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The conditions under which relativistic amplitudes can be expressed in terms of wave functions are 
investigated within the framework of an invariant diagram technique that appears in a field-theoretical 
treatment of a light front. The obtained amplitudes depend on a 4-vector o that defmes the surface of the 
wave front. A prescription is formulated for the determination of values of the Cvector o that minimize 
the diagram contribution which is not expressed in terms of the wave functions. This investigation is the 
equivalent of a study of the dependence of the amplitudes of the old perturbation theory in a system with 
infmite momentum on the direction of the infinite momentum. 

PACS numbers: 42.65.B~ 

1. INTRODUCTION 

The investigation of nuclei in the region of relativistic 
nucleon momenta (q  -m)  and of nuclear reactions with 
large momentum transfers made it necessary to develop 
a formalism of relativistic wave functions that are  rel- 
ativistic invariants, admit of a probabilistic interpre- 
tation, depend just as  the nonrelativistic wave functions 
on three-dimensional vectors, and go over in the non- 
relativistic limit into the ordinary nonrelativistic wave 
functions. Wave functions in a relativistic coordinate 
were considered space by Shapiro.' The problem of 
relativistic wave functions was discussed by him also 
in Ref. 2. In my earlier papef' I developed a wave- 
function formalism with the properties indicated above. 
In this formalism, the wave functions are non-single- 
time Fock components of a state vector in an invariant 
SchrtJdinger representation (ISR) on the surface of the 

(out I state vectors, which provide a complete descrip- 
tion of the system of interacting particles, for example 
an electron and a deuteron, there can be present, owing 
to the virtual production of particles, Fock components 
which cannot be expressed in terms of the Fock com- 
ponents of the state vector of the deuteron. In addition, 
the amplitudes turn out to depend on the $-vector w 
which defines the surface of the light front, and a de- 
pendence on w is possessed also by the relative contri- 
butions of the diagrams which are expressed and are 
not expressed in terms of wave functions. 

We note that the same problems exist in the old per- 
turbation theory in a system with infinite momentum 
(SIM). Thus, the analog of the dependence of the IRS 
diagrams on w is the dependence of the diagrams of 
the old perturbation theory in the SIM on the direction 
of the infinite momentum. 

light front w = O  (w is a 4-vector that lies on the light To obtain unambiguous expressions for the amplitudes 
cone: w=(wo,w) ,  w2=0, w0>O). in terms of the wave functions, it is necessary to find 

To obtain information on the wave functions from ex- 
periment, it is necessary that the amplitudes of the 
process be expressed in terms of the wave function of 
a bound system. To express the amplitudes in terms of 
non-single-time wave functions a non-single-time com- 
putation formalism is necessary. Such a formalism, in 
the ISR, was developed by ~ a d ~ s h e v s k 3  and formulated 
for the case of a light front in Ref. 3. It combines the 
advantages of the Feynman diagram technique (explicit 
relativistic invariance) and of the old perturbation theo- 
ry (possibility of working with probabilistically inter- 
pretable wave functions). Questions of unitary and 
causality in field theory formulated on a light front were 
investigated in Ref. 5. 

the conditions under which the relative contribution of 
diagrams not expressed in terms of wave functions is 
minimal, and fix in some way the position of w on the 
light cone relative to the 4-momenta of the particles 
that take part in the reaction. 

The purpose of the present paper is to find a method 
of uniquely expressing the amplitudes of the processes 
in terms of wave functions. We obtain a prescription 
for finding the values of the 4-vector w (which depend on 
the type of diagram) that minimize the contribution of 
the diagrams that are  not expressed in terms of the 
wave functions, and consequently the amplitudes of the 
processes can be unambiguously expressed in terms of 
the wave functions of the bound system. 

However, the problem of expressing relativistic amp- In Sec. 2 we recall the main properties of the non- litudes in terms of wave functions is made complicated single-time wave functions investigated in Ref. 3, and by the fact that contribution to the amplitude of scatter- the ISR diagram technique. We explain how diagrams ing by a bound system is made not only by the diagrams that are not expressed in terms of wave functions arise that are expressed in terms of wave functions of the and why the amplitudes become dependent on the 4-vect- 
coupled system, but also diagrams which are not ex- or  w, and also illustrate these properties of the dia- 
pressed in terms of wave functions. The causes of this grams with examples. 
phenomenon, which does not occur in the nonrelativistic 
case, will be explained in detail in Sec. 2. We note only In Sec. 3, we show that the LSR diagram technique is 
that is is connected with the fact that in the lin) and an invariant formulation of the old perturbation theory 
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with SIM (a change of variables makes the expressions 
for the amplitudes identical). 

Thus, all the results of the present paper pertain 
equally well also to the old perturbation theory with 
SIM. The dependence of the amplitudes on w means 
that these amplitudes depend on additional invariant 
variables-scalar products of the 4-vector w and the 
4-momentum of the particles that take part in the reac- 
tion. 

