
Let V(0) = 0 and V(1) = - &J; we then have from (4 7) 

l=Co+C,, e-PJ--Co-llsC,; 
exp {v(O)) =?Co=1+3e-PJ, ' exp {V ( I ) )  ='/,CI-'l-e-DJ, 

Using these expressions we get from (26) 

The critical temperature i s  

$<=I-' In 3. 

From (46) and (50) we easily obtain 

Z ( p )  =['lZ(1+3e-9') 12"Z($*). (5 3) 

w e  note in conclusion that tne models 2 0 2 ,  and 2DT 
are  equivalent to Potts models of the f i rs t  type (see 
Sec. 1) with N =  3 and 4. For these models the phase 
transition point is  known from other transformations 
of the partition function (see Refs. 6 and 20) and co- 
incides with the results (34) and (52) obtained here as 
a result of the self-duality of these models. 

I wlsh to thank A. M. Polyakov for proposingvthe pro- 
blems solved here,  a s  well a s  V. L. Pokrovskii for 
useful discussions. 
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It is shown that besides the three propagating "acoustic" modes predicted by Halperin and Saslow (Phys. 
Rev. B 16, 2154, 1977) there exist in spin glasses also localized zero-gap degrees of freedom connected 
with a system of uniformly distributed discliiations. In this connection, the Poisson-bracket method is 
used to derive nonlinear equations of motion, which generalize the linearized version presented in a 
preceding article by the authors [J. Phys. (Paris) 39, 693, 19781. The cited version of spin-glass 
description is furthermore extended to other systems and it is shown that it is in fact a variant of the 
renormalization-group method of Kadanoff and Wilson. 

PACS numbers: 75.25. + z 

1. INTRODUCTION cp(x,) in the "isotopic" space of the spin directions. 

We have recentlyc'] constructed a microscopic spin- 
glass theory wherein the spin glass i s  represented as  
consisting of balls of dis'clinations in a spin system, 
which a re  entangled in a complicated and disorderly 
manner (something recalling a dish of spaghetti). We 
have arrived a t  this picture by starting from the micro- 
scopic "frustration" concept1' developed to  apply to 
spin glasses by ~ o u l o u s e ~ ~ ~  and Villain. c31 We have 
shown that at the microscopic level such a magnet can 
be described by specifying at each point of space x a 
coordinate frame rigidly connected to a disclination 
ball located a t  this point, a s  well a s  a continuously dis- 
tributed macroscopic disclination density. The orien- 
tation of the coordinate frame secured a t  the point xi 
is specified in natural fashion by i ts  rotation angle 

To describe the disclinations we introduce (see Ref. 
I ) ,  in analogy with dislocation theory (see, e. g. , Ref. 
4), the quantity b,. If the macroscopic disclination 
density i s  zero, then b, = acp/8x,, s o  that the disclina- 
tion density i s  (in the linear approximation) 

where e,,, i s  a unit antisymmetrical tensor. In analogy 
with the theory of plastic flow in elasticity (see, e. g., 
Ref. 4) we introduce also the disclination flux 

A characteristic feature of the microscopic spin- 
glass theory based on the "frustration" concept i s  the 
use of local discrete invariance (LDI) of the exchange 
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forces. The LDI concept was introduced in the theory 
of spin glasses by Mattis (the so-called "Mattis mod- 
elmc5]). Its gist is (for more details see, e.g., Ref. 
1) that the spin-system energy remains unchanged if 
we reverse simultaneously in the Heisenberg Hamil- 
tonian the sign of one of the spins of the system and 
the signs of all the exchange integrals that connect this 
spins with all i ts  neighbors. We have shownc'] that at 
the macroscopic level the place of the LDI is taken by 
local exchange invariance (LEI). The LEI i s  in essence 
a localization of the continuous SO, group-the symme- 
try group of the exchange interaction. To realize the 
LEI i t  i s  necessary to introduce the so-called Yang- 
Mills fieldsL6] (see also Ref. 1). It was shown that the 
corresponding Yang-Mills fields a re  the already men- 
tioned quantities bi and the field a, which coincides in 
the linear approximation (see below) with acp/at. 

Since the LEI i s  the result of localization of the non- 
Abelian group SO,, the simple linear relations (1) and 
(2) for the density and flux of the disclinations, which 
a re  literal replicas of the formulas for the density and 
flux of dislocations, call for the nonlinear generaliza- 
tion['] 

ab* ab, 
e,rrpl  = - - - - a t ,  ax, 

[bixb,l. 

