
f , = ( I + ~ k / o ) " ' ~ - ( 1 - ~ k / ~ \ ~ ~ ' .  

A part  of the corrections to hydrodynamic equations is 
thus equivalent to the appearance of dispersion (tem- 
poral and spatial) of the kinetic coefficients, In addi- 
tion, the expressions for  the heat flux acquire t e rms  
with velocity gradients, and correspondingly terms 
with temperature gradients appear in the momentum- 
flux tensor. The value given above for the ratio of the 
tensors o,,, and Pi,, agrees with the principle of sym- 
metry of the kinetic coefficients. 

3. The obtained equations can be used to calculate 
the low-frequency sound dispersion in liquids. From 
(12) we can readily determine the correction terms for 
the phase velacity of the sound c(w) and for i ts  damping 
r(w). Without dwelling on the simple calculations, we 
present the final result: 

where + is a dimensionless quantity equal to 

The relative corrections to the speed of sound and to 
the damping are thus proportional respectively to w3/ 
and w1I2. 
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Phase transitions in cholesteric liquid crystals are considered. A phase diagram is derived which makes it 
possible to explain the existence of intermediate phases in a narrow region between the uniform isotropic 
(UI) phase and the spiral phase. The critical phenomena are investigated in the light of experiments on the 
supercooling of the UI phase. 

PACS numbers: 64.70.E~ 

1. INTRODUCTION As will be shown below, these anomalies agree quali- 

The critical properties of cholesteric liquid crystals 
(CLC) in phase transitions from the uniform isotropic 
(UI)phase to the spiral  phase have anumber of important 
differences from the critical properties of other sys- 
tems. A number of experimentalc1-41 and t h e o r e t i ~ a l ' ' * ~ - ~ ~  
papers havebeendevoted tothe study of thephase trans- 
itions in CLC, but some pertinent problems are still far 
from being completely solved. In particular, the natural 
supercooling of the UI phase observed in Ref. 4 and the 
anomalies in the temperature dependence of the pre- 
critical scattering of light require deeper investigation. 

tatively with the predictions made in Refs. 7 and 8, and 
with a more complex experimental investigation it ought 
to be possible to pose the question of the quantitative 
comparison of the theoretical and experimental results. 

The theory developed in Refs. 7 and 8 predicts a dis- 
continuous transition to the spiral  phase, occurring in a 
region of substantial manifestation of critical anomalies 
due to the effect of critical fluctuations. The alternative 
is the formation of a planar lattice of spirals, with a 
triangular structure.rg1 In the experiment of Ref. 4 a 
discontinuity was observed only in the transition from 
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the spiral to the UI phase a s  the temperature was raised 
to T i  =31°C, whereas the transition from the UI phase to 
the spiral phase on lowering of the temperature occurs, 
with no discontinuity, a t  the temperature T ,  = 28.5°C, It 
is natural to expect that the temperature T ,  i s  the point 
of absolute instability, lying in the metastable region 
T,< T i .  Thus, the phase transition from the UI phase to 
the spiral  phase of the CLC is characterized by two re- 
gions of anomalous critical phenomena: T -Ti and T - T,.  

The theory of the critical phenomena in the region 
T = T i  was developed in Refs. 7 and 8. In the present pa- 
per certain results of this theory will be picked out for 
the purpose of analyzing the existing and prospective ex- 
perimental investigations. The new result will be the in- 
vestigation of the system iu the vicinity of the absolute- 
instability point T,. It will be shown that the cubic an- 
harmonicities of the system, which affect both the short- 
wavelength modes (corresponding to the spiral  structure) 
and the long-wavelength modes, can be the cause of the 
second-order phase transition a t  T = T,. The case when 
the cubic anharmonicities a r e  always negligibly small, 
and the system enters the strong-coupling regime a s  the 
temperature is lowered, remains unstudied. 

2. THE LANDAU THEORY FOR PHASE TRANSITIONS 
I N  CLC 

1. The critical properties of a CLC a r e  described by 
a free-energy functional F(Q} of the symmetric traceless 
tensor QaB(r) extracted from the local dielectric-permit- 
tivity tensor taB(r): 

where a, = a/ar, . 
The expansion of ~ , { g }  in normal modes has the form 

where the tensors u&(q) a r e  constructed from the vector 
n =q/q and the vectors 1 and l* orthogonal to itb1: 

The energies of the normal modes a r e  equal to (d>O) 

T O  ( q )  =a+ (3b+4c) q2/3,  
T', ' ( q )  =a+bq'F2dq=~,+4, (q /q ,r l )? ,  

7'. ' ( q )  =a+ (b+c)  q ' F 2 d q = ~ , + 4 ~ ( q / q , T l ) ~ .  

