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The principal correction terms of the linear equations of the hydrodynamics of liquids are obtained . The 
principal mechanism stems from long-wave thermal fluctuations. The low-frequency dispersion of sound is 
calculated. 
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The hydrodynamics equations a re  obtained by ex- 
panding the equations of motion in the gradients of 
the velocity and of the thermodynamic quantities up to 
terms of second order in the spatial derivatives. In 
this approximation, the form of the equations, a s  i s  
well known,['] follows uniquely from the general con- 
servation laws alone, and i s  therefore the same for 
all gases and liquids. Distinctions appear only in the 
thermodynamic functions and in the values of the ki- 
netic coefficients. 

The situation i s  different, a s  will be shown below, 
on going to the next-order approximation. There 
exist, generally speaking two entirely different types 
of corrections to hydrodynamics. On the one hand we 
have the usual "gas-kinetic" corrections obtained by 
Burnettt2] (see also Ref. 3) on the basis of the Boltz- 
mann equation. If we confine ourselves to linearized 
equations, then the Navier-Stokes equation acquires 
in the Burnett approximation an additional term pro- 
portional to the third spatial derivative of the tempera- 
ture. The order of magnitude of this term is k%12bT, 
where k is the wave vector or  some other reciprocal 
of a characteristic length, n is the number of particles 
per unit volume, I i s  the mean free path of the parti- 
cles, and 8T is the characteristic temperature dif- 
ference. On the other hand, in the present paper a re  
calculated the fluctuation corrections due to the pres- 
ence of long-wave thermal fluctuations, particularly 
acoustic fluctuations. Since sound absorption i s  pro- 
portional to the square of the frequency, acoustic fluc- 
tuations with sufficiently low frequency have an arbi- 
trarily large mean free path. This i s  the physical 
reason why the fluctuation mechanism is always the 
basic one at sufficiently small gradients. In fact, 
the fluctuation correction to the Navier-Stokes equa- 
tion, a s  will be shown below, is of the order of k5I2 
x E'3/28T, i. e., a t  sufficiently low k it greatly exceeds 
the gas-kinetic correction. It i s  important, however, 
that with increasing k the gas-kinetic corrections be- 
comes the basic one when the condition kl>> (nd)c43 i s  
satisfied, where a-  (121)-'I2 i s  the particle dimension. 
Therefore for gases (nu3<< 1) there exists a wide wave- 
fector region in which expansion with respect to the 
gradients i s  meaningful (k1-x I), but the fluctuation 
corrections a re  small. For liquids on the other hand 
nd- 1 and the fluctuation corrections a re  always the 
principal ones. It i s  of interest to note that in this 
case the correction terms contain no new parameters 
whatever and a re  completely expressed in terms of the 

It must be emphasized that there a re  many phenom- 
ena that do not occur in the hydrodynamic approxima- 
tion and a re  therefore due entirely just to the correc- 
tions that must be made to the hydrodynamics. For 
example, in hydrodynamics there i s  no thermomechan- 
ical effect, i. e. , no onset of motion under the influence 
of a temperature gradient a t  constant pressure. It is 
clear from the foregoing that such phenomena in gases 
(at not very small k) and in liquids should differ quali- 
tatively from one another. In gases they a re  described 
by the iocal Burnett equations (see Refs. 4 and 5). In 
the case of liquids, inasmuch a s  the fluctuation correc- 
tions depend on k in nonanalytic fashion, the equations 
a re  essentially nonlocal. Some of these nonlocal effects 
in liquids were considered earlierOt6"] 

1. We start  with the hydrodynamic equations of an 
ideal liquid, expressed in the form of the conservation 
laws for the mass, momentum, and energy: 

where p is the density and v the velocity of the liquid, 
p i s  the pressure, E is the energy per unit volume, and 
fu the thermal energy per unit mass. 

The presence of thermal fluctuations gives rise to the 
appearance of small corrections bp, bv, . . . to the hy- 
drodynamic quantities; these corrections oscillate in 
space and in time. In what follows it i s  essential to 
ascertain the relation between the fluctuation wave vec- 
tors  1, which play the principal role, and the wave vec- 
tor k of the hydrodynamic motion. Let, for the sake of 
argument, the hydrodynamic motion of interest to us 
be a sound wave. From the formulas that follow it 
will be seen that the main contribution to the correction 
terms a re  made by fluctuations whose damping time is 
of the order of the reciprocal of the frequency of the 
hydrodynamic motion. Since the damping time of any 
fluctuation in a liquid is inversely proportional to the 
square of the wave vector q, and the sound frequency 
is proportional to the f i rs t  power of k, it can be as- 
sumed that q>> k. We therefore average all the quan- 
tities over volumes whose linear dimensions a r e  much 
less  than l / k  but much larger than l/q. All the quan- 
tities that a re  linear in the fluctuations vanish after 
such an averaging: 

thermodynamic functions a id  kinetic coefficients that (6p)=(6v>= .  . .=O, 

enter in the hydrodynamic equations themselves. and the effect of interest to us appears only in second 
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order in the fluctuation amplitude. 

