cases of an isolated level and of a group of resonance levels are discussed separately. The 
shift and width of a level subjected to short-range and Coulomb potentials are analyzed in detail, 
including terms of the second and fourth orders in the field. At frequencies higher than the ionization 
potential the expressions obtained give, in particular, the corrections to the cross section of the classical 
photoelectric effect, proportional to the optical wave intensity. The exponential decay law of the system in 
a periodic field is considered. The possibility of experimental detection of the higher-order effects in the 
shift and width of levels is discussed. 

PACS numbers: 32.70.J~ 32.80. - t, 31.30.J~ 

5 1. INTRODUCTION 

In considering the processes of direct and resonance 
ionization of atoms in a strong field, and also the 
shifts and widths of atomic levels, i t  i s  usual to con- 
fine calculations to the first  nonvanishing order in the 
perturbation theory of the interaction between a given 
system and the field. Inclusion of higher-order correc- 
tions makes it possible, on the one hand, to identify the 
range of validity of the results obtained in the f i rs t  

nonvanishing approximation, and, on the other, to ob- 
tain a modified functional dependence of the shifts and 
widths on the field intensity. Calculations of the higher- 
order terms by the usual transient perturbation theory 
methods i s  fraught with difficulties typical of the higher 
orders of the perturbation theory in the case of finite 
level widths1 and associated, in particular, with the 
need to allow for  the contribution made to the width by 
the shift effects in lower order (and vice versa); there 
a r e  also difficulties in integration of the singular ex- 
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pressions which a r i se  in the calculations. If an optical 
field i s  considered classically and if the spontaneous 
level widths a r e  ignored compared with the field broad- 
ening, the simplest and most effective method for  in- 
cluding the higher-order corrections i s  the method of 
complex quasienergies. This approach is a direct 
generalization of the method of quasienergy states, 
f irst  proposed to describe a system in a periodic field 
ignoring the decay effects, z*3 to a c lass  of problems in 
which the level broadening i s  important. 

For a system with the periodic potential V([, t )  = V(( , t 
+ T) the wave functions of the quasienergy states (ti= 1) 

$,(k t )  -e-"'@,(t, t ) ,  @ ( t + T ) = @ ( t ) ,  T-2n/e 

satisfy the "steady-state" equationzn4 

and form a complete system of functions with a real  
spectrum of quasienergies E. If the unperturbed 
Hamiltonian H, has a discrete, a s  well a s  a continuous, 
spectrum (this applies to an atom o r  a molecule), the 
application of a perturbation V may cause ionization 
and the spectrum E becomes purely continuous. Never- 
theless, the quasienergy approach i s  still useful in an 
analysis of the spectral characteristics of a system in 
a field because it can easily be reformulated in terms 
of quasistationary quasienergy s ta tes  and used to cal- 
culate the shifts and widths of the levels in a discrete 
spectrum Ho(() on application of the field. 

The problem of quasistationary quasienergy states 
corresponding to Eq. (1) is  fully analogous to the pro- 
blem of quasistationary states in a static potential: a 
solution of Eq. (1) satisfying the boundary condition on 
the radiation i s  sought; i t  i s  found that the function @, 
r i ses  exponentially in the limit r-a, and i ts  correspon- 
ding eigenvalue E i s  complex. This approach i s  known 
to be equivalent to the solution of the Cauchy problem 
for the Schradinger equation with the initial condition 
$([, 0) = @,(() in the exponential decay range. The real  
and imaginary parts of E determine the position and 
width of a quasistationary level which if formed from 
E, on application of a field. It should be noted that 
scattering problems described by Eq. (1) may also be 
of physical interest. In this case the spectrum of E i s  
continuous and the corresponding functions @, are  
normalized to the 6 function of the solution of Eq. (1). 
As in the theory of scattering by a static potential, 
quasistationary levels correspond to scattering re- 
sonances and in this case the complex quasienergies 
and the functions of the states in question can be ob- 
tained a s  the poles and residues of @, in the complex 
plane of E. 

Since the exact solution of the decay problem i s  
possible only in exceptional cases," the approximate 
methods of calculation of the parameters of quasista- 
tionary states a re  of practical importance. In alterna- 
ting fields the situation differs from problems of the 
a-decay type and from the ionization of atoms in a 
static field when the level width i s  associated with the 
tunneling of a particle across a barrier and cannot be 
found by the perturbation theory. In fact, for each 

unperturbed state @,(()e-'Ent of the operator H,,(() there 
i s  an infinite s e t  In,&)) of quasienergy states in the 
zeroth approximation: 

Q., k(E, t)=Q.(%)eu: r = o t ,  k=0, *1,. . . , 
~. 

(2) 

which a r e  the eigenfunctions of the unperturbed 
Hamiltonian of quasienergy states 

with quasienergies E, ,=  En+kw. Therefore, from the 
formal point of view, we find that in the zeroth approxi- 
mation with respect to V, the operator X in Eq. (1) has 
discrete quasienergy states against a continuous back- 
ground. This problem is fully analogous to the cases 
of autoionization o r  predissociation, and the perturba- 
tion theory for V then gives the shift and width of 
levels. 