The lowest extremal energy T, i s  possessed by the 
mode with the largest extremal wave vector q,. The 
free-energy functional (1) admits various stable one-di- 
mensional spiral structures, The ground state of the 
one-dimensional ordered spiral  phase for cp,, = O  is a 
spiral  (the ellipsoid of the permittivity &,,=&,,da0 +gas 
rotates about the mean axis), and for q,,, = O  i s  a conical 
spiral  (the mean axis of the ellipsoid i s  perpendicular to 
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the axis of the spiral, and the two others have an angle 
of precession of 45"). In the case of nonzero p,, cp,, and 
p, (d > 0) we have a superposition of two spirals with dif- 
ferent cholesteric-structure periods. As will be shown 
below, for c < 0 the UI phase can go over to the conical 
phase. 

Assuming that the expansion (1) gives a good descrip- 
tion of the properties of the CLC well below the transi- 
tion point, we obtain for the Frank energy constants: 
K,, =K3,, K,,/K,, =2b/(2b +c). Usually, the relation K,, 
< K,, =K3, is fufilled, and we may expect that c > 0. How- 
ever, there exist CLC with K,,/K,, > l (in Ref. 10, a CLC 
with K,,/K,, = 4 is investigated). It would be interesting 
to find the region of the conical phase in such CLC. It is 
necessary, however, to take into account that below the 
phase-transition point the coefficient ratio b/c depends 
on the temperature.C111 Thus, e.g., near the point of the 
transition from the UI phase to the nematic liquid crystal 
(NLC) the coefficient c i s  very small,C1z1 but below the 
phase-transition point the ratio K,,/K,, in the CLC and in 
the NLC decreases. Therefore, the existence of a CLC 
with K,,/K,, > 1 does not in itself imply a negative c. The 
known optical experiments in CLC give c > oOC4] 

2. We shall investigate the possible phase diagrams of 
the free-energy functional F.  We shall determine the 
equilibrium value of Q,,(r) by substituting the expansions 
(2) and (3) into the functional (1) and varying with respect 
to the amplitudes 4. Owingto the constancy of Q;,(r) in 
the spiral  structure, higher harmonics withq/q, = 2,3, . . . 
a r e  not generated. Denotingqt= cp, and cpS,,.= cp,, we ob- 
tain 

where 

i.e., from (4), 
- 

C . = I / ~ < ,  C,=-1/16,  ~ , = ' / ~ 7 6 .  

We shall consider the possibility of a phase with non- 
zero cp,, p,, and p,. The conditions for the extremum 
of the functional (1) determine the quantities cp, and cpz 
in the following way: 

T D = ( T ~ - T I ) / ~ ( C ~ - C I ) .  (7) 

Since C, - C, > 0 and 3C1 - C ,  < 0, the extremal cp, should 
lie between the roots x, , ,  of the quadratic polynomial in 
the right-hand side of the equality (6): 

The value of the free energy a t  the point of the minimum 
can be represented a s  

where cp, i s  determined by the formula (7). 

On the other hand, the value of the f ree  energy a t  the 
point of the minimum for  the spiral  phase with cp,,,+O is 
determined by the same equation (8), but the quantity cp, 
is found by minimizing (8) with respect to cp,, which 
leads to the root x, of the quadratic polynomial in the 



right-hand side of the equality (6). Therefore, the value 
of the free energy for  the phase with nonzero q,, cpl and 
cp, is always greater than the value of the free energy for 
the phase with q,, ,#O. It is easy to show that the value 
of the free energy for the phase with nonzero cp, and cp, 
is always less  than the value of the free energy for the 
phase in which only cp, is nonzero. Therefore, thephase 
diagram for the functional (1) is determined by the com- 
petition of three phases: cp,,,#O, cp,,, * 0, and the UI 
phase. 