We introduce invariant variables that a re  connected 
with w and obtain range of their variation. In Sec. 4 we 
investigate the singularities of the ISR amplitudes. The 
positions of some of these singularities turn out to de- 
pend on the values of the invariant variables that a re  
connected with w. In Sec. 5, investigating the character 
of the dependences of the amplitudes on the invariant 
variables connected with w, and using information on 
the positions of the singularities that depend on the 
scalar products of w with the 4-momenta, we obtain a 
prescription for  finding for these invariants (which is 
equivalent to finding the 4-vector w) values such that 
the contribution of the diagrams that a re  not expressed 
in terms of wave functions is minimal. Section 6 con- 
tains concluding remarks. In the Appendix we investi- 
gate the parametrization of the ISR amplitude off the 
energy shell. 

2. RELATIVISTIC WAVE FUNCTIONS AND DIAGRAM 
TECHNIQUE 

We recall the principal results of Ref. 3, which per- 
tain to the relativistic wave functions. We carry out 
here a qualitative analysis of the properties of the wave 
functions.') 

Let I)(%, q, t)  be a two-particle Fock component 
having the meaning of the probability amplitude of ob- 
serving a particle in the reference frame A at the points 
x, and x, at the instant of time t. In the reference frame 
A', this wave function will not be single-time: i t  will 
describe particles a t  the points xi and 4 at the instants 
of time ti and t;. The wave function JI1(<,4, t'), which 
is single-time in the system A', does not coincide with 
$(%,q, t), since the position of the particles changes 
in a time At = t; - ti. Therefore the single-time wave 
function is not a covariant quantity: there is no kinemat- 
ic connection between JI and JI'. The connection between 
them is dynamic and contains the Hamiltonian of the 
system. A covariant quantity is the non-single-time 
wave function $(x, ,x2, X), defined on an arbitrary space- 
like surface. 

For  simplicity we consider a plane surface hu = 0, 
with X=(X,,X), X 2 = 1 ,  Xo>O. Such a wave function is 
transformed kinematically, inasmuch as it  describes in 
the system A' particles at the same points of space- 
time as in the system A. The coordinates of these 
points and the position of the surface a r e  different in 
the systems A and A'-they a re  ~ 0 ~ e c t e d  by a Lorentz 
rotation. In the case of a nonrelativistic bound system, 
the position of the particles does not manage to change 
substantially within a time At = t; - ti. Therefore the 
non- single-time wave functions coincide in the nonrela- 

tivistic limit with the ordinary single-time wave func- 
tions. 

In momentum space, the qualitative aspect of the situ- 
ation reduces to the following. In nonrelativistic theory, 
the deuteron momentum p and the nucleon momenta k, 
and k, are  connected by the relation 

In relativistic theory, Eq. (1) can hold only in a system 
where the wave function is single-time, inasmuch as in 
any other system we add up the momenta of particles 1 
and 2 taken at different instants of time. Since the mo- 
mentum of the deuteron is conserved, i t  is clear that 
for two instants of time t, and t, we have 

In a system where k, = -k, =q, the deuteron momentum 
p # O  and in addition to the vector variable q (the rela- 
tive relativistic momentum) there remains also a cer- 
tain variable p. In other words, in a relativistic deuter- 
on i t  is now possible to separate the variables of the 
"center of gravity, " as can be done in relativistic theo- 
ry. An exception is a system of noninteracting particles. 
In this case Eq. (1) is always valid, because the mo- 
menta k, a r e  invariant in time. 

The easiest to parametrize is the wave function wx 
=0 ,  which is single-time in a system with infinite mo- 
mentum. In a system where p- m, i t  does not depend on 
I p 1, but depends on the variable n = p/ I p ( : 

By virtue of the invariance of the non-equal-time wave 
functions, the parametrization (2) is valid in any refer- 
erence frame. In addition, the fluctuations of the vacu- 
um do not contribute to a wave function on the light 
front. It is precisely in this case that the wave function 
concept acquires a clear-cut meaning. 

Changing over to four-dimensional notation, we note 
that the nonzero difference between the 4-momenta 
k, +k, and p (all the 4-momenta a r e  on the mass  shells) 
should be proportional to the 4-vector X: 

where T is a scalar parameter. Actually X is the only 
4-vector that identifies a wave function as non-single- 
time. In a system where the wave function is single- 
time we have X = 0 and % = 1, and we return to Eq. (1). 
In the case of a wave function on the light front, Eq. (3) 
becomes 

and the wave function depends on four 4-vectors 
JI = $(kl, k2,p, WT), which a r e  connected by the conserva- 
tion law (4). It is therefore convenient to express the 
wave function graphically in the form of the 4-point 
diagram of Fig. 1, and regard the 4-momentum WT as 
the momentum of a ficticious particle, the spurion. 
The wave function, the "amplitude of the reaction, " 
shown in Fig. 1 depends on the relative momentum q 
of the "final" particles and on the variable qn which is 
connected with the "scattering angle" (n is the direction 
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FIG. 1. 

of the momentum of the "initial" spurion in the c.m.s. 
of the "reaction") in accordance with formula (2). In 
the nonrelativistic limit, the dependence on n vanishes. 
We emphasize that the introduction of the spurion does 
not mean that an unphysical particle is present in the 
state vector. 