We shall develop below (9 2) the perturbation theory 
of quasistationary quasienergy states which can be used 
in dealing with decay when there i s  a discrete level 
against the continuum in the zeroth approximation. It 
should be noted that the f i rs t  order of the perturbation 
theory applied to the problem of autoionization was 
obtained by Fano,' but the formalism employed by him 
cannot be used to obtain higher corrections. A calcul- 
ation of the complex quasienergy of a particle associ- 
ated with short-range and Coulomb forces i s  calculated 
in 8 3, including terms of the second and fourth orders 
in the field Since the interpretation of the imaginary 
part  as the probability of ionization of the system i s  
only approximate, the decay of a system in a periodic 
field i s  considered in 8 4 and the limits of validity of 
the exponential decay law a r e  established. The pro- 
blem of possible experimental detection of the higher- 
order corrections and of the fundamental restrictions 
on the precision with which these quantities can be 
measured i s  considered in 9 5. 

$2. GENERAL FORMALISM OF THE PERTURBATION 
THEORY FOR QUASISTATIONARY QUASIENERGY 
STATES 

Since in the space of time-periodic functions @([,t) 
we can regard Eq. (1) a s  the eigenvalue problem, we 
shall develop the perturbation theory for  quasistation- 
ary quasienergy states with the unperturbed basis (2) 
by applying the formal apparatus of the steady-state 
perturbation theory suitable for  a discrete spectrum 
with zero level  width^.^ 

A. Isolated level 

Let us assume that in the absence of a perturbation 
there i s  an isolated discrete level @,(e )  with an energy 
E,. We shall introduce the following Green function 

In, k)<k,nl 

and rewrite Eq. (1) in the form 
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Here, 

i s  the reduced Green function and 

i s  the scalar product in the space of periodic functions. 

Iteration of the system (4) gives the Brillouin-Wigner 
series of quasienergies: 

A ser ies  in powers of the perturbation (Rayleigh- 
Schriidinger series) i s  obtained by expanding T,(E) a s  
a ser ies  in E in the vicinity of E,. For  example, in the 
case when in the sum of Eq. (5) the only nonzero terms 
a r e  those with even values of n (because of the selection 
rules), we obtain 

where 

Since BG,/~E = - G:, the derivatives of T,(E) can be 
represented in the form 

and so on. 

In the case of a purely discrete spectrum of the 
quasienergy states the formulas (6) represent simply a 
different form of the perturbation theory for quasien- 
ergy states developed by Sambe4 (see also Manakov 
et ~ 1 . ~ ) .  However, if H,(O has a continuous spectrum, 
the operator G, i s  non-Hermitian and it i s  
not single-valued. A quasistationary state i s  obtained 
by satisfying the radiation condition, i.e., by selecting 
the Green function with the diverging wave asymptote. 
In this case the consequence of the non-Hermitian 
nature of G, is  an imaginary part of the quasienergy: 
E =  ReE - i r /2 ,  where I' >O i s  the probability of decay 
of quasienergy states. Applying the formal solution of 
Eq. (44,  

we obtain 

Separating the Hermitian and anti-Hermitian parts of 
the operation R 

we obtain 

ReE=(O( V-l/zV(GE+GE+) VI @), 

I'-<(D I V(GE+-Gx) VIO). 
(7) 

It should be pointed out that the exponential r i se  of 9 

and G, a t  high values of r makes the integrals in Eqs. 
(4a) and (5) formally divergent, whereas the integrals 
in the system (6) have no divergences. This, the ex- 
pansion of T, and transition from (5) to (6) i s  in a 
sense analogous to the regularization of the integrals 
which appear in the theory of quasistationary states 
(see, for example, Zel'dovich and   ore'). 

We shall now consider in greater detail the problem 
of a particle in a spherically symmetric potential U ( r )  
in the presence of a monochromatic field: 

The Green function (3) can be expanded partially to give 

Here, g,(E; r, r l )  a r e  the radial Green functions, 
whose spectral expansions have the usual form 

To obtain $j , with the diverging wave asymptote, the 
integration contour in Eq. (10) for ReE > O  should be 
displaced in the complex plane in such a way a s  to pass 
a pole at E' =ReE - i r / 2  below. It should be noted 
that using the asymptote of g, in the limit r- m, we 
can obtain from Eq. (4a) the asymptote of the wave 
function of a quasistationary quasienergy state: 

dkL.UYLM (f) ' "p (i (pfl+ lEL - h)); 
(11) 

where the sum over k in Eq. (11) (k represents the 
number of the absorbed photons) includes only the 
"open" channels (ReE,> 0). 