The values of the free energies of the first  two phases 
can be represented a s  finite minima of the third-degree 
polynomials 

Fs-Fo 2 --- 4a.-1 38, 3Bs' 
y , 3+ -y s z+ - -= -ya - - ,  

T 3f6 4 416 32 

where 

%A. WT. hcpo, 
a,-- 

Woo* Be=- 
P' ' 

b l i p  - , y P " .  
P' ' P P 

(11) 

The value of y, is determined by varying F, with re- 
spect to y,. Determination of the phase-equilibrium line 
F, = F, leads to an equation of fifth degree in P,. This 
equation is obtained a s  the condition for the existence of 
a common root of the following system of equations: 

2yV13+ ( a , - I )  y/2+3p1/41g=0, (12) 
where 

andx,, €I3, and 6, a r e  obtained by replacing P, by Pi and 
a, by 40,. Equation (11) is the condition for equality of 
the extrema of (9) and (lo), and Eq. (12) is the extremum 
condition for (9). Quite apart from the complexity of 
finding the roots of the system (12), there i s  the com- 
plexity of selecting them correctly: the solutions of the 
system (12) describe equality of the extrema of F, and 
F,, and not just of their minima. Therefore, we shall 
carry out a qualitative analysis of the possible phase dia- 
grams under the condition of not too large Ic l < b. 

The line of the transition from the UI phase to the spi- 
ral  phase with cp,,,+ 0 i s  determined by the equation 

9$?+2(~a,-l)B,-3a,(i-a,)~=0. (13) 

The analogous transition to the spiral  phase with cp,,, 
# 0 i s  determined by the equation 

9pSz+2 (3Ga3-1) 8,-12a, ( I-4adz=0.  (14) 

As we should expect from (9) and (lo), in terms of 
4a3 and p, an equation analogous to Eq. (13) is obtained, 
The lines of transitions from the UI phase to the spiral  
phases with cp,,, # 0 and cp,,,+O for the case c > 0 a r e  rep- 
resented in Fig. 1 by the curves AFL and ABCD, re- 
spectively. The curve ABCD lies everywhere below the 
curve AFL. However, this does not gurantee the im- 
possibility of a transition between the two spiral  phases 
of the CLC. The free-energy difference F, - F, can be 
negative in the region AOB (the y, that minimizes F, i s  
always positive; on the line OB, (6, ( = (6, ( ). For c = 0 

FIG. 1. 

and a, > 0 the spiral  phase with cp,,, # 0 is the more fa- 
vorable. In the region AOB the parameter a i s  small (at 
the point with a, = (b +c)/4b). In the leading approxima- 
tion in small  a the difference of the free energies of the 
phases is determined by the corresponding change in the 
parameters a and j3. The contributionto thefree-energy 
difference from the change in the order parameter is 
quadratic in a and is not taken into account. Then, 

where Eq. (16) determines the equilibrium value of the 
order parameter in the zeroth approximation in a. It is 
easy to see from Eq. (15) that for c>O the spiral  phase 
with cp,,,#O i s  always favorable in the region of small  a. 
 heref fore, for 0 < c S b the spiral  phase with cp,,, .rt 0 will  
be realized everywhere below the line AFL. 

The phase diagram in the case when the coefficient c 
i s  less  than zero and small  in magnitude is presented in 
Fig. 2. At the point C, a, =b/(b +c), while a t  the point 
F we have a, =a. The shaded region corresponds to the 
spiral  phase with cp,,, # 0. The curves ABCD and A F L  
a r e  found from the conditions (13) and (14) that the f ree  
energies of the spiral  phases with cp,,, + 0 and cp,,, # 0, 
respectively, a r e  equal to zero. It follows from the mu- 
tual disposition of the curves that a curve BE separating 
the two spiral  phases should emerge from the point B; 
this curve lies everywhere below the curve ABCD. 

For small  I c 1 the initial segment of the curve BE lies 
in the region of small  PI,, .  In this case, in the expres- 
sion (10) for  F3 we can neglect the term cubic in 9,: 

(~~-F,)/~=-3a,$~~/8(4a~-1), fis<3(4a,-1)'/2. 

The expression for F, has the form 

(F,-Fo) /T= (x,-0:) [0,+'/,(01"-xi) ]/8yz+x,(0,-x';')/47% 

Thus, the curve BE i s  determined by the equation 

while for p, << 3(a1 - 1)'/2, LY > 1, 

FIG. 2. 
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It follows from Eqs. (15) and (16) that in the region of 
small o! the spiral  phase with cp,,, # 0 is favorable, pro- 
vided that c # 0. In the region I p, I >> 1 the difference F3 
- Fl i s  represented in the form 