It is easy to express the variables q2 and qn in terms 
of the invariants 

where 

It is possible also to introduce variables analogous to 
the variables R, and x of the parton model in the SIM 
(R, is  the momentum projection perpendicular to the 
direction of motion of the SIM, and x is the ratio of the 
momentum of one of the particles to the total moment- 
um of the system): $=$(Rf,x). The connection of R, 
and x with q and n is the following5: 

In these variables, the nonrelativistic wave function 
depends on the following combination of R, and x :  

Thus, the relativistic wave function depends on an ad- 
ditional argument, which takes the form of a unit vector 
n. The dependence of the wave function on n is deter- 
mined by the dynamics and describes the properties of 
a relativistic system, just as  the dependence on the 
relative momentum q. 

Consideration of the simplest dynamic models shows 
that the characteristic parameter that determines the 
dependence of the nuclear wave functions on the varia- 
ble nq is the nucleon mass. An investigation of this 
dependence is a completely new aspect of the problem 
of nuclear wave functions and is of considerable inter- 
est. 

The ISR diagram technique appears when the SchrO- 
dinger equation is solved for a state vector expressed 
in "oblique" time-along the direction of w. The ISR 
diagrams can be obtained from the Feynman diagrams 
by "time ordering" of the vertices in all possible man- 
ners. Assuming that the "time axis" is directed in the 
figure from left to right then, if the vertices are num- 
bered from right to left, they must be connected by a 
directed spurion line in increasing order of the numbers 
(a smaller instant of time corresponds to a larger num- 
ber). The arrows on the particle lines are directed 
from left to right. In the vertices, just as in the wave 
functions, there are conservation laws for the 4-mo- 
menta, including also the momenta of the spurion. The 
spurion with momentum WT corresponds to a propagator 
1/2n(r,-iO), and an internal particle line with moment- 

FIG. 2. 

um k, corresponds to a propagator 9 (wk,)b(kt - m i )  
(for spinless particles). Diagrams with production of 
particles from vacuum, just as in the old perturbation 
theory in the SIM, make no contribution. The rules of 
the SIM diagram techniques are detailed in Refs. 4 and 
3. 

The vertex part I?, which has the samediagram repre- 
sentation a s  the wave function (Fig. I), is connected 
with the wave function by the formula3 

We illustrate the ISR diagram technique using elastic 
ed scattering as  an example. Some of the diagrams that 
contribute to the ed-scattering amplitudes are shown in 
Fig. 2. The expression for the amplitudes of diagram 
2a is 

Integrating with respect to dr,(i = 1,2,3), and with re- 
spect to dq,, and connecting with the wave function in 
accordance with formula (6), we obtain 

where the wave functions and +, depend on the 4-mo- 
menta in the vertices 1 and 4. 

It is seen from (8) that the amplitude M is a function 
not only of the invariant t = (p  - p')', but also of the 
scalar products wp and wp', with M dependent only on 
the ratio y = wp '/wp of these scalar products. This be- 
comes obvious if it is noted that expression (8) does not 
change when w is multiplied by a number. 

Diagrams 2b and 2c are not expressed in terms of the 
wave function of the deuteron. The reason for the ap- 
pearance of these diagrams can be explained in the fol- 
lowing manner. A s  already mentioned, a complete des- 
cription of a system of a deuteron interacting with an 
electron is given by the state vectors lin) and (out I of 
the continuous spectrum, and the S matrix is determined 
by their scalar product: S = (out /in). The diagrams 
identify in fact the virtual particles that are contained 
in the lid and (out I states. In the nonrelativistic theo- 
ry, in the intermediate states, besides the incident par- 
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ticle, there are  always present only those particles 
which a re  contained in the deuteron state vector. The 
latter appear as a result of the virtual decay of the deu- 
teron, therefore in the nonrelativistic theory the amp- 
litudes are  always expressed in terms of the wave func- 
tions. In relativistic theory, since additional particles 
can be produced, the situation changes. Thus, in dia- 
gram 2b in the intermediate state between the "instants 
of time" 3 and 2 there is present an NN pair and there 
is no vertex of the decay of the initial deuteron into nu- 
cleons. In diagram 2c there is likewise no intermediate 
state that contains only nucleons from the initial deuter- 
on and the initial electron (in the 3-2 state there is 
present also a gamma quantum), and the block with the 
vertices 3, 5, and 6 is likewise not expressed in terms 
of wave functions. It is the presence of such Fock com- 
ponents in the state vectors [in) and (out I which leads 
to the appearance of diagrams which a re  not expressed 
in terms of wave functions. 

