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Qualitative isotropic cosmology with cosmological constant 
and with allowance for dissipation 
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New types of evolution that arise in isotropic cosmological Friedmann models with cosmological constant 
when allowance is made for bulk viscosity are decribed. A family of solutions is obtained for a closed 
model without singularities of the metric and the energy density. The stability of static solutions in the 
presence of viscosity is investigated. The coefficient of viscosity is assumed to be a function of the energy 
density that has power-law asymptotic behaviors at small and large values of the argument. 

PACS numbers: 98.80.Dr 

In t h e  investigation of isotropic cosmological models  
with allowance f o r  the X t e r m ,  attention h a s  been main- 
ly concentrated on the stability of s t a t i c  solut ions and 
the description of the evolution of various types of solu- 
tion. On the other  hand, t h e  equations that d e s c r i b e  the 
evolution of models  constitute a dynamical  s y s t e m  and 
i t  is of in te res t  to investigate the behavior of the inte- 
gral curves  on the phase plane. T h i s  m a k e s  it  possible  
to  give a perspicuous classification of the possible  types 
of evolution. 

F o r  the case A =  0, th i s  was  done in1, in  which one can 
find t h e  necessary  detai ls  that  are omitted here.  

For simplici ty ,  w e  take the equation of s t a t e  in  the 
f o r m  p = ( y  - 1)c. A comoving f r a m e  c a n  be  chosen. 

W e  introduce H =  ( lnR) '= d / R ,  -the Hubble "constant". 
Then the Einstein equations R: + X6: = Ti - T and the  

hydrodynamic equations T:,,= 0 reduce  to the t h r e e  
equations 

e=dH (3tH-IS), 
H-'/J(l+e-31f') +'/t(3tH-w), 

(3) 

h+e-31P=3kR-', 
(4) 
(5) 

In t h e  variables (H, E ) ,  the s y s t e m  of equat ions (3)- 

T h e  behavior of the solut ions in  t h e  region of l a r g e  (5) does  not depend on  k. T h e  parabola X +  E - 3H2= 0 

values of the Hubble "constant" H = ~ / R  o r  energy  den- 
s e p a r a t e s  t h e  open and  closed models: T h e  integral  

s i ty  are the s a m e  as in1. T h e  mos t  interest ing effects  
c u r v e s  of t h e  c losed  model  l ie  within it; those  of t h e  

occur  near  the static d e  Si t ter  and Einstein solutions. 
open model, outside i t  

We wr i te  the Friedmann m e t r i c s  in  the f o r m  
A s  in1, w e  a s s u m e  that  S(E) = aca2, as E - 0 and  C(E) 

  BE^. as E - ~  (a,L 1, b , < i ) ,  s i n c e  unphysical effects  

-d*'=-dt' + Rz(t) ( e + d y z + d 2 )  (1) d o  not occur for  such  exponents. 
[ l+'/,k (zZ+p'+i) I' ' 

where  k =  + 1, - 1 and 0 cor respond  to closed, open, and 
T h e  s ingular  points of the  s y s t e m  (3)-(5) lie on the 

f la t  models, respectively. h an isotrovic  cosmoloaical 
parabola X+ & = 3H2 and  on the s t ra igh t  l ine H = 0. 

evolution, t h e  shear (first) viscosity is-not manifested W e  consider  f i r s t  the case 1;=0. T h e  s y s t e m  (3)-(5) 

and one need only consider  the  bulls viscosi ty ,  whose can  be integrated,  and t h e  equation of the  integral  phase 
coefficient i s  5. curves is 

T h e  energy-momentum tensor  has t h e  f o r m  Ife-3H2=3k(e/ea) "'7, (6) 
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FIG. 1. Integral curves of isotropic models in the absence of 
viscosity. The parabola &+1=3II2 divides the integral curves 
of the closed and open models and is itself the integral curve 
of the flat Friedmann model. The equation of the integral 
curves is A +  &-3@= 3 k ( & / ~ a ) ~ / ~ ~ ,  where %is an arbitrary con- 
stant. For Y <4/3, the integral curves in the limit &' a, move 
away from the parabola & + X =  3 H ~ ;  for y = 4/3, they run para- 
llel with it, and for Y >4/3 they begin to converge toward it. 
The points Z 1 , 2  correspond to H=**, &=w. 

where co i s  an arbitrary constant. The phase plane i s  
symmetric under the substitution H- -H, t -  -t. 

For finite E and H, the system has three singular 
points. The point E corresponds to Einstein's static 
space: H =  0, E, = X/($y - I) ,  R-, = yX/(3y - 2). This sing- 
ular point i s  a saddle and the slope of the separatrix i s  

The points S, and S, correspond to the de  Sitter spaces: 
c =  0, H,=*(x/~)"~.  Near the singular points S, and S,, 
the metric has the form 

ds'=dtz-exp(2H0t) (dzz+dyz+dz')  

-d t l -exp  (2Hol) (dr2+r' sina 0 dqz+r2d02).  (8) 

The transformation found by ~ e m g t r e  and Robertson: 

reduces this metric to the usual de Sitter static interval: 

The equations for r: = 0 can be readily integrated and 
give 

for ~ H , < x ,  k =  1, and 

for ~ H ' > x ,  k=-1. A s t - 0 ,  we haveH-km, R - t  and 
space i s  indeed Galilean, i.e., the points H =  P, C = 0 
correspond to the same flat spacetime. The different 
behavior of the curves in the neighborhood of the points 
S, and S, corresponding to the same metric means that 
the de Sitter space i s  stable with respect to the intro- 

duction into it of low-density expanding matter but it i s  
unstable with respect to the introduction into it of con- 
tracting matter of arbitrarily low density. 