An arbitrary small perturbation in a liquid i s  a super- 
position of acoustic, entropy, and vortical waves. If 
we choose a s  the independent thermodynamic variables 
the pressure p and the entropy per unit mass o, then 
the acoustic fluctuations correspond to oscillations of 
the pressure and of the longitudinal part Bv, of the 
velocity (curl 8v, = O), the entropy fluctuations corres- 
pond to oscillations of o, and the vortical fluctuations cor- 
respond to oscillations of the transverse part bv, of the ve- 
locity (div 6v, = O), with the remaining variables 
constant. Since the different types of fluctuation can be 
regarded a s  statistically independent, the mean values 
of some quadratic combinations vanish. For  example, 

Expanding the equations in (1) accurate to terms 
quadratic in the fluctuation amplitudes, and carrying 
out the indicated averaging, we get 

where we have neglected the terms that make no con- 
tribution to the linearized equations of interest to us. 

The quantity 

in the first  equation of (2) is the average renormalized 
density of the liquid. It i s  easy to determine analo- 
gously the average entropy S per unit volume: 

and the average velocity 

If we choose the renormalized quantities p, S, and 
a s  the new independent variables, then we can re- 

write (2) in the form 

p f p  div v=O, 

where c is the speed of sound, c ,  is the heat capacity 

per unit mass a t  constant pressure. Here and below 
we shall omit the bar over the letters p, S, v, which 
will henceforth designate the renormalized quantities. 

We represent the fluctuations in the form of the ex- 
pansions 

bp (1)  = v - " X  p ( q )  ear, 60 ( I )  =V-'" x o  ( q )  ei*', 
q 

~ v , - v - " ~  1.". ( q )  elq' 
4 

where V is the normalization volume, 1, (a = 1, 2 )  a re  
mutually perpendicular unit vectors and lie in a plane 
perpendicular to the wave vector q and satisfy the con- 
dition 1,,1,,= 6,, - (q,qdq2), and introduce the distribu- 
tion functions of the acoustic fluctuations 

of the entropy fluctuations 

and the vortical fluctuations 

f.o(n) =v.(q)u,'(q). 

The mean values in (5) can be expressed in terms of 
the distribution functions a s  follows: 

where dr = d3q/(2n)3. Substituting these formulas in 
(5), we obtain after simple transformations 

where we have introduced the renormalized entropy o 
= s / ~  per unit mass. Equations (6), with only acoustic 
fluctuations taken into account, i. e. , at  f ,,= g= 0, 
were obtained by the author earlierc6] by another meth- 
od, by starting from the conservation laws. 

The last equation of (6) contains, under the sign of 
the derivative with respect to  time, besides the entropy 
also a comination of distribution functions; this corn-- 
bination constitutes the "combinatorial" (see Ref. 6)  
entropy of the fluctuations. In what follows it will be 
convenient to  carry out one more renormalization of 
the entropy, by including in i t  the combinatorial en- 
tropy. In addition, i t  i s  possible to replace in all the 
equations the distribution functions by their deviations 
6n, 6g, 8f ,, from the equilibrium values, since the 
equilibrium fluctuations can be incorporated in the 
definitions of the thermodynamic functions. As a re- 
sult, the equations take on the form 
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'p+p dir v=0, 

The acoustic-fluctuation distribution function satis- 
fiesC6I the usual Boltzmann equation 

where H = c q + q e v ,  y = ~ q + 5 + x ( l / c , - 1 / ~ p ) ,  C, is the 
specific heat per unit mass at constant volume, 7 and 5 
a r e  the first  and second viscosity coefficients, and x is 
the thermal conductivity coefficient. Putting tz= )z,, + 6n, 
where ~t,= ~ / c q  i s  the equilibrium distribution function, 
and linearizing the kinetic equation, we get 

where n=q/q. 

The time derivatives in the right-hand side of (8) can 
be expressed in terms of the space derivatives of the 
velocity with the aid of the linearized equations of an 
ideal liquid: 

aT ac 
p  ( )  i s  c - ~  (T) s divs. 

The nonequilibrium part of the acoustic distribution 
function is thus equal to 

PT am 6n(q)=-- cq yq2-ip(o-cnk) {cn~~+n.~-+(p-p)divr),  T 
axi 

(9) 
where cp = (p/c) (ac/ap),, q = ( p l ~ )  (aT/ap),, and w and 
k a r e  the frequency and wave vector of the considered 
hydrodynamic motion. 

A kinetic equation.for the entropy distribution func- 
tion g ( g )  was derived in the Appendix of the paper by 
~ e i e r o v i c h  and the authorc8] from the general theory of 
hydrodynamic fluctuations. c93 If we a re  interested in 
the linearized equations this kinetic equation can be 
written in the form 

where x = d p c p  i s  the thermal-conductivity coefficient. 
The equilibrium function i s  equal to cdp.  From this 
we get, by the same method a s  above, the nonequali- 
brium part of the entropy distribution function: 

bg(q)=- ( -- c p  ) dir r. 
2xq2-io. ap p 

(10) 

The distribution function of the vortical fluctuations 
satisfy the equation 

from which we get the nonequilibrium part 6f a,: 

Substitution of (9) in, say, the last  equation of (7), 
produces under the divergence sign, in particular, an 
integral of the form 

This integral diverges a t  large q, while the differ- 
ence I,(w, k) -I,(O, 0) i s  finite. The quantity I,(O, 0) 
determines the contribution of the acoustic fluctuations 
to the heat flux in the presence of a temperature 
gradient that is constant in space and in time, i.e., 
the contribution to the static thermal-conductivity 
coefficient. It is clear that the regularization of the 
diverging integral should consist of a renormalization 
of the thermal-conductivity coefficient and of sub- 
traction of i t s  value at k= w = 0 from the integral. It 
i s  easily seen that all the diverging integrals obtained 
by substituting Eqs. (9)-(11) in the equations of (7) 
can be regularized in similar fashion by renormalizing 
the static kinetic coefficients 7, 5, and x ,  

As a result we obtain the following final equations: 

which a re  written in a form that makes clear the con- 
tributions of the fluctuations to the momentum and heat 
fluxes. 

The tensors U T ~ ~ ~ , , , ,  Uwik, a,,, and Pi,, a re  defined by 
the formulas 
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f , = ( I + ~ k / o ) " ' ~ - ( 1 - ~ k / ~ \ ~ ~ ' .  

A part  of the corrections to hydrodynamic equations is 
thus equivalent to the appearance of dispersion (tem- 
poral and spatial) of the kinetic coefficients, In addi- 
tion, the expressions for  the heat flux acquire t e rms  
with velocity gradients, and correspondingly terms 
with temperature gradients appear in the momentum- 
flux tensor. The value given above for the ratio of the 
tensors o,,, and Pi,, agrees with the principle of sym- 
metry of the kinetic coefficients. 

3. The obtained equations can be used to calculate 
the low-frequency sound dispersion in liquids. From 
(12) we can readily determine the correction terms for 
the phase velacity of the sound c(w) and for i ts  damping 
r(w). Without dwelling on the simple calculations, we 
present the final result: 

where + is a dimensionless quantity equal to 

The relative corrections to the speed of sound and to 
the damping are thus proportional respectively to w3/ 
and w1I2. 
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Phase transitions in cholesteric liquid crystals are considered. A phase diagram is derived which makes it 
possible to explain the existence of intermediate phases in a narrow region between the uniform isotropic 
(UI) phase and the spiral phase. The critical phenomena are investigated in the light of experiments on the 
supercooling of the UI phase. 

PACS numbers: 64.70.E~ 

1. INTRODUCTION As will be shown below, these anomalies agree quali- 

The critical properties of cholesteric liquid crystals 
(CLC) in phase transitions from the uniform isotropic 
(UI)phase to the spiral  phase have anumber of important 
differences from the critical properties of other sys- 
tems. A number of experimentalc1-41 and t h e o r e t i ~ a l ' ' * ~ - ~ ~  
papers havebeendevoted tothe study of thephase trans- 
itions in CLC, but some pertinent problems are still far 
from being completely solved. In particular, the natural 
supercooling of the UI phase observed in Ref. 4 and the 
anomalies in the temperature dependence of the pre- 
critical scattering of light require deeper investigation. 

tatively with the predictions made in Refs. 7 and 8, and 
with a more complex experimental investigation it ought 
to be possible to pose the question of the quantitative 
comparison of the theoretical and experimental results. 

The theory developed in Refs. 7 and 8 predicts a dis- 
continuous transition to the spiral  phase, occurring in a 
region of substantial manifestation of critical anomalies 
due to the effect of critical fluctuations. The alternative 
is the formation of a planar lattice of spirals, with a 
triangular structure.rg1 In the experiment of Ref. 4 a 
discontinuity was observed only in the transition from 
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