( R - F , ) / T % S  I p 1 aJ32, 
i.e., Fl < F, for pl >> 9(01 - 1)'/16, $3 >> 9(4os - 1)'/16. 
The line p = 0.05p0 (&, = 2/9), shown by the dashed-dotted 
line in Fig. 1, corresponds to the phase transition to a 
non-unidimensional structure with hexagonal symmetry. 
As will be shown below, the cubic vertex for the mode 
s = 3 is equal to zero. Therefore, the nonunidimensional 
structure does not compete with the phase cpo,,+ 0 that we 
have discovered in the region LBE. For  p2 << A I  T 1 ,  non- 
unidimensional structures become u n f a ~ o r a b l e . ~ ~  

3. The parameters of the modes 7,(q) can be deter- 
mined experimentally from the angular dependence of the 
integrated critical light-scattering intensity 

I-'/,re-' sin' cp+'/, (7,-'+rr-') COS' (P sin2 812 
+'/,(rl-'+rr-') (I-cos'cp cosz 012). 

Here i t  is assumed that the incident light is polarized a t  
right angles to the scattering plane. The angles between 
the wave vectors and the polarizations of the incident and 
scattered light a r e  denoted by 0 and p ,  respectively. 

Experimentally, it is primarily the high-temperature 
region T - Ti = 10°C, in which 7, >> A,, that is investi- 
gated. In the zeroth approximation in A, /7,, for the 
scattering intensities I,, and I,, for scattering with cp 
= 90" and cp = O  the rule I,, = 31,,/4, characteristic for 
NLC, is fulfilled. Experimentally, small deviations 
from this relation a r e  observed in CLC.[~] They can be 
used to estimate the coefficient c determining the differ- 
ence between and 73,4. In first  order in A, / r ,  we 
obtain 

From the data of Ref. 4 we can estimate cq2 = 0.5OC. 
We note that the size of the low-temperature region of 
T - T, amounts to 1 - 3°C. Consequently, unlike in Ref. 
7, the critical fluctuations of the modes s = 1 and s = 3 
must be treated together when T - T, = 10°C. However, 
in the limit T - T, the influence of one mode should be 
decisive. 

The rotation of the plane of polarization of light in the 
high-temperature region enables us to determine only the 
parameters pertaining to the modes s = 3 and s =4.C71 

3. ANOMALOUS CRITICAL PHENOMENA 

1. Depending on the magnitudes of the constants p and 
A in (I) ,  the nonlinearity of the system can be manifested 
either for 7, > A, o r  for 7, < A,. If in the uniform phase 
of the CLC we introduce the molecular-orientation cor- 
relation length t =  (b/a)'P characterizing the short-range 
order akin to that in NLC, then 7, >>As corresponds to 
2n5<< L, where L i s  the period of the cholesteric struc- 
ture. Usually, 5 = 200 - 300 A, and for L = lo4 A the phase 
transition in a CLC i s  described by the theory of critical 
phenomena in NLc.[13] The limit 2n5 - L (the point of 
absolute instability of the UI phase of the CLC, a s  pointed 
out by de ~ e n n e s ~ ' ] ) ,  corresponding to 7, <<A,, was ob- 
served in the experiments of Ref. 4 for a CLC with L 

= lo3 A and a large correlation length 5 (because of the 
proximity to the point of absolute instability of the NLC). 
The quantity 5 can be estimated if we assume that the 
correlation length of the mode cp,, equal to qi1(AS /T,)'/~, 
coincides in order of magnitude with the linear dimen- 
sions of the arbitrarily oriented cholesteric domains that 
were observed below 28.5"C in the experiment of Ref. 4. 
In the region of temperatures T<T,,, where T,,  is the 
temperature a t  which Bragg peaks appear in the Rayleigh 
scattering of light a t  wave vector 2n/L (Ref. 2), the pat- 
terns of the critical phenomena in the NLC and the CLC 
begin to differ. 

Here, a s  in Ref. 7, we shall consider the second case 
7, <<A,. We shall assume that in the region T =  TBF, i.e., 
7, = A,, uniform nematic fluctuations a r e  not yet ob- 
served; this leads to the following restrictions on the val- 
ues of p and A: 

7Aq,S/12n'A."Q<l, 7p'q.V48nZA,S=R<l. (17) 