In the absence+of disclination density and flux, it 
follows directly from (3) and (4) that 

A description of spin glass in terms of the angle 9 in 
this last case was presented by Halperin and Saslowc7] 
and also by Andreev. [*I They constructed a simple 
theory of the oscillations in such a system and showed 
that the excitation spectrum consists of three "acous- 
tic" modes with equal velocities. We, however,[ll have 
shown subsequently that the presence of a disclination 
current in the system transforms these oscillations 
into dissipative modes at large wavelengths. More- 
over, there are  weighty grounds for assuming that addi- 
tional "localized" zero-gap degrees of freedom exist 
in spin glasses besides the three Halperin-Saslow 
acoustic modes. This i s  directly indicated by results 
of a numerical calculation made by Walker and 
Walsted. C g l  An indirect confirmation of this same cir-  
cumstance can be the numerical experiment of Vanni- 
menus and Toulouse. [''I 

In the preceding paper['] we considered one of the 
possible mechanisms that lead to the appearance of 
additional zero-gap nonlocalized modes-the presence 
of a "quasi-long-range'' order or, a s  we called it, an 
"a primi long-range order." We shall show here that 
the nonlinearity of the equations of motion lead, even 
in the absence of long-range order, i. e. , for "simple" 
o r  "genuine" spin glass (see Ref. I ) ,  to the appearance 
of additional albeit localized zero-gap degrees of free- 
dom. 

In the conclusion we mention also one spin-glass 
model that i s  described macroscopically in the same 
terms of disclination density a s  the "frustrationu sys- 
tem. In addition, we discuss the physical meaning of 

averaging over the position of the impurities or  over 
the distribution of the exchange integrals, which a r e  
used in modern spin-glass theories. 

2. DlSCLlNATlON MODEL OF LOW-ENERGY 
LOCALIZED STATES OF SPIN GLASS 

Let us dwell in greater detail on the aforementioned 
numerical experiments. The numerical experiment 
of Vannimenus a n d ~ o u l o u s e ~ ~ ~ ~  has shown that the con- 
centration transition from the ferromagnet state to the 
spin-glass state takes place a t  that ferromagnetic- 
bond concentration (more accurately, a t  that "frustra- 
tion" concentration) a t  which the energy of the domain 
walls vanishes. The experiment i s  performed on a 
two-dimensional lattice of Ising spins. Extrapolation 
of the results of this experiment to a real  three-dimen- 
sional spin glass (it would be interesting to carry out 
an analogous numerical experiment on a three-dimen- 
sional lattice of Heisenberg spins) leads to the conclu- 
sion that in the spin-glass state there is vanishing of 
not only the energy of the topological domain wall (the 
singular surface obtained by reversing the spin direc- 
tions in one of the parts of the system separated by this 
surface), but also of the energy of a wall of nontopo- 
logical character. For example, i f  in one of the sys- 
tem parts separated by the wall all spins a re  rotated 
through the same finite angle rp, about some axis, then 
such a nontopological surface can terminate on a singu- 
l a r  line-adisclination. The energy per unit length of 
this disclination is proportional to 9: and can in prin- 
ciple be arbitrarily small. These disclinations there- 
fore contribute to the low-energy states of the spin 
glass, and consequently the production and motion of 
such continuously distributed disclinations must be 
taken into account in the hydrodynamic equations. 

A confirmation of this assumption concerning the 
low-energy states of spin glass can be discerned in the 
numerical experiment of Walker and Walsted. They 
considered a model of three-dimensional spin glass 
with a Ruderman-Kittel-Kosuya-Yosida (RKKY) inter- 
action. Starting with an arbitrary initial spin configura- 
tion, they gradually decreased the energy of the sys- 
tem in the searches of the ground state, rotating each 
spin in the direction of the field exerted on the spin 
by all other spins, and repeating this procedure. It 
was noted there that the energy-decrease process (or 
the dissipation) proceeded in two stages. The spin 
system went over a s  if to a quasi-equilibrium state, 
in which each spin was directed in practice along its 
molecular field. This was followed by further decrease 
of the energy, whereby each spin together with i ts  
own molecular field was inclined by a rather large 
angle. 