According to the selection rules applying to k,  the 
contribution to T, in the calculation of E, of Eq. (6) i s  
made only by the partial terms in Eq. (9) with k = 1. 
When the one-photon ionization channel (E,+ w >  0) i s  
open, the integrand in Eq. (10) has a singularity of 
the type 

i/(x+iO) =l/x-hi3 (x), 

SO that for  I?,= - 2ImE,, we obtain 

whereas in the calculation of Re E, a singularity 
(E - EJ)-' is  integrated in the sense of i t s  principal 
value. The photoionization probability r, can also 
be calculated in terms of the flux determined by the 
function @ in Eq. (11) if we substitute in Eq. (12) the 
values E = E, and 9 = 9,. Making the substitution G, 
-G,, in Eq. (7), we can also express the total width 
of a Ievel in terms of the flux: 
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r=2n<@IVG(Re E-1,)V18)=2n 1A,,,12. (13) 
h LX 

The individual terms of the above sum represent par- 
tial widths corresponding to the ionization to states 
with quantum numbers LM and energies ReE + kw. 
The substitution E - ReE in G, makes Eq. (13) accu- 
rate to within- r/E,. However, we shall show later 
(1 4) that it i s  pointless to try for a higher precision 
in the distribution of the ionization probability between 
the channels. 

In the calculation of E ,  the integration in T,(E) i s  
carried out in the same way a s  in T,. It should be 
noted that the correction-V4 to the one-photon ioniza- 
tion probability, governed only by the term T,, in- 
cludes a contribution which can be expressed in the 
following form with the aid of Eq. (7): 

where the one- and two-photon ionization amplitudes 
A::;, and A,, ., a r e  calculated in accordance with Eq. 
(12) in the f i rs t  nonvanishing order,  and 

i s  the matrix element of the one-photon ionization 
accompanied by photon reemission. Thus, Eq. (14) i s  
the sum of the two-photon ionization probabilities and 
of the terms corresponding to the interference between 
the amplitudes of the one- and two-photon processes. 
A similar physically clear interpretation i s  admissible 
in the case of the imaginary par ts  of the component 
matrix elements of T,,(E,,) of any order. However, we 
must bear in mind that in addition of these "graph" 
terms, there i s  a contribution to the level width from 
the imaginary parts of the "nongraph" matrix elements 
corresponding to terms with derivatives in Eq. (6b). 
For real  values of E ,  these contributions correspond 
to the secular and normalization terms in the tran- 
sient perturbation theory.'' 

A calculation of the matrix elements (6b) i s  com- 
plicated compared with T,, because of the presence of 
high-order singularities. For example, the integrand 
in aT,/aE has  a singularity of the ( x  + iO)-' type when 
the spectral expansion i s  used for g,. Similarly, for 
higher orders of the expansion (6), we encountered the 
singularities 

Since these singularities'appear in Eq. (6) as a result 
of differentiation of the generalized function (x+  i0)-', 
they a r e  themselves generalized functions." Integra- 
tion of the expressions with the generalized functions 

can be carried out using the standard formula 

ignoring an infinite discontinuity of the integrand with- 
in the interval [a, b]. 

B. Adjacent quasienergy levels 

In contrast to the steady-state problem, not only the 
degenerate (or almost degenerate) states Hobut also the 
resonant levels In, 0)) and I m , k)), for which we have 
E n -  E,=ko a re  adjacent to an unperturbed quasienergy 
state of the Hamiltonian q. 

Modification of the perturbation theory of 1 2.A to 
allow for adjacent levels i s  similar to the correspond- 
ing procedure in the steady-state perturbation theory. 
Let us assume that there i s  a set  iV of adjacent quasi- 
energy s ta tes  {@$',E :'); then, the solution (1) can be 
represented in the form 

The quasienergy E and the coefficient a ,  satisfy the 
system of equations 

a i c ~ , - ~ ~ ) - E  am:" I R ~  ~m:') ra .  
1-1 

where 

To solve Eq. (16), we shall represent R a s  a .sum of 
two terms: 

where R, represents the first  few te rms  of the expan- 
sion (17), whose inclusion results in mixing of the states 
a?' in the f i rs t  nonvanishing order. The eigenvalues 
of E ,  of Eq. (16) corresponding to R, = 0 a r e  generally 
complex (because R i s  non- Hermitian). The correspon- 
ding eigenvectors I v,)) satisfy the following orthonnorl 
malization conditions: 

Applying these conditions, Eq. (16) can be represented 
in a form convenient for the calculations of corrections 
to Icp, >>and E, [compare with Eq. (4)]: 

The iteration procedure of solution of Eq. (18) i s  analo- 
gous to that considered in 4 2.A, except that in the pre- 
sent case the "perturbation operator" R, depends on E; 

The selection of the operator R, depends on the actual 
problem. For  example, in the case of a k-photon 
(k> 2) resonance between the ground state +, with E:' 
and a multiplet N of adjacent levels {+,!'"exp(- ikr), E?' 
- kw), from which one-photon ionization can take place, 
we can assume that 