The small  values of the dimensionless parameters Q 
and R enable us to give a quantitative description of the 
critical phenomena. In fact, we shall consider the cor- 
relation function of the mode ps in the region r, << As (r, 
i s  the renormalized value of 7,): 

q,' sin q,z 
'(')= 2n (A,r.)'"q.z 

We shall write down arbitrary diagram for the self- 
energy part  Z(q,) =?, -r,, in the coordinate representa- 
tion (18b) for the internal lines. The expressions ob- 
tained a r e  found to be insensitive to the presence of the 
exponential factor in (lab), i.e., the convergence of the 
integrals i s  ensured by the oscillatory factors even when 
the correlation length is infinite. Therefore, we can 
easily estimate the order of magnitude of an arbitrary 
diagram containing 2n three-point vertices and m four- 
point vertices: 

Z~~~~N(QA,/~,)~(RA?I~?)~(A,~,)'~. (19) 
It can be seen from (19) that, fo r  r, /AS >> Q, R2I3, we can 
confine ourselves to the f i rs t  skeleton diagrams: 

When lower values of r, a r e  reached (?-,/A, = Q or  R ' /~) ,  
the strong-coupling regime se ts  inCB1; this regime will 
not be considered in the present paper. 

2. When all the restrictions indicated above a r e  ful- 
filled, taking the diagrams (20) into account we obtain 
the following expression determining the temperature 
dependence of r, : 

where 
r,.=A,(c,,R)'", ra.=A.(~a.Q)"~. 

The coefficients cx, and c,, a r e  equal to 

Thus, for s = 3  we have r,, = O n  

For the specific heat we can obtain the expression 
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The curve b in Fig. 3 corresponds to this dependence, 
We see  that there appears a critical point i-, = 27- ,,, at 
which the linewidth (generalized susceptibility) remains 
finite: r,=r,,. At this point the specific heat and com- 
pressibility a r e  singular: 

The appearance of the critical point i s  explained by the 
dip that appears in the long-wavelength mode I1, = lpf a s  a 
consequence of the attractive interaction via the cubic 
anharmonicities. Its correlation function ( $(k)$(-k)) is  
determined by diagrams of the form 

The negative corrections to the compressibility and to 
the energy a =rS(0) of the modes (4) in the long-wave- 
length limit behave analogously to the specific heat: 

A shift also occurs in the observed wave vector: 
The selection of the ladder diagrams i s  argued in the 
same way a s  in Refs. 16 and 8. We obtain 

6q,lq,  ( r ,  - T , ) ~ A , - ' ~ ~ " .  (24) 

The quantity (24) always remains small. 
D ( k ) =  - 217nf+.4K(m+ ( k l q , ) z ~ , / 1 2 r , ) '  P? (26) 

for k/ql << (Y,/A,) '~~ (m= 1 -r;,r;'), and 

D(k)  =q,'lA,rlk (27) 

for 

( r , / A , )  ' < k / q l <  I. 

As in Ref. 7, the ladder diagrams a r e  summed under the 
condition r ; ,~ ;~  - 1 a Diagrams with crossed internal 
lines 

3. We shall consider the case s =3,  when r,,, = O .  The 
dependences associated with Eq. (21) were investigated 
in detail in Refs. 7 and 8. The graph i s  represented by 
the curve a in Fig. 3. By adjustment of the parameters 
i ts  shape can be made consistent with the observedL4] 
temperature dependence of the linewidth of the scattered 
light. The expression (22) for the specific heat acquires 
the form 

For rk3 <r3 < As the fluctuation correction to the specific 
heat increases rapidly (approximately like T;~"), while 
for 7 3 = ~ 3 = ~ X 3  it approaches saturation. have relative order of smallness (Y,/A,)'~~. The point of 

absolute instability of the metastable phase is deter- 
mined by m -0. The dependence analogous to (23) for 6a/a leads to the 

shift 
We shall consider the Green function (ql(k)cpl(-k)) in 

the region of small  momenta k << q,. The diagrams for 
i ts  self-energy part  differ from the diagrams of (25) by 
the replacement of the end angles by cubic vertices. In 
this case we obtain Substantial softening of the uniform modes can occur 

only in the case R < Q, i.e., on supercoolingwith respect 
to the line of orientational phase transitions?] In this 
region the CLC i s  close, in i t s  thermodynamic proper- 
ties, to a NLC, and is, apparently, also incapable of 
being supercooled. In view of the absence of experi- 
mental data we shall not investigate this region. We 
note only that the softening of the uniform modes satu- 
rates at finite values. Further reasons for a first-or- 
der phase transition with a volume change can then ap- 
pear. Returning to the region R < Q under consideration 
(the principal region of structural phase  transition^[^]), 
we recall that al l  the dependences considered a r e  valid 
in the region r X s ~ 1 / 3  < r S  < As, i.e., -Y,, Q- ' /~ < rs0  At 
lower temperatures the system is in the strong-coupling 
regime. 

where k/ql << ( r ,m/~ , ) ' /~ .  