The method of suppressing diagrams that a re  not ex- 
pressed in terms of wave functions consists in the fol- 
lowing. A s  already explained, the wave functions de- 
pend on the hypersurface on which they are  defined. 
Also dependent on this hypersurface a re  the values of 
the components of the state vector [in) (and (out 1 )  which 
a re  "undesirable" for us, and their contributions to the 
amplitudes of the processes. We investigate below the 
dependence of these amplitudes on the hypersurface 
(i.e., on the 4 -vector w), and show how to find values of 
w such that the contribution of diagrams that are  not 
expressed in terms of wave functions is minimal. In 
the example considered above, of ed scattering, it be- 
comes possible to obtain a value of w such that the con- 
tribution of the diagrams which are not expressed in 
terms of wave functions vanishes completely. After w 
is fixed by the indicated condition, the amplitude of the 
ed scattering (formula (8)) becomes completely unam- 
biguous. 

3. CONNECTION WITH OLD PERTURBATION THEORY 
IN THE SIM 

A s  already mentioned, the non-single-time dynamic 
scheme in the ISR retains the favorable features of the 
Feynman diagram technique (the possibility of carrying 
out explicitly relativistically invariant calculations in 
any reference frame) and of the old perturbation theory 
(separation of the particles from the antiparticles, and 
consequently the possibility of making meaningful the 
concept of a composite system and of describing it with 
the aid of wave functions). To explain in greater detail 
the non-single-time diagram technique, we shall show 
in explicit form that the ISR calculation formalism is a 
relativistically invariant form of the old perturbation 
theory in the SIM. 

We consider the arbitrary intermediate state shown in 

w f  
l-4- k' 

FIG. 3. - 
Pm " 

Fig. 3. The expression for the amplitude of the diagram 
of Fig. 3 is of the form 

Recognizing that the equality C p j  + w r  =Bj leads to 

and integrating with respect to dk,,, we get 

To rewrite (10) in the form of old perturbation theory 
in the SIM, we introduce the variables 

in which case zyj =Ex, = 1, and the 4-vectors R satisfy 
the condition Rjw = R;'~ w = 0. Introducing the projections 
R = (Ro, R,, R,,), where R,w = 0, R,,liw, and recognizing 
that RZ = -R:, we find that in terms of the variables 
R;* and R, the denominator in (10) takes the form 

which coincides with the form given by Weinberg's . 
rules: The expression d3kj/2&, in terms of these 
variables goes over into d2R,dxj/2xj, and the limits of 
the integration with respect to dx, are  zero and unity. 
The expression 

goes over into 

The expression for any intermediate state can be trans- 
formed in exactly the same manner. Thus, we obtain 
the same expression for the amplitude a s  in the old 
perturbation theosy in the SIM, wherein the role of the 
SIM momentum components perpendicular to the direc- 
tion of motion is assumed by the vectors R,, while the 
roles of the ratio of the particle momenta to the infinite 
momentum (divided by the sum of the fractions of the 
momenta of the initial particles) is assumed by the var- 
iables x , and y ,. 

It is seen also from (12) that the ISR amplitudes de- 
pend on the 4-vector w via the ratios of the scalar prod- 
ucts of w with the 4-momenta of the particles (the var- 
iables y,). This is due in final analysis to the invariance 
of the theory relative to the substitution w - w' = a w .  We 
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FIG. 4. 

note that the number of independent variables y, is equal 
to two (there a re  three independent scalar products of 
w with the 4-vectors, and consequently two independent 
ratios of these scalar products). In the case of the 
reaction 1 +2 -3 +4, i t  is convenient to choose the fol- 
lowing variables (besides s and t): 

where p ,  k andpf ,k '  a re  the 4-momenta of the initial 
and final particles (p2 =pf2 = M', k2 = k " = p2) In view of 
the relations y l+y ,= l  andy,+y,=l,  we choosey, and 
y2 as the independent variables. Thus, for the two-par- 
ticle amplitude corresponding to the ISR diagram we ob- 
tain M = M(s, t ,  y,, y ,). Within the framework of pertur- 
bation theory, the sum of the amplitudes of all the ISR 
diagrams, obtained from a given Feynman diagram by 
different ordering in time, coincides with the Feynman 
amplitude, and is independent of y, o r  y,. The problem 
of finding a hypersurface on which of the Fock compon- 
ents of the state vectors lin) and (out I a r e  not expressed 
in terms of the wave functions of the deuteron will give 
a minimum contribution to the amplitude reduces now 
to finding those values of the variables y, and y, that 
minimize the relative contributions of the diagrams 
not expressed in terms of wave functions. 