This operator does not mix the states a?' with Go, 
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but the quasienergies E, (i = 1, 2, ... , N) become com- 
plex and the denominators in Eq. (18) remain fairly 
large for all values of w. Inclusion of the remaining 
terms in R(E) i s  made in accordance with Eq. (18). The 
ground-state quasienergy i s  then 

" U(DolRa(E) Iqj)UpjlR,(E) !(Do)  E=Eo+<OoIR2(E) l(Do)+Z 
I-I 

E-Ej+kO 

where 

E , = E ~ ' O ' + < ( D ~ I  VG$:IVI~D~),  

B j - < O o I M k l ~ ~ < ~ j l M k I ~ o ~ ,  M,=V (G?OIV) I-'. 
(19a) 

The imaginary part of Eq. (19) represents the probabil- 
ity of resonance ionization of the ground state. In the 
f i rs t  nonvanishing order with 

Eq. (19a) assumes the same form a s  the resonance 
scattering cross  section in the presence of nearby 
poles of the S matrix [see Eq. (5.7.24) in Ref. 121. 

As in the nonresonance ionization case, r can be 
represented also in the form of a sum of partial 
widths. In particular, substituting in Eq. (12) the 
expression 

we find that i s  given by 

r;01=2;1  CIA^+, L y ~ 2  

L.Y 

This expression has the form of the usual probability of 
(k+ 1)-photon ionization in the first nonvanishing order,  
except that in summation over the intermediate states 
the unperturbed levels of the multiplets a(,'" are  re- 
placed with states modified by the field and with corre- 
sponding complex quasienergies. The same consider- 
ations were used by Zon and Katsnellson to obtain the 
above express i~n . '~  It i s  clear from Eqs. (20) and (21) 
that the frequency dependence r(w) i s  not a superposi- 
tion of pure Lorentzian curves but i s  affected by inter- 
ference between the ionization amplitudes via the var- 
ious states of the modified multiplet. 

8 3. HYPERPOLARIZABILITY AND NONLINEAR 
CORRECTIONS TO THE PHOTOELECTRIC EFFECT TO 
ALLOW FOR SHORT-RANGE AND COULOMB 
POTENTIALS 

We shall now consider the interaction of a bound 
particle with a monochromatic field in the dipole appro- 
ximation: 

where - 1 r c 1 i s  the degree of ellipticity of the pol- 
arized radiation. The complex quasienergy E ,  corre- 
sponding to the energy E, of an unperturbed isolated 
level, can be represented a s  a se r i es  in terms of F: 

Here, 2y2(&, w) = ff i s  the dynamic polarizability. The 
coefficients y2, with n > 1 a r e  analogous to the hyper- 
polarizabilities in a static field. We shall use the re- 
sults of 5 2 to calculate the complex dynamic hyper- 
polarizability y,(c , w) 5 y for a particle experiencing 
short-range and Coulomb forces. In particular, this 
quantity should allow u s  to find an important quantity 
which i s  the field intensity F limiting the range in 
which we can use the results of the f i rs t  nonvanishing 
order ( -  t a p )  and the associated concepts of the 
Stark shift and ionization broadening in describing the 
field perturbation of a spectrum. 

Integrating Eq. (6a) with respect to angular variables 
and T, we can represent T, a s  a combination of radial 
integrals 

The radial Green functions gL(E; r, r l )  can be de- 
scribed by the spectral expansion of Eq. (10) and for 
Lz = w2 = 0 the sum over X does not include the term cor- 
responding to the state q,(r). Application of the formu- 
las for the point  potential^'^ makes i t  possible to obtain 
easily the matrix elements r needed in the calculation 
of M. In view of singularities of the (El- E2*i0)? type 
in the matrix elements r between the states in the con- 

tinuous spectrum, the integrals in M,,, &, ,, repre- 
senting the intermediate states, in fact, contain singu- 
larities of the ( x +  iO)-"ype where k > 1 and these a r e  - 
integrated on the basis of the theory of residues. The 
above treatment simplifies greatly if the perturbation 
V i s  selected, in contrast to Eq. (22), in the form 

The final expressions for o! and y in Eq. (23) a re  in 
the forms' 

where 1 = (1 - cZ)/(l+ c2) and A =%/(I+ cZ) a r e  the de- 
grees of the linear and circular polarizations related 
by A2 + lZ = 1 (Ref. 14): 

- .  

f A ( 0 )  -450~+96+5i(0~-i)~(m'-7) - 4 i ( 0 - I ) ~  
x (302+140-32)+3i(20-I)"', 

The values (W - 1)'12 and (2w - 1)lI2 corresponding to 
the negative range of the radicand a r e  selected on the 
upper imaginary semiaxis. The singularities in the 
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amplitudes of the A;: type in Eq. (14), which appear 
when calculations a r e  made by the methods of the con- 
ventional transient perturbation theory, have a much 
more complex structure and cannot be interpreted un- 
ambiguously. The correct result can be obtained by 
introducing a cutoff factor in the operator (22). Some 
of the singularities a r e  not integrable a t  a l l  and cancel 
out only in the calculation of the sum in Eq. (14). All 
this complicates greatly the calculations of the higher- 
order corrections compared with the quasistationary 
quasienergy states. 

If w < 3 ,  the quantity y i s  r ea l  and it governs the 
correction -F, to the Stark shift. If w >$, the quant- 
ity y has an imaginary part which governs the two-pho- 
ton ionization probability and can be represented a s  a 
sum of the moduli of the squares of the partial ampli- 
tudes A,, and A,, in Eq. (14): 

If w > 1, the one-photon ionization channel i s  also open 
and then y has  an imaginary part  corresponding to the 
corrections to the photoelectric effect, which allow for 
the processes involving photon reemission [the second 
term on the right-hand side of Eq. (14)], and also the 
secular term Im(E,aT,/aE,). The final expression for 
the probability of ionization producing photoelectrons 
of momentum p = (W - I)"* i s  

Moreover, there a r e  corrections to the photoelectric 
effect from the two-photon ionization [W,(w)], which 
alters the photoelectron momentum distribution. It 
follows from Eq. (26) that W, i s  a nonanalytic function 
of w (threshold singularities), so that the frequency 
dependences W2,,(d) a r e  very different for w< 1 and 
w> 1. 

At high frequencies (w >> 1) the real  and imaginary 
parts of y(w) decrease rapidly: 

and the asymptote of the imaginary part  i s  governed by 
the value of W,. 

The frequency dependences of the real  and imaginary 
parts of a(w) and y(w) a r e  plotted in Figs. 1 and 2. It 
i s  clear from these figures that y(w) has  threshold 
singularities of different types, typical of the reaction 
cross sections in the case of finite-radius potentials.15 
The strong frequency dependence of y makes it impos- 
sible to determine accurately the critical field F, in 
which E,(F,,)= E,(F,,) and the perturbation theory be- 
comes invalid: Fcr=Fc,(w). Since for  w - 1  we have F,, 
-4, whereas in the case of w >> 1, we have F,,cc w'"~ 

FIG. 1. Frequency dependences of Re& and Rey for a 
short-range potential. The values of y, and y~ correspond 
to the linear and circular polarization of the incident radia- 
tion. 

for ReE and F,,= w " ~ '  fo r  r. Thus, a s  in the case of 
one-photon ionization, the perturbation theory of the 
width of levels becomes invalid in weaker fields than 
the theory of the shift. An increase in the number of 
photons taking part in a given event increases this 
difference.' 

The above formulas can be applied to negative ions 
if the bound-state function i s  multiplied by a numerical 
coefficient which allows for the difference between the 
asymptote of the wave function of an ion and the func-. 
tion in a 6 well (see, for example, Smirnov's mono- 
graph16). The probability of two-photon ionization of 
an K ion calculated using Eq. (26) i s  in good agree- 
ment with the results  of numerical ca1cu1ations" 
carried out using exact asymptotes of the wave func- 
tions of H- for the discrete and continuous spectra. 

FIG. 2. Frequency dependences of Imcu and Imy for a 
short-range potential. The dashed parts represent the con- 
tribution made to Imy by the probability of two-photon 
ionization. 
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B. Coulomb potential Ufr) = - 2lr 

The polarizability and hyperpolarizability of the 
hydrogen atom were calculated by Manakov et a1.' for 
the frequency range w s $. Therefore, we shall con- 
sider the range of frequencies in which the ionization 
of an atom i s  possible and y has an imaginary part. 
The question of those corrections to the probability 
of the photoelectric effect which a re  nonlinear in re-  
spect of the intensity becomes important in investiga- 
tions of multiphoton resonance ionization in strong 
fields since in practically all the experiments carried 
out so far the upper resonance level is  one-photon wide. 
The expression for T, in t e rms  of radial matrix ele- 
ments is  then of the same form a s  for the 6 potential 
but ML1,,,,, cannot be calculated completely by 
analytic methods. The radial Coulomb Green functions 
gL(E; Y, Y ' )  for E <O have been calculated employing 
the Sturm expansion1' and those for E > 0 have been 
found employing the spectral expansion (10). The 
matrix elements Y of the Sturm and Coulomb functions 
can be expressed in terms of the hypergeometric func- 
tions ,Fl and they do not have singularities for bound- 
bound and bound-free transitions;..the matrix elements 
of the free-free transitions, which have singularities 
of the ( x *  i0)* and ln(x* iO)/(x iiO) type, can be calcu- 
lated by making the substitution V- ve-" and going to 
the limit 6- + 0. 

FIG. 4. Frequency dependences of Ima and Im y for a 
Coulomb potential. The dashed curve represents the con- 
tribution made to Imy by the probability of two-photon 
ionization (based on the results of Klarsfeldl9). 

(one-photon resonances involving the np states). Then, 
Rey remains always positive and r i s e s  rapidly on 
approach of w to the limit of the continuous spectrum. 
The high value of Rey in the frequency range w" 1 has 
the result that in the case of the potential with the 
Coulomb asymptote the critical field F , ,  up to which 
the perturbation theory i s  valid decreases rapidly on 
increase of the frequency and can be several  orders  
of magnitude lower than for w =O.  The width of a level 
has threshold singularities typical of the Coulomb po- 
tential'' and remains finite at the one- and two-photon 
ionization thresholds. For w  > 1, the value of Imy 

Summation and integration over the intermediate 
governs the corrections to the cross  section of the 

states a re  carried out numerically and singularities 
conventional photoelectric effect and these c ross  

a r e  separated and then integrated analytically in accor- 
sections a r e  proportional to the wave intensity4': 

dance with Eq. (15). In contrast to the short-range 
potential, the contribution of singularities to ML1,,,,, 
is extremely small  because the main contribution i s  
that of a sum over the discrete spectrum in Eq. (10). 

The frequency dependences of the shift and width of 84. DECAY OF A SYSTEM UNDER THE ACTION OF A 
the ground state of hydrogen in the w > i  case a r e  plot- PERIODIC PERTURBATION 
ted in Figs. 3 and 4. For w  <d (we recall that w  is  

In the presence of a static potential the imaginary 
measured in units of the ionization potential) the one- 

part  of the complex energy E = ReE - i r / 2  governs the 
and two-photon ionization channels a r e  closed (Im E 

probability of decay of the system and the exponential 
= O), the polarizability a(w) r i ses  monotonically, and 
y(w) has pole singularities at the points w F ' = i ( l -  l/n2) decay law 

corresponding to two-photon resonances of excited ns ~ ( t )  -i-e-rL (28) 
states with the principal quantum number n. For 

i s  valid for time intervals l> w > i ,  the value of y has pole singularities of the 
second order a t  the points defined by w t' = 1 - l/n2 (29) 

(E, is  the characteristic energy parameter of the 
system) and it i s  satisfied with the relative precision of 
- l ? / E ,  (see, for example, Refs. 7 and 15). An expres- 
sion of the same type a s  Eq. (28) and the limits of its 
validity will now be obtained for  the case of decay under 
the action of a periodic perturbation. 

The amplitude of the probability of finding the inves- 
tigated system in an initial state @, after a time t 
from the application of the field can be written in the 

15 2 o A(t,to)= <'Dolll;(to+t)) 

FIG. 3. Frequency dependence of 100 (Re a) (dashed curves) - dE e-In' ('DoI'Dr,c(t+to)) ((Da.c(to) Ian), (3 0) 
and Rey for a Coulomb potential. 
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where exp(- i E t ) @ ,  ,(r, t) is the complete system of 
quasienergy solutions of the Schriidinger equation with 
a continuous spectrum of quasienergies E ;  c a r e  the 
other quantum numbers of quasienergy states; $(t) is  
the solution of the Cauchy problem subject to the initial 
condition $(to) = a,,. In view of the periodicity of +,,,(t), 
the amplitude (30) depends periodically on to. Physi- 
cally this is  due to the fact that a sudden application 
of a perturbation produces a situation in which different 
values of to correspond to different initial values of the 
field intensity. Averaging Eq. (30) with respect to to 
over a period T and applying the relationship 

we can represent the expression for 

whereas in the case of the short-range potential, this 
quantity i s  

and when w i s  increased from 0 to 1, i t  increases 
from ~ ~ / 1 6  to 0.8FZ (in rydbergs-see 8 3). It should 
be noted that the correct value of 8"' in Eq. (35) i s  ob- 
tained if V i s  described by Eq. (22) and not Eq. (24). 
This i s  due to the fact that in the calculation of the 
complex quasienergy the representations (22) and (24) 
a r e  equivalent but a sudden application of Eq. (24) does 
not correspond to a sudden application of an electric 
field F(t). 

in the form5' 

where aE,,L=@E,cei" i s  the complete set of the quasi- 
energy states of Eq. (1). We can easily s e e  that the 
right-hand_ side of Eq. (31) i s  identical with the arnpli- 
tude ((a, 1 $(t))), where $(t) i s  the solution of the Cauchy 
problem for the equation 

Since the "Hamiltonian" in Eq. (32) is independent of t ,  
we can use the familiar results of the theory of the de- 
cay of a "prepared" state7 and rewrite A(t) in the form 

where a, is given by Eq. (4a) with real  values of E. 
The integrand in Eq. (33) has a pole in the complex 
plane of E at E =E,, where E,= ReE - i r / 2  i s  clearly 
given by Eq. (4b). When Eat >> 1 (E,- I Eo+ No 1 ,  where 
JV i s  the threshold number of photons), the main contri- 
bution to Eq. (33) i s  due to the residue at that pole so 
that the probability of ionization of the system in a time 
t i s  

In the f i rs t  nonvanishing order of the perturbation 
theory the quantities @ and u a r e  of the second order 
in the field: 

and ue' i s  again given by Eq. (35), where the Green 
function i s  replaced only with the part corresponding 
to a sum over the discrete states. I t  i s  clear from Eq. 
(35) that for w <  IEoI the quantities @" and u"' a re  
real  and positive. For the hydrogen atom we can ex- 
press @"' in terms of the hypergeometric function ,F,, 

It follows from Eq. (34) that the linear regime W(t) 
= r t  i s  attained after a time 

(we then naturally have t << l / r ) .  In the problems of 
decay in the presence of a static potential it i s  usually 
assumed that @ is  of the order of r/E, (Ref. 7) so  that 
Eq. (36) i s  identical with the inequality (29) on the left- 
hand side. However, in our case 

and, therefore, for  N > 1 the time taken to attain the 
linear regime increases considerably to 

This produces a wide "plateau" of the time dependence 
U7(t). The existence of such a plateau has been establ- 
ished for the one-dimensional 6-potential model by 
numerical solution of the Cauchy problem.20 From the 
physical point of view the height of the plateau 2 ( @ - x ) '  
i s  governed by the probability UrB of ionization of an 
atom a s  a result of a "shocK' delivered by the applica- 
tion of the field. In fact, if we calculate WB(t, t,,) in the 
f i rs t  order of the secular perturbation theory and 
average over the fast oscillations, we find that in the 
limit Eat >> 1 this probability i s  

where @ "' i s  the total probability of the loss of an atom 
from i ts  initial state and x " )  i s  the probability of a 
transition to other discrete levels a s  a result of this 
shock. 

An anomalously .high value of @ obtained in our case 
i s  explained by the fact that in the static potential . 

the total Hamiltonian can always be divided into H, and 
V in such a way that the application of V has a minimal 
effect on the unperturbed wave function and simply 
causes decay of the state, whereas on application of a 
time-dependent perturbation the separation of X into 
j(% and V i s  governed by the formulation of the problem. 
Therefore, in experimental investigations it i s  usual 
to switch on a perturbation adiabatically and there i s  
no shock due to a sudden application of the field so that 
we can expect /3 to have the value" I'/E,. 
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In the derivation of the decay probability (34) of the 
state *,we have simplified the integral (33) by omit- 
ting the terms representing the contribution of the 
poles corresponding to other quasistationary states and 
also the nonexponential terms governing the asymptote 
of U7(t) in the limit r t  >> 1. An estimate of these terms 
can be made a s  described earlier7 and it shows that for 
times t S l/r they have a higher order of smallness in 
respect of V than B (moreover, there may be terms 
which a re  proportional to B but which oscillate a t  
atomic frequencies). In the resonance ionization case 
we normally have to include in Eq. (33) the contribution 
of all the poles corresponding to resonance levels. 
Then, A(t) represents a sum of several exponential 
functions and the ionization probability is  identical, in 
the first nonvanishing order, with the results reported 
by Kazakov et ~ 1 . ~ ~  

5 5. POSSIBILITY OF EXPERIMENTAL OBSERVATION 
OF HIGHER-ORDER EFFECTS 

In investigations of the processes occurring in fairly 
high fields when the perturbation theory i s  still applic- 
able but the corrections to the results of the first  non- 
vanishing order in respect of the width and positions 
of the levels a r e  significant, i t  is important to consider 
the possibility of experimental detection of new effects 
resulting from inclusion of these corrections. An an- 
alysis of this problem depends largely on the conditions 
under which a given experiment i s  carried out and, 
therefore, we shall confine ourselves to a brief re- 
view of several typical situations. 

The simplest case is the observation of those cor- 
rections to the level shifts which a r e  nonlinear in re- 
spect of the intensity. Although direct observations of 
this effect in optical fields have not yet been made, cal- 
culations of the hyperpolarizabilities of alkali atoms8 
show that nonlinear effects a r e  important even in fields 
of 5 X lo6 ~ / c m ,  typical of experimental studies of the 
ionization of alkali atoms.22 The effects proportional 
to V' can be detected directly by determining the non- 
linear intensity dependence of the ion yield maximum 
under resonance ionization conditions o r  by employing 
modifications of other methods for experimental in- 
vestigation of nonresonance perturbations of the 
spectraz2 We recall that in the case of the hydrogen 
atom in a static electric field we can observe not only 
the linear but also the quadratic and cubic Stark 
effects.z3 

Determination of corrections to the width of a 
resonance level from the experimentally determined 
frequency dependence of the ion yield i s  very difficult 
in the most interesting case when the one-photon ioni- 
zation of the upper level is  possible. Even a formal 
analysis of the expansion (19) shows that these correc- 
tions make a contribution to the ionization probability 
which a r e  of the same order as the nonresonance ("po- 
tential") terms dropped in the derivation of Eq. (20) 
which applies to the resonance case. Therefore, an 
unambiguous separation of the probability into the 
resonance and nonresonance parts (like the separation 
of the potential and resonance amplitudes in the scat- 

tering theory1') i s  impossible if precision exceeding 
r/Eam (V/E,)' i s  r e q ~ i r e d . ~ '  Consequently, in deter- 
mining the higher-order effects in the resonance ioni- 
zation experiments i t  is  desirable to establish a situa- 
tion in which the one-photon ionization of the upper 
level i s  impossible. 

Allowance for corrections to the level width in the 
nonresonance ionization case makes the functional 
dependence of the ionization probability r ( I )  different 
from the usual power law r =IN. b the experiments 
these effects may be masked by corrections to the 
ionization probability per unit time, due to a deviation 
of the time dependence W(t) from the exponential law 
(28). It follows from the results of 8 4 that in the 
optimal case a determination of the ionization proba- 
bility W(t)  makes i t  possible to find r with a precision7' 
of the order of I'/E,. Therefore, the corrections to 
the width of levels can be determined in the N >  1 case 
also in nonresonance ionization experiments. 

" ~ h e  exact solution in the quasistationary approach has been 
obtained so far only in the problem of the decay of a particle 
bound by short-range forces in a circularly polarized 
field . 

2 ) ~ e  shall use the Rydberg system of units: e = nz =f = 1; E 
is measured in units of IEo I and F in units of F, 
= I Eo I 3/2J8nz/ef. 

3'The expression for y in the case of a circular field obtained 
by Manakw and ~ a p o p o d  is marred by misprints. 

note that the corrections to the cross section of the 
photoelectric effect calculated by ~ l a r s f e l d l ~  allow only 
for the two-photon ionization and, therefore, are incorrect. 

5 ) ~ e  note that in a circular field the amplitude (30) is 
independent of to because in this case the field intensity 
does not vary with time and the averaging procedure is 
unnecessary. 

6)~lear ly ,  this relationship limits also the precision of the 
determination of the shift of levels. 

?)This applies also to the determination of the partial widths 
and, therefore, separation between channels with a 
precision better than that in Eq. 03) is pointless. 
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A method for calculating spectra of complicated systems in the quasiclassical approximation is proposed, 
which is based on. the adiabatic invariance of quantum numbers; this enables one to avoid the basic 
calculational dificulties involved in finding caustics and fixing initial data for the quantized classical 
trajectories. The validity of this method is verified with the example of a two-dimensional anharmonic 
oscillator. The results of the adiabatic calculation are identical with those obtained previously by an exact 
direct quasiclassical calculation for this case. Some general questions connected with the application of the 
method are discussed. 

PACS numben: 03.65.Sq 

1. INTRODUCTION 

Much attention has been given to the development of 
the quasiclassical method for  many-dimensional sys- 
tems that do not permit separation of the variables (see, 
for example, Refs. 1-3 and references given there). 
Progress  in this field is of great importance for the 
theoretical study of the spectra of such physically im- 
portant objects a s  closed and open resonators, excitons, 
hydrogenlike atoms in strong magnetic fields, polya- 
tomic molecules (vibrational spectra), and s o  on. Ne- 
vertheless we know of only two paperszv3 devoted to the 
quasiclassically exact calculation of the discrete spec- 
trum; the cases  considered were the nondegenerate and 
the degenerate two-dimensional anharmonic oscillator. 
This situation is due to the lack of a practical recipe 
for finding the quantized classical trajectories. The 
only way at present is to choose initial data directly and 
then check the quantum conditions fo r  the resulting tra-  
jectories. For  systems with several  degrees of free- 
dom this method requires an  excessive amount of com- 
puter time, mainly spent in rejecting unsuitable trajec- 
tories. Furthermore, the checking of the quantum con- 
ditions requires the calculation of caustics,'' which a re  
integral characteristics of trajectories, s o  that it is 
hard to find an algorithm f o r  them. These difficulties 
naturally arise in the case of many-dimensional sys- 
tems that do not admit separation of variables. P re -  

cisely this sor t  of situation is discussed in what fol- 
lows. 

In  the present paper an approach is proposed which 
is different in principle, and which allows the removal 
of the main obstacles in the path of the quasiclassical 
calculation of spectra-those of fixing the initial data of 
trajectories and finding caustics. This approach is 
based on the adiabatic invariance of the quantum num- 
bers.  According to the adiabatic principle, the con- 
tracted action calculated over a closed path is con- 
served during a slow change of the potential; i.e., it is an 
adiabatic invariant? Consequently, in  a slow change of 
the potential the Bohr-Sommerfeld quantization condi- 
tions a r e  not violated and the trajectory of a particle 
will continue throughout to be a quantized one. The 
adiabatic principle can be  used to calculate the spec- 
trum of a Hamiltonian H in the quasiclassical approxi- 
mation in the following obvious way: First one chooses 
a reference Hamiltonian H,  for  which the classical tra- 
jectories that satisfy the quantization conditions are 
known, and then calculates with the classical equations 
of motion the development in time of these quantized 
trajectories during a slow change of the interaction 
V = H - H,,. When the interaction has been fully turned 
on, one obtains the quantized trajectory for the Hamil- 
tonian H and the corresponding eigenvalue of the ener- 
gy. The more slowly the interaction is turned on, the 
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