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The simplest one-dimensional model of an incommensurate structure, viz., a chain of atoms in a one- 
dimensional periodic potential, is considered. In the case when the periods are almost commensurate, the 
problem of the ground state and spectrum of such a system reduces to a continuum problem. It is shown 
that, within the framework of the model considered, the phase transitions are continuous and the 
spectrum contains one acoustic and one optical band. The discreteness leads to the appearance of a large 
number of phase transitions and to a more complicated spectrum. The limits of applicability of the 
classical approach, which always fails in the immediate vicinity of a phase-transition point, are discussed. 

PACS numbers: 05.70.Fh 

Recently, incommensurate crystal structures have been H-const J"[f ( ~ ) z + l - ( ~ - h ) 2 + c o ~ r g ] & ,  1 d q  
discovered in monolayers of atoms adsorbed on the surface (3) 

of metalsc1] and graphite,['' in crystals with charge- 
density waves,c31 and in the three-dimensional crystal 
Hg,.,,AsF, (Ref. 4). The simplest model of an incom- 
mensurate structure-a crystal placed in a periodic 
field-was considered in Refs. 5 and 6. It was shown 
that in a sufficiently weak periodic field the state of the 
incommensurate crystal is  invariant under the group of 
quasi-translations, the operations of which consist of a 
parallel translation of the atoms and a subsequent dis- 
placement of each atom in accordance with the phase of 
the periodic potential. A consequence of the quasi- 
translational invariance i s  the existence of acoustic 
modes of small oscillations. In Ref. 6 it was shown that 

which depends on one parameter h = 

We consider now the situation a / b  = 1 / 2  + 6  ( 6  << 1) .  In 
this case the potential energy U corresponding to the 
Hamiltonian ( 1 )  can be represented in the form 

(4) 
where 

incommensurate structures a r e  unstable in a sufficiently 
strong periodic field, but the character of the transition The quantities cpn and an a r e  slow functions of n. We 

was not established. denote yn = cpn - $, and an = ( c p ,  + $ , ) / 2 .  To within small 
quantities of the next order we find 

In this paper we consider a one-dimensional model of d @  4n2V 
a crystal with weak incommensurability. It i s  shown U-const J 1 - ~ + ~ ~ - )  dx - - s i n @ ] & .  zb2  (6)  
that the model can be reduced to a continuum model of a 

Here it has been taken into account that y i s  a small  
string in a periodic potential. The phase transition in 

quantity. Minimizing (6) with respect to y we find 
the latter model i s  investigated exactlv. We succeed in - 
obtaining an analytic expression for the spectrum of the T=-s in@-E- .  2n2V . d @  
small oscillations of such a system. % bz d z  

The original model i s  described by the Hamiltonian 

The first two terms a re  the kinetic energy and elastic 
energy of the chain, and the third i s  the interaction of 
the chain with the potential. We shall consider f irst  the 
case when the periods a  and b  a r e  almost equal: 

Substituting (7) into ( 6 ) ,  after straightforward transfor- 
mations we obtain the potential energy of the field 9: 

I d xV u = const [T (= - 1) + (-) cos 2 m ]  d z .  (8) 

In the general case ( a / b  = L ~ l / ~ i +  6 ) ,  analogous though 
extremely cumbersome calculations lead to a potential 
energy of the form 

a =  b ( 1 +  6 ) ,  where 6  i s  a small number. In this case the .-const J [+(%- I ) ~ + ~ ~ ~ ~ N ~  d z ,  
argument of the cosine in ( 1 )  can be replaced by qon 1 (9) 