In the region of small  momenta 

k l q , G ( r , m l J , )  

long before the mode cp, softens in accordance withform- 
ula (29), the three-point and four-point vertices of the 
modes cp,, renormalized by fluctuations of the order pa- 
rameter a t  momenta k = q,, become large. The magni- 
tudes of the vertices a r e  easily estimated: 

r, (k.)  =rn-'(r/A)%, (31) 
r , ( k )  =m-' (r /A)%,  (32) 

where k satisfies (30). 

4. We shall consider the case s = 1, corresponding to 
the available experimental Three regions of 
parameters a r e  possible.') 

The corresponding diagrams have the form 

a )  If R << QV2, the same dependences occur a s  for s = 3. 

b) If R >> Q ~ / ~ ,  then r,, >>rkl and the term rkl in (21) 
is unimportant for all attainable values of Y,. The form- 
ula (21) acquires the form Therefore, the formulas (26)-(29) arevalid when the cri- 
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ter ia  (17) are fulfilled for  the modes cp, in the region of 
smal l  momenta (30): 

r , : ( r , m / ~ , ) " 8 t ~ ,  r , ( r , m / ~ , ) ' ~ ~ a i .  (34) 

From the formulas (31)-(34) we obtain the condition 
(27) for  neglect of the effect of the strongly interacting 
long-wavelength excitations on the form of the correla-  
tion functions in this region of momenta: 

r n > ( r , / ~ , ) ' / ~ .  (35) 

From the formulas (26)-(29) it can be seen that the dip 
in the mode p, accompanies the dip in the mode cp, in the 
region of momenta (30). Within the l imits  of the re- 
striction (35), a new stable excitation appears in  the cor-  
relation function g,(k)  at momenta 

k/q,-(rlmL/A,)*, m t l .  (36) 

In the range of applicability of the cri ter ion (35) the dip 
in the mode cp, i s  not small. 

c )  In the intermediate region Q3"<<R << Q4f3 we must 
use the formulas (21)-(24). In this case, both the re- 
gimes (a) and (b) can be observed. In the region r,>>r$,/ 
r:, we can neglect the te rm with r,, in (21) and we obtain 
the case (a), o r  s =3. When the value r, = (8/3)2r4,1/r;1 i s  
reached the curve bends over. At 

a critical point analogous to that in case (b) is reached. 
The dependence (21) corresponds to the curve c in Fig. 
3. In the case  (c) the formulas (26)-(36) remain valid 
if 

m  = 1 - r,,;r-: + 1/2r: r V z .  

4. CONCLUSION 

Investigations of the transitions in CLC from the UI 
phase to the sp i ra l  phase point to the existence of inter- 
mediate s t ruc tures  (the so-called "blue" phase) in a 
narrow range of temperatures.C14~151 Optical studies re- 
veal the presence in the blue phase of polycrystalline 
structures-platelets with cholesteric ~ r d e r i n ~ . [ ' ~ " ~ ~  
The color of the platelets i s  determined by the length of 
the cholesteric sp i ra l  in them. Liquid crystals  exist in 
which the color of the platelets changes strongly-from 
violet to red-as the temperature is decreased.[l4] It i s  
possible that this can be explained as passage through the 

region LBE in Fig. 2, s ince q, > q, (in this  case, c < 0). 
We do not know of any restr ict ions 0.n the sign of the coef - 
ficient c .  Other liquid crys ta ls  display a smal l  change 
in the color of the It is possible then that 
c > 0, and it is necessary to take the non-unidimensional 
s t ruc tures  into ac~ount!~ .~]  

The transition line between the UI phase of the liquid 
crystal  and the hexagonal s tructure is shown in Fig. 1 by 
the dashed-dotted line. The dip i n  the mode cp, a t  the 
smal l  momenta (30) can turn out to be l a rge r  than i t s  dip 
at k = q, (it is not possible to reach a definite conclusion, 
since the strong-coupling regime sets in in this  region). 
In this case an  intermediate cholesteric s t ruc ture  with a 
very large (by virtue of the smallness of m) spi ra l  pitch 
(see (36)) and weak optical activity can appear, 

The authors express  their  gratitude to A. V. Dyugaev 
and D. E. ~ h m e l ' n i t s k i i  f o r  useful discussions. 
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