In concluding this section, let us find the physical 
ranges that the variables connected with w cover at 
fixed s and t and at arbitrary variation of w. We find 
f i rs t  the region of variation of the variable y = @'/up, 
on which, in particular, the ed-scattering amplitude 
depends (see formula (8)). In the system where p = O  we 
have y = ( ~ ( p ' )  - pfcosO)/M(0) is the angle between w 
and p'), y varies in the range y - G y s y ,, where 
yI = (c(p ') *P')/M. In an arbitrary system we get 

The region of variation of y, and y, (see (13)) is obtained 
similarly. In the case of elastic scattering, i t  is an 
ellipse in the (y,,y,) plane with a center having coordin- 
ates (Y,, Y,) = (c */JF,& */&), and with a semiaxis lying 
on the line y, = y, and equal to a = (2112p */G)cos(0*/2). 
The second semiaxis is equal to b = (2112p*/~sin(B*/2)  
(c * is the energy of the particle with mass  M in the 
c.m.s., p *  is the momentum of the particles in the . 
c.m.s., and 0* is the scattering angle in the c.m.s.). 
This region is shown in Fig. 4. 

4. SlNGULARlTlES OF THE AMPLITUDES 

To obtain the invariant variables y, a t  which the con- 
tribution of diagrams which a r e  not expressed in terms 

FIG. 5 .  

of wave functions is minimal, we need to know the posi- 
tions of the singularities of the ISR amplitudes. The 
method of finding the singularities will be explained with 
the simplest diagrams of Fig. 5 as examples. The in- 
ternal wavy lines show exchange of a meson with mass  
p. The expression for the amplitude of diagram 5a, in- 
tegrated with respect to br, and with respect to dq,, is 
of the form 

.W,=F(t. y),  y=opflop, 

The problem of finding the singularities of the function 
F(t,y) differs from the case of the Feynman diagram in 
that the integration momentum q lies on the mass  shell, 
and the region of integration is limited by the 8 function 
0(w(p-pf-q)) (at w(p-pf-q)>O we have B(w(p-q))=l 
and the latter imposes no restrictions). The last  re- 
striction leads to the appearance of singularities cor- 
responding to the approach of the singularity of the in- 
tegrand to the limit d the region of variation of q. 

Were it not for the indicated restrictions, then, in 
accordance with the usual method of finding the singu- 
larities of Feynman amplitudes (see the paper by Lan- 
dau7), these singularities would be determined from the 
extremum condition of the function cp, = o,(??z2 - ( p  - 9)') 
+ a,($ - ( p  - p' - q),. The restrictions lead to the prob- 
lem of a conditioned extremum and can be accounted 
for by introducing in cp, corresponding terms with La- 
grange multipliers. We arrive thus to the problem of 
finding the extremum of the function 

with respect to the variables a,, a,, y,, y2 and q, 
where 7, and y, a re  Lagrange multipliers. It is also 
necessary to find the extrema of the functions obtained 
from cp by successively equating to zero all the coeffi- 
cients except y,. 

The case y2 = O  returns us to the expression for cp 
which is considered when the singularities of the Feyn- 
man triangular diagram a r e  determined. These singu- 
larities a re  located at the points 

r=(m+p)', (17) 
t=mz+2p2. (18) 

The position of the singularity (18) was obtained in the 
approximation (E  1 = I M  - 2m I <<m (M is the mass of the 
particle with momentum p). 

In the case y2 #0,  differentiating cp with respect to q, 
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a,, Y,, and Y, we obtain the equation 

under the conditions 

Multiplying (19) in succession by q, P ,  and w and equat- 
ing to zero the determinant of the obtained system of 
equations, we arrive at a quadratic equation in 
y = wpf/wp, which gives the position of the singularities 
with respect t o y  at the points 

Thus, besides the singularities of the Feynman diagram, 
the amplitude of the diagram 5a has singularities in the 
variable y . 

We can obtain analogously the singularities of the dia- 
gram 5b and 5c. The amplitude of the diagram 5b has a 
singularity in y, defined by formula (20), and singulari- 
ties in t ,  which depend on the variable y and a re  lo- 
cated at the points 

The amplitude of the diagram 5c has singularities de- 
termined by formulas (18), (20), (21), and (22). We 
note that the sum of the diagrams 5a, 5b, and 5c leads 
to the Feynman amplitude. Therefore the singularities 
in y and the singularities in t ,  which depend on y, can- 
not be encountered in only one amplitude, since they 
should cancel out in the sum. 

5. DETERMINATION OF THE VALUES OF ADDITIONAL 
VARIABLES IN THE AMPLITUDE 

The question of finding the values of the additional 
variables in the scattering amplitudes will be considered 
by using as an example double-scattering diagrams (see 
Fig. 6). The amplitude of diagram 6a is given by 

where the wave functions +, and +4 depend on the mo- 
menta at the vertices 1 and 4. 

Changing over to the variables 

we obtain 

where 

FIG. 6. 

Q,, and Q,, a re  projections, orthogonal to w ,  of the spa- 
tial parts of the 4-vectors Q, = p  - y , ( ~  +k) and Q, =p' 
- Y,(P + k), while y, and y, a r e  defined in (13). 

The amplitude of the diagram 6b (and the amplitudes 
of other similar diagrams) cannot be expressed in 
t e rms  of wave functions, since the vertex 3  is not con- 
nected here with wave functions. 

We choose the variables y, and y, such as to suppress 
the contribution of the diagrams of type 6b. We note for 
this purpose that the amplitude of the diagram 6b con- 
tains the product of the following 9 functions: 

corresponding to lines 43, 42, 32, and 41. Changing 
over to the variables z, ,2 = wq,,,/w ( p  + k) and y, , we ob- 
tain 

Therefore the amplitude of diagram 6b can be repre- 
sented in the form 

Allowance for the diagram obtained from Fig. 6a by 
changing the order of the vertices 1 and 2 leads to an 
integral with limits from y, to unity. If the function 
F, in (25) does not tend to infinity as y, - 1 and z, - 1, 
then the amplitude M, decreases a s  y, - 1. However, 
as shown by the examples, F ,  can have singularities in 
z,, which tend to unity as y, - 1. These singularities 
turn out to be weak and do not prevent the amplitude M, 
from decreasing as y, - 1. To determine the character 
of the singularities of the function F,, we use the Lan- 
dau formula7: 

where cp is the value, near the singularity, of the diam- 
e ter  of the function in integral that defines F,, m is 
the number of integrations, and n is the degree of cp in 
the denominator. 'In diagram 6b there a r e  three inter- 
mediate states for  M,, therefore after changing over to 
the Feynman parametrization we obtain n =3 .  There a r e  
two contours of integration with respect to d9q,,,, and 
integration with respect to the parameters cu, (i = 1,2,3). 
Taking into account the condition a, = 1 and the fact 
that F, contains one less  integration than M,, we get 
m = 7, thus obtaining a square-root singularity. Allow- 
ance for the restrictions connected with the 9 functions, 
and consideration of examples of more complicated dia- 
grams, does not lead to  pole singularities o r  stronger 
singularities. 
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Thus, to suppress diagrams of the type 6b i t  is nec- 
essary to choose the variables y, and y, in formula (24) 
to be closest to unity. The point closest to unity in the 
physical region of the variables y, and y, (see Fig. 4) 
is the point y, =y, =y,,, where 

y-= [ e  (p ' )  +p* cos (0'/2) I/).; (2 6) 

while &(p*) and p* a re  the energy and momentum of the 
deuteron in the c.m.s., and 0* is the scattering angle. 
The condition 1 y l  ,, - 1 1 << 1, at which the suppression 
of the amplitude takes place, is satisfied a t  high ener- 
gy and at a small scattering angle. 

The physical cause of the suppression of the diagram 
6b is the decrease of the phase space in which the inter- 
mediate particles can be located. A "reaction" allowed 
by the energy and momentum conservation law (including 
the spurion momentum) takes place in each vertex of 
diagram 6b. Since the direction of the spurion moment- 
um remains unchanged, this imposes limitations on the 
particle momenta a t  which such reactions a r e  kinemat- 
ically allowed. The condition ly1,, - 1 1 << 1 denotes the 
choice of a direction of w such that the allowed region 
of the particle momenta is minimal. Bearing in mind 
that intermediate states correspond to denominators 
contained in the variables R, and x of the expression 
C ,(R:, + m2)/x, we can state that under the conditions 
ly,,, - 1 I << 1 the intermediate states of the diagrams 
expressed in terms of the wave functions a re  farthest 
from the physical region, and the intermediate states 
of diagrams which a r e  expressed in terms of the wave 
functions a re  closest to the physical region. 

It seems at f i rs t  glance that the uncertainties con- 
nected with the diagrams of the type 6b will vanish com- 
pletely i f  we put y, =y, = 1. The amplitude M ,  (see (25)) 
at y, = y , = 1 does indeed vanish, but when y , and y, tend 
to the value 1, which is beyond the limits of the physical 
region of Fig. 4, the singularities of the integrand in 
(24) cross the real axis in the course of their motion, 
hook the integration contours, and move the latter to 
the complex region. The extrapolation of the functions 
under the integral sign in (24) to the complex region is 
quite ambiguous. 

The prescription for finding the values of the varia- 
bles y, can be easily formulated for  an arbitrary dia- 
gram if it is noted that the only reason why diagram 
6b is suppressed when y, is close to unity (y, = 1 - y, << 1) 
is that this diagram contains 4 the vertex 4 only out- 
going internal lines. Since the sum of the variables 
z,(z,>O) corresponding to these lines is equal to y,, 
i t  follows that as y, -0 the region of integration with 
respect to the variables z ,  tends to zero. We consider 
an arbitrary diagram with an external line that enters 
into a vertex that contains only outgoing internal lines, 
o r  with an external line that emerges from a vertex 
that contains only incoming internal lines. It is precise- 
ly diagrams with such vertices which a r e  expressed in 
terms of wave functions. To enhance such a diagram i t  
is necessary to choose the variables y , corresponding 
to these external lines to be maximal in the physical 
region. On the contrary, to suppress diagrams with 
vertices of this type (for example vertex 1 in diagram 

5c), the corresponding variables y ,  must be chosen to 
be minimal. 