= 2rdn + 2 s u ,  / b .  For small  6 the argument varies slowly where A = ~ 7 ~ / 6 ~ .  The quantity can be defined a s  the 
a s  a function of n ,  if the tin a r e  also slowly varying phase averaged over n' successive particles. Thus, the 
functions of n. It is  reasonable to introduce 2~612 a x  a s  problem of the behavior of weakly incommensurate 
the new argument and ~ ( x )  = qon a s  the new function. In systems reduces in all  cases to a Hamiltonian of the 
the new variables the Hamiltonian ( 1 )  takes the form form (3). Minimization of the potential energy from (3) 

leads to the following equilibrium form cp,: 
( 2 )  rp,=%m ( x i k + E ) ,  

Obvious changes of variables bring ( 2 )  to the standard where am denotes the elliptic amplitude, k is the 
form modulus of the elliptic functions, which is  connected 
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with h by the relation 

and 5 is  an arbitrary constant, corresponding to the 
quasi-translations. The solution (10) exists in the re- 
gion R >h,, where h, = 4/n. For  h < h, the minimum of the 
potential energy corresponds to the constant value 
cp = d2nz + 1). In the language of the original atomic 
coordinates x,, = nu + zi,, constancy of cp implies that the 
periods of the lattice and the potential coincide (for the 
case a/b = 1 + 6) o r  a re  commensurate (in cases when 
a/b = i l r 2 / ~ +  6). Thus, at the point h = h, a phase transi- 
tion occurs from a commensurate phase (I) to an in- 
commensurate phase (11). 

A measure of the incommensurability, determining 
the difference of the periods of the lattice that i s  esta- 
blished and the potential, i s  the quantity (arp/ax)= 2n/l, 
where I i s  the period of coscp, a s  a function of x. From 
(10) we find I = 2kK(k) and (acp/ax)= n/k~(k). As h de- 
creases from w to h, the period I increases monotoni- 
cally from 0 to a, and (acp/ax) decreases from w to 0. 

In the approximation adopted, phase transitions occur 
near any rational value of a/b =.\I /A' + 6 for 6 - vNJ2. In 
other words, a commensurate phase can be found in any 
neighborhood of an arbitrarily selected value of a/b. 
However, the total sum of the regions occupied by com- 
mensurate phases i s  small if V i s  small (it i s  propor- 
tional to vlJ2).  Of course, any temperature o r  quantum 
fluctuations will wash out over-fine details of this pic- 
ture. For  example, a t  a given temperature T it i s  im- 
possible to distinguish transitions with A; > l n ( ~ / x a ~ ) /  
ln(V/xa". 

We shall now investigate the spectrum of the small 
oscillations. We represent p(x, t) in the form of a sum 
cpo(x) + $(x, t) .  In the approximation linear in J ,  we obtain 
the equation 

It is clear that in the phase I (cos cp, = -1) the spectrum 
has the form @ = 1 + q2, where q is the wave vector. 
We now consider the phase 11. In this case the equation 
for monochromatic small vibrations: 

goes over, after the simple transformation x=zk,  to the 
well known ~ a m 6  equation 

where snz i s  the Jacobi elliptic function. The general 
solution of Eq. (14) has the formr7] 

where o(z) and c(2) a re  Weierstrass functions, 2w and 
2w' a re  the periods of the elliptic functions, A and B 
a re  arbitrary constants, and the constant a i s  deter- 
mined by the equation 

p (a )  = e , - / i ' ~ : ,  (16) 

FIG. 1. 

Since snz i s  a periodic function, the solution of Eq. 
(13) has the form of Bloch waves $(x) = eiaXu(x), where 
zi(x) is a periodic function. We a re  interested only in 
real values of q. Shifting z by a period and using the 
properties of ~ ( z ) , ~ ~ ' w e  find the change inthe f i rs t  of the 
two linearly independent solutions of (15): 