This can be interpreted in the following manner. 
Near the ground state of the spin glass there is a se t  
of stationary (or quasi-equilibrium) states; this se t  
is continuous in energy and in spin configuration. Each 
such quasi-equilibrium state can be represented a s  a 
ground state + a disclination system. In fact, if the 
disclination motion is hindered in the absence of dissi- 
pation (and we shall show subsequently that this is in- 
deed the case), then the aggregate of disclination 
constitutes the stationary state of the system. 
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3. HYDRODYNAMIC FUNCTIONAL OF THE SPIN- 
GLASS ENERGY 

We arrive thus at the problem of describing the hy- 
drodynamics of a system with continuously distributed 
disclination, with account taken also of the dynamics 
of the disclinations themselves. The nondissipative 
hydrodynamic equations of spin glass can be obtained 
by using the Poisson brackets for the variables b, and 
a ,  which enter in the effective Hamiltonian of the spin 
glass. Let us examine this Hamiltonian. 

We note first  that although the variable a i s  not the 
time derivative of the rotation angle q ,  since the sys- 
tem contains continuously distributed disclinations, 
none the less  this i s  locally the case. Therefore a is 
the local angular velocity of the spin system. Since 
the angular velocity is equivalent in i ts  action on the 
spin to a magnetic field, the system has in the non- 
equilibrium state a magnetization 

(where x is the magnetic susceptibility. The system 
of units i s  chosen such ti= y = 1, where y is  the gy- 
romagnetic ratio. ) The magnetization makes the fol- 
lowing contribution to the hydrodynamic energy of the 
system: 

Second, it i s  assumed that spin glass has a spin 
rigidity, i. e. , the energy system depends on the gradi- 
ents A,cp of the local rotation like ip,(~,cp)~. In the 
presence of a system of continuously distributed dis- 
clination, the rotation vector cp can no longer be in- 
troduced, in analogy with the impossibility of intro- 
ducing a displacement vector u, in elasticity theory 
if a dislocation distribution is present (see Ref. 4). 
In place of V,q we introduce the quantity b,, which 
plays the role of distortion in a solid. Since locally 
b, can always be represented a s  a gradient of a rota- 
tion angle, the dependence of the hydrodynamic Hamil- 
tonian on b, is the same a s  on V,q  in the absence of 
disclinations, We thus arrive at the following form of 
the hydrodynamic functional of the spin-glass energy: 

(in our earlier paper[ll we used the symbols h and p for 
the susceptibility ,y and the rigidity p,). 

It is  possible to add to the energy functional (7) high- 
e r  powers of i and b,, a s  well a s  terms that depend on 
the disclination density p,, but these terms either make 
a small nonlinear contribution, or a re  of the next order 
in the time and space derivatives, and add only small 
increments of nonhydrodynamic character to the hy- 
drodynamic equations. 

4. POISSON BRACKETS 

It is now necessary to determine the form of the 
Poisson brackets for the variables i and b, in the Ham- 
iltonian (7). The Poisson brackets for the components 
of the local-density vector of the spin angular momen- 
tum are  well known, viz. , 

{ia ( r ) ,  i' ( r l ) }  =-e=alil  (r) 8 (r-rJ). (8 

They can be obtained from the commutation relations 
for the components of the quantum-mechanical angu- 
lar-momentum operator, which go over in the classical 
limit into the Poisson brackets. The commutation 
relations can be used to derive the remaining Poisson 
brackets. 

To this end, we connected the variable b, with the 
spin f l u  density TI,. The spin flux density n, i s  ob- 
tained in standard fashion. A coordinate-dependence 
transformation of rotation through an angle Ilcp i s  
carried out in the Hamiltonian of the system, and then 

Under this transformation, the variables that enter in 
H a r e  transformed in the following manner: 

theref ore 

The commutation relations for the components of the 
spin flux density operator a re  easy to obtain. As a 
result we obtain in the classical limit the remaining 
Poisson brackets 

In the derivation of the last relation we have neglected 
terms of the type 

which a re  of high order in the gradients and introduce 
into the hydrodynamic equations small nonhydrodynam- 
ic increments of the same type a s  the increments due 
to the inclusion of terms with disclination density (of . 
the type const - p i )  in the hydrodynamic functional. The 
Poisson brackets (12) can be derived also without in- 
troducing the sp in - f lu  operator n,. In tact, we know 
the law that governs the transformation of the variable 
b, upon rotation of the spin system of coordinates (see 
(lo)), and consequently we known also the action of the 
rotation operator i on this variable. 

We note that although we used in the derivation of the 
Poisson brackets (12) and (13) the concrete form of the 
Hamiltonian (7), actually they do not depend on the form 
of the Hamiltonian. 