We note that these results can apparently be obtained 
also by direct calculation of the asymptotic form of the 
considered amplitudes in a region such that the minimal 
o r  maximal values of the variables y ,  tend to zero o r  
unity. 

By way of illustration, we turn to the expression for  
the ed-scattering amplitude (formula (8)). The external 
line with respect to the triangular diagram of Fig. 2. 
is the photon line. To suppress diagrams of the type 
2b, the variable y ,,= wq/w(p +k) (q =p l  - p + WT, is the 
4-momentum of the photon) must be chosen equal to 
zero, and this leads to the condition w(p - p') = 0 o r  
y=wpl/wp=l. Sincet=(p-pl) '<O, the conditiony=l 
is satisfied in the physical region of the variable y ,  and 
the diagram 2b makes no contribution. It can be shown 
that at y =1 the diagram of Fig. 2c also vanishes. Ex- 
pression (8) for the only diagram of Fig. 2a which does 
not vanish at y = 1 takes the form 

where the form factor of the scalar deuteron F(t), after 
changing over to the variables R, and x, takes the form 

This expression agrees with the formula obtained for  
the form factor from Weinberg's rules and from the SIM 
moving in a direction orthogonal to the spatial part of . 
the momentum transfer (see, e.g., Ref. 8). We note 
that if other components become significant in the Fock 
column (for example AA in the deuteron), then they 
make an additional contribution to the form factor, and 
this contribution is not eliminated by a suitable choice 
of w. 

6. CONCLUSION 

The prescriptions formulated above make i t  possible 
to express uniquely the amplitudes of the processes in 
terms of the wave functions. This was accomplished 
because the diagrams with production of particles from 
vacuum vanished after going over to  the light front, and 
the diagrams not expressed in terms of wave functions 
became minimal by suitably locating the surface of the 
light wave front. Within the framework of the old per- 
turbation theory in the SIM, such diagrams are minimal 
when the infinite momentum is directed along the vect- 
o r  w .  The direction of w relative to the particle mo- 
menta can be easily determined from the obtained val- 
ues of the variables y ,. 

Thus, the formalism developed here,  when account is 
taken of the spin, makes possible a consistent approach 
to a theoretical description of relativistic nuclear reac- 
tions with large momentum transfers,  and to an inves- 
tigation of the high-momentum components of the nuc- 
lear  wave functions. 

One of the primary problems at  the present time is 
the identification of the mechanisms of the reactions 
with large momentum transfers. This calls for an in- 
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dication of the distinguishing "attributes" of the parti- 
cular mechanism, by which this mechanism can be re- 
liably identified, and this would make i t  possible in 
turn to extract from the experimental data information 
on the relativistic wave functions and, in particular, on 
the character of their dependence on the variable n. The 
present status of the problem of determining the mech- 
anisms of a number of reactions with large momentum 
transfers was discussed in an earlier review? It is 
also of importance to investigate the general features of 
the dependence of the wave functions on their arguments 
in the relativistic region, and their asymptotic behav- 
ior. 

The author is sincerely grateful to I. S. Shapiro for 
a useful discussion and valuable remarks. 

APPENDIX: PARAMETRIZATION OF AMPLITUDE OFF 
THE ENERGY SHELL 

We consider the parametrization of the two-particle 
amplitudes shown in Fig. 7 off the energy shell. Let 
initially r2 = 0. The the amplitude, just as any five-point 
diagram, depends on five invariant variables. Addition 
of an external spurion line with 4-momentum WT, leads 
to the appearance of only one additional variable, since 
the 4-momenta of the spurions a r e  "parallel." Thus, 
the amplitude of the reaction 1 + 2 - 3 + 4 off the energy 
shell depends, besides on s = (k +p)' and t = (k - on 
four additional variables, which we choose in the follow- 
ing manner: 

An arbitrary n-point diagram with two external spur- 
ion lines also depends on four additional variables. We 
note that in this formalism, there exists in principle 
amplitudes with arbitrary numbers of spurion lines, 
and the addition of each spurion line, starting with the 
second, leads to the appearance of one additional vari- 
ble. 

We consider now the parametrization of the form fact- 
o r  of a particle off the energy shell. This form factor 
enters, for example, in the amplitude of the diagram of 
Fig. 2. The amplitude of the scattering of an electron 
by a particle off the energy shell is shown graphically 
in Fig. 8a. The expression for the amplitude (integrated 

FIG. 9. 

with respect to dr3) is of the form 

where q =k - k'. Since the 4-momenta k and k '  enter in 
the amplitude of the one-photon exchange (29) in the 
form of the difference k - k', the amplitude depends also 
on t = (k - and on the variables s,, s,, and s,, but 
does not depend on s o r  s,. Let us examine this ampli- 
tude at wq =O; the condition under which the form factor 
of the deuteron was calculated (see Sec. 5). At wq = O  
the amplitude M takes the form 

where 

The condition cog = O  is equivalent to the condition s, =s,, 
and consequently the form factor depends, besides on 
t ,  on the two variables s, and s, (see formulas (28): 
F =F(t,s,,s,) and can be shown on Fig. 8b with a virtual 
y photon. 

As the last  example we consider the structure func- 
tion of deep-inelastic eN scattering off the energy shell. 
This function is connected with the square of the eN -eX 
amplitude off the energy shell, summed over the final 
states of X. It appears in calculations of deep-inelastic 
ed scattering in the impulse approximation (see Fig. 9a). 
Recognizing that in the calculation of the diagram nu 
i t  is also necessary to impose the condition wQ = O  (by 
virtue of which, in analogy with the form factor, we - 

have represented the amplitude on Fig. 9b with a virtual 
photon with 4-momentum Q, not "entangled" by a spur- 
ion line), we see  that this structure function depends, 
besides on the arguments Q' and pQ (which enter in the 
structure function on the energy shell in the scaling re- 
gion in the combination x = -~'/2pQ), also on the varia- 
ble s = ( p  + WT)' (since there a re  no other independent 
scalar products). . Therefore, generally speaking, i t  
does not coincide with the structure function measured 
in experiments on nucleons. These conclusions remain 
in force also for calculations within the framework of 
the old perturbation theory in the SIM. The character 
of the dependence of the form factors and of the amp- 
litudes off the energy shell on the additional variables 
is determined by the dynamics. 
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It is proved that any static system of Yang-Mills fields produced by charges without currents has 
Coulomb solutions. However, as a consequence of the lack o h  uniqueness theorem, for given charges and 
asymptotic behavior at infinity there exists a multiplicity of solutions containing a "magnetic" field. Fields 
produced by an infinite uniformly charged plane are considered. Solutions containing a "magnetic" field 
and decaying at a distance of the order P o  = ( g h / ~ c ) - ' ' ~  have minimal energy. 

PACS numbers: 03.50.Kk 

1. The intrinsic nonlinearity of Yang-Mills (YM) 
fields endows them with remarkable properties, lead- 
ing to the hope that there is a possibility that they exist 
in reality. However, a serious difficulty is the macro- 
scopic inobservability of the Yang-Mills fields if the 
theory contains long- range Coulomb solutions. In the 
present paper we shall show that owing to the nonlin- 
earity of the YM equations, for the same charge dis- 
tribution, in addition to the Coulomb fields there may 
exist a ser ies  of solutions containing a "magnetic" field 
(there is no uniqueness theorem). In the example we 
consider (a charged plane), the solution of minimal 
energy is found among the latter; this allows one to as- 
sume that something similar occurs also in more com- 
plicated cases: the fields become localized near the 
charges. 

div E+ [A&] =hp,  
(1) 

(rot H),+edAJkl+[ACrl -0. 

In the absence of currents the source of the "magne- 
tic" field is the commutator [A,,E,]. We shall assume 
that both the vector and scalar potentials a re  expanded 
in terms of the generators of the gauge group: 

Ao=Om(r)P, Ai=G(r)P, 1-1, 2, 3. 

In A,, we separate the factor &(r)-the absolute value of 
the potential and the unit vector Z(r) of the direction in 
isospin space 

A. (r) =O (r)Z(r), I (r) ==u-I(r) Ion (r) , 
<I,">=i. 

Then 

2. Static YM fields have been investigated by Khrip- a i ~ = [ ~ ~ i ] ,  
lovich ,' who considered nonlinear properties of the where 
static fields produced by charges. Since in that paper 
i t  was assumed that the cause of the appearance of non- B,=u-'diu. 

linear solutions was the isotopic nonparallelism of The corresponding field strength E, has the form 
charges producing the fields, Khriplovich has chosen as 
his object of investigation a relatively complicated two- E,=-a&-[A,Ao] --Za,O-@ [ (A;-&)I]. 

particle problem, in which it was difficult to find solu- If the vector potential is chosen as "longitudinal": 
tions . A,=Bi=~-laiu (H=O) , (2) 

In fact, the nonparallelism of the isopins of the we obtain 
charges has no importance, since the relative orienta- El=- ( a , @ ) ~  
tions of isopin spaces a t  different points is arbitrary in and the source of the "magnetic" field in the second 
a YM theory: i t  is meaningless to speak of parallelism equation of (1) is absent: the equation becomes an iden- 
or  nonparallelism of sources situated at different tity. The f i rs t  of the equations (1) takes the form 
points. 

AOZ=-4np. 
In order to illustrate this point we consider a static 

system of YM fields defined by the matrix equations At each point the quantities A,, and p a re  isotopically 
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