where q =  c(w). From this we find the quasi-momentum 

The formulas (16) and (17) give the parametric depend- 
ence of 51 on q .  The condition that q is real determines 
the set of permissible values of the parameter a. In 
the parallelogram of the periods this condition consists 
of the two line segments a =iy and a = w +iy with - w'/i 
< y < wl/i (see Fig. 1). Corresponding to these two line 
segments a r e  the two energy bands depicted schemati- 
cally in Fig. 2. We draw attention to two features of 
the spectrum. First ,  only one forbidden region of en- 
ergies exists. This statement is not absolutely exact. 
The effects of the discreteness cannot be assumed to be 
negigibly small when q - 1/6. They lead to the appear- 
ance of an infinite number of forbidden bands near q = 
2an/6 + 2nnz/l, where n and nz a r e  arbitrary integers. 
This implies, in fact, that breaks appear a t  any point 
in the spectrum, but the total extent of the forbidden 
bands is small. A similar picture for the spectrum of 
the Schrbdinger equation has been investigated by Din- 
aburg and ~ina!.~~] The remark about the smearing ef- 
fect of fluctuations is also fully applicable to the pic- 
ture of the spectrum considered above. Moreover, in 
the potential energy (9) we omitted terms of the form 
VNcos 2NV, V3N/2~os  3Nq, etc., which leads to the 
appearance of an infinite number of small gaps in the 
optical band. Secondly, a t  small q the spectrum is 
acoustic in character, this being a consequence of the 
invariance under an arbitrary change of the phase in 
(10). 

From the formulas (16) and (17) i t  is not difficult to 

FIG. 2. 

where B(z) i s  the elliptic Weierstrass function, and e, 
= (2 - k2)/3. 
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find the sound velocity 

It is interesting to trace the change in the structure of 
the ground state and the energy spectrum for values of 
h close to h,. The period of the elliptic functions in- 
creases like - ln[l/(h - h,)]. The function cp,@) has the 
form of a step function. Over the period 1 the function 
cp, assumes a practically constant value (2m + 1) n, and 
then, over an interval - 1, increases by 2n (Fig. 3). 

The graph of the function -cos cp, is shown in Fig. 4. 
We recall that this is the potential for small oscilla- 
tions. For  oscillations with wavelength X << 1 the per- 
iodic character of the potential is unimportant. There- 
fore, the spectrum of the optical vibrations coincides 
to within 1/1 with the vibrational spectrum in the phase 
I. In addition, the size 2n/l of the f i rs t  (acoustic) 
Brillouin zone decreases like Iln(h - h,) 1-1 a s  h ap- 
proaches h,. The maximum vibrational frequency in 
the first  zone decreases like (h - hC)'f2 ( ln  (h - h,) 
Therefore, the sound velocity tends to zero like (h - 
hC)'l2 Iln (h - h,) Ill2. It is not difficult to obtain the 
same result by direct investigation of formula (18). 
For large q the vibrational spectrum is again linear: 
O = q .  

The Hamiltonian (3) has been applied to the d e s c r i p  
tion of the phase transitions of helical magnetic struc- 
tures, [Iq a cholesteric liquid crystal in a magnetic 
field, U1l and the penetration of vortices in a Josephson 
j u n ~ t i o n . ~ "  We shall indicate yet another interpreta- 
tion, which has been applied in the problem of the 
movement of a d i s l ~ c a t i o n ~ ' ~ * ~ * ~ :  the quantities x and cp 
a r e  interpreted a s  the longitudinal and transverse coor- 
dinates of the points of a string situated in a periodic 
external field. The phase transition in this case is in- 
terpreted a s  the spontaneous breaking of the symmetry 
with respect to a translation through a period. In the 
state with broken symmetry the string lies in one val- 
ley of the potential cohtour. 

The limits of applicability of the classical approach 
a r e  determined by the size of the quantum corrections. 
We shall find them in the framework of the continuum 

model. We note that the number of independent para- 
meters in the quantum problem is larger than in the 
classical problem. In fact, we cannot make a change 
of a scale of cp since this changes the commutation re- 
lations of cp and @. Furthermore, we cannot multiply 
the Hamiltonian by an arbitrary factor, since this 
changes the amplitudes of the quantum fluctuations. By 
changing the scale of the time and coordinates it is 
possible to put the density and elastic constant equal to 
unity and bring the Hamiltonian to the following stand- 
a rd  form, with three independent constants: 

The ground state of the quantum system described by 
the Hamiltonian (19) was investigated in a paper by 
Luther and ~ o k r o v s k i i . [ ~ ~ '  It was shown that for small 
V the critical value of h coincides with the gap in the 
excitation spectrum, calculated for h = 0: 

where Z(@,CY)  is a slow function of P and of the cutoff 
parameter (lattice constant) (Y. The diagram of state 
in the (h, ,d2)-plane is depicted in Fig. 5. The region I 
corresponds to the commensurate phase and the region 
11 to the incommensurate phase. Near the transition 
curve, in the region 11, the quantity (8cpi8x) determin- 
ing the incommensurability behaves like (h - h,)' 2. At 
the same time, in the classical picture, (8cp/8x)oo 1 
ln(h - h,) I -' for h - h,. The reason for the contradiction 
is that the classical treatment is not valid in the im- 
mediate vicinity of the transition line. In order to ob- 
tain the criterion for applicability of the classical ap- 
proach we shall consider the mean square fluctuation 
of the phase difference cp(x) - q(0) over a certain char- 
acteristic distance x: 

(('(z)--cp(O))=) 

The density p, can be taken to be unity, but i t  is nec- 
essary to exercise care with Planck's constant. If we 
wish to use the formulas (16), (17), and (18) for the 
spectrum of the small oscillations, then in place of the 
phase y in the Hamiltonian (19) i t  is necessary to con- 
sider the quantity cpf=Pq and repIace t and x by t ' = P t  
and x' = ox. The commutation relation for cp has the 
form 

In order to bring the Hamiltonian (19) to the standard 
form (3) it is necessary to change the scale of the time 
and coordinates once more. The constant factor that 
appears in front of the Hamiltonian is equal to v1I2. 
The product H t  appearing in the S-matrix is invariant 

FIG. 4. 
FIG. 5. 
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in this transformation. Thus, we can use the spectrum 
obtained earlier and assume the period in cp to be equal 
to 2n, replacing A by AB2. Taking into account what has 
been said, we shall calculate the fluctuation average 
(20) for x << 1 ( I  = 2kK(k) is the period of the incommen- 
surate lattice): 

The two terms in the right-hand side of (21) correspond 
to the contributions of the acoustic band and optical 
band. The classical approach is applicable if the quan- 
tum phase fluctuations (21) for x - I  a r e  much smaller 
then the classical phase difference: 

Finally, the criterion for classicality has the form 

In order to write this criterion in terms of the "den- 
sity" p, and "stiffness" *A (the coefficients of (acp/at)' 
and ~@/Bx) '  in the energy density), i t  is necessary to 
replace PZ by the quantity ~2/(pon)1'2. It can be seen 
from (22) that the region of quasi-classicality corres- 
ponds to small P. But, for any fixed P ,  in a small r e  - 
gion (h - hc)/hc 2 (E/52/4nz)2 about the transition point 
the quantum fluctuations a re  large and the classical 
result is inapplicable. The fact that the region of ap- 
plicability of the quantum treatment becomes narrow- 
e r  a s  fi - 0 is evidently connected with the increase in 
the number of bound states. 

We note that the classical approach becomes mean- 
- ingless in the limit a - 0. Precisely because of the 

necessity of a cutoff a t  short distances, four indepen- 
dent constants ( V ,  h, B, and a) ar ise  in the theory. 
The mean square fluctuation (cpZ) diverges, s o  that the 
long-range order is destroyed by quantum fluctuations 
but the fluctuations of a cp/ax a re  small in the quasi- 
classical limit, far from the transition point. 

The two-dimensional and three-dimensional prob- 
lems of almost commensurate systems can also be re -  
duced to continuum models. However, even for this 
simplified problem the exact solution is not known. 

When the present work was completed, a preprint 

by Rice and ~heodorou,[.''' in which many of the results 
that we have found a re  obtained, became known to us. 
We a r e  grateful to L. P. Cor'kov, who afforded us the 
opportunity of acquainting ourselves with this preprint. 

L. N. Bulaevski; and D. I. ~ h o m s k i r  kindly wrote to 
us  about their paper:"' in press a t  the time, in which 
certain results of the present work were obtained in 
connection with the problem of charge-density waves 
in quasi-one-dimensional structures. "We a re  grateful 
to L. N. Bulaevskir and D. I. Khomskii for this com- 
munication and a useful discussion. 
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