T o  the separatrices of the points S, and S, there cor- 
respond the eigenvalues v, = -2(k/3)'I2 for & = O ,  and v2 
= -3y(~ /3 )"~  fo r  A + E, = 3 ~ '  in the case S, and -vi and -v, 
in the case S,, as must be for the reversible model. 

For the integral curves we arr ive  at the classification 
given by Tolman.' In the region S2ESl, the integral 
curves begin a t  R = +  -, t =  -m,  contract to a finite radi- 

- 

u s a t t = O ,  andthenexpand t o R = m f r o m t = O t o t = m .  
The integral curves in the region ZiEZ2 expand from 
R=O, E , = ~ ,  H=m toR,,, H=O, and then contract 
again to R = 0 in a finite time. 

Above the line Z,ES,, we have expansion from R = O  at 
t = 0 to R = - at t =  = (de Sitter space). Below the line 
S P Z ,  the opposite contraction occurs: from R =  m at 
t=--  to R =  0 a t  b=0. 

We now turn to the case when viscosity i s  present. 
In contrast to the case X =0,  viscosity can also have a 
significant influence for small c and H. The singular 
points a r e  now determined by the equation 

If a, > 1 ,  we obtain an even number of new singular 
points; a s  in the case X =0,  they alternate in a sequence 
of saddles and nodes. If C =  a c  a s  c - 0 and a ( 3 ~ ) ' ' ~  > y ,  
then there i s  an odd number of new singular points and 
they alternate in the sequence note-saddle-note. 

We consider the first  case (a, > 1 or  a,= 1, i.e., L'= a! 

for a! < y/(3~)"*). In this case,  the qualitative picture of 
the integral curves within and near the region S,&E is' 
the same as for 5' = 0. For % > 1, the eigenvalues of the 
points S, and S, a r e  not changed; for a, = 1 ,  to the sep- 
aratrix E = O  there corresponds v,= -2H0 and to the sep- 
aratrix t + X = 3H2 there corresponds v, = 3Ho(3aHo- y ) .  
If 7 - 3(~(X/3)~" c 3, t h e c u k e s  squeeze up to the separa- 
trix t + x = 3~~ a t  the point S,. For thepoint E,  theeigen- 

FIG. 2. Integral curves of isotropic models in the presence of 
viscosity. When &-0, we have ~ ( 6 )  << G. Viscosity does not 
change the qualitative picture of the integral curves below the 
Iine ZIN,S1. Above this Iine, the behavior of the integral 
curves is qualitatively the same as for h=O. 
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actly the same way as for  X = 0. 

FIG. 3. The special case when 6 = a C  and (Y > y / ( 3 ~ ) ~ / ~ .  The 
point Si becomes unstable and the integral curves from S 1  
now lead to N. On the segment SIZl of the parabola there is 
an odd number of singular points (in Fig. 3, one). 

values a re  

VI,Z-'/~S(EE) * [s/L&f (eE) +yF.]'!', 

EE=U ('1~7- I ) .  

Near E , the equation of the integral curves i s  

H-C~V, exp(v,t) +Czvz exp(vzt). 

e=ea-3yCIeE exp (v,t) -3yCzer exp(vzt). 
(15) 

The points N ,  and N, lie on the parabola X + E= 3@. Their 
position i s  determined by the equation 

" ( 8 )  = T E = ~ ( E )  [3(€+5) 1'". (16) 
The cosmological term does not have any appreciable 
influence on them. The eigenvalues of these singular 
points a r e  

vz--2Hnrr (18) 
where c, and H, a re  the values of & and H at  the cor- 
responding singular point (N, or  N,) .  The eigenvalue 
v, corresponds to the separatrix c +  X= 3H2. In the re- 
gion of large & or  H, the integral curves behave in ex- 

In the special case when a,= 1, i.e., t;= c~c for 
cr > - y / ( 3 ~ ) " ~ ,  the viscosity is also dominant for small  & 

in the neighborhood o f t  the points S ,  and S,. The point 
S, becomes a saddle. The eigenvalues of the points S ,  
and S, a r e  

for S,, and 

H,-- (A/3)" 

for S,. 

The dependence R(t )  for integral curves from the 
region S,S&N corresponds to contraction from R = m, 

t = -- to R =  R,,, and expansion to R =- for t = +a. These 
integral curves a re  analcgous to the integral curves in 
the region S,$E in Fig. 2 ,  since the metric a t  the point 
N:  

reduces to the de Sitter metric. Thus, if there i s  non- 
zero cosmological term, then for a l l  physically reason- 
able dependences of the viscosity coefficient l; on c (in- 
cluding L = O )  there exists a family of integral curves on 
which the metric and energy density do not have singu- 
larities. 

In Fig. 3  there i s  also the special trajectory S g ,  
which corresponds to expansion from R = 0, E = 0 (de 
Sitter space) to R = m, c = c = E,. The physical meaning 
of this integral curve is not clear. 
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