5. EQUATIONS OF MOTION 

Using the Poisson brackets (8), (12), and (13), we 
obtain the following hydrodynamic equations in the 
absence of dissipation: 

As seen from ( l l ) ,  Eq. (15) represents the vanishing 
of the disclination flux density (4), i. e., the disclina- 
tion flux can be only dissipative. Thus, in the absence 
of dissipation Eqs, (14) and (15) have stationary solu- 
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tions with arbitrary pi(r), i. e. ,  with arbitrary distri- 
bution of the disclinations. This means that there 
exists a set, continuous in energy and in spin configu- 
ration, of stationary states near the ground state, 
where pi = 0, a s  is indeed confirmed by the numerical 
calculation of Walker and Walsted. In addition to 
this degree of freedom, for each disclination distribu- 
tion pi(r) there a re  the three acoustic spin-wave modes 
obtained in Refs. 7 and 8. The spectrum of these 
waves 

does not depend on ~ , ( r )  (if p, i s  independent of P,). 

We consider now the influence of dissipation. As 
already shown,cll the main contribution to dissipation 
is made by the dissipative disclination flux - Zxb,. 
We write out Eqs. (14) and (15) and take into account 
simultaneously this term and the external magnetic 
field. For this purpose we must add to the energy 
functional the term 

We obtain 

We note that in a magnetic field the spin density i 
is connected with the vector a by the relation 

i=x(a+H) (19) 

rather than by the relation (6). 

Becuase of the dissipative disclination flux - Zxb,, 
the states with disclinations relax in accord with the 
law 

ap,iat=-2xp,, (20) 

and the acoustic modes a re  transformed in the long- 
wave limit (in the absence of a magnetic field) into 
diffusion modes (see Ref. 1) 

In a magnetic field we have 

6. MODEL OF "ANTIFERROMAGNETIC" SPIN GLASS 

In our preceding paperc1] we considered two spin- 
glass models that could be macroscopically described 
in terms of Yang-Mills fields b, and a-a Heisenberg 
lattice with random exchange integrals (lattice with 
"frustration") and an alloy with RKKY interaction be- 
tween the magnetic impurities. 

There is one other example of this kind, viz., a 
classical two-sublattice antiferromagnet in which "frus- 
tration" i s  reached not by introducing into the lattice 
randomly disposed bonds with ferromagnetic sign, but 
by purely mechanical disturbance of the lattice, i.e., 
by introducing dislocations into the lattice. The point 

is, a s  shown by one of us,c111 any dislocation in a two- 
sublattice') antiferromagnet is automatically a dis- 
clination for i ts  spins. If the number of dislocations 
and of the disclinations generated by them is macro- 
scopically large, then, averaging a s  before over the 
volumes that contain a sufficiently large number of 
disclinations, we again arrive a t  a description of mat- 
ter  in terms of the fields b, and a, and perhaps in 
terms in antiferromagnetic quasi-long-range order 
(cf. Ref. 1). 

This mechanism is remarkable also because it 
constitutes a well defined and controllable continuous 
(as a function of the dislocation density) transition 
from a perfect atomic and magnetic crystal into 
atomic and magnetic glass (an amorphous magnet). 

7. CONCLUSION 

One final remark. The universally accepted method 
of solving spin-glass problems4) is to perform the cal- 
culations in two steps. The standard statistical-me- 
chanics problem is f i rs t  solved a t  a fixed realization 
of the disposition of the magnetic impurities o r  of the 
signs and magnitudes of the exchange integrals. Only 
then i s  the f ree  energy averaged over the different 
realizations (see e. g o ,  the principal papers on spin- 
glass theoryc13]). A duality of this kind was always 
somewhat unsatisfactory, since, on the one hand, we 
always expect "self-averaging" to take place in one 
manner or  another in a correctly formulated theory; 
on the other hand, both theory and experiment deal with 
a sample in which one definite realization is actually 
significant. 

Here and in our earlier paperc1] we have adhered to 
another method, which i s  in fact the renormalization- 
group method in the Kadanoff-Wilson form. The point 
is that the physically conceivable realizations of the 
disposition of the magnetic impurities in the alloy and 
of the signs of the exchange integrals, o r  the dislocation 
distribution, a re  always such that the sample a s  a 
whole remains macroscopically homogeneous. There- 
fore, by starting with some definite realization and 
carrying out the Kadanoff -Wilson renormalization 
procedure, i. e. , integrating over ever increasing 
volumes, we obtain a t  some stage a spatially homo- 
geneous system whose energy is described by a Ginz- 
burg-Landau-Wilson functional that depends on a cer- 
tain number of relevant and irrelevant fields. 

The choice of the relevant fields depends, of course, 
on the author's intuition and understanding of the physi- 
cal and microscopic essence of the phenomenon. In 
particular, in choosing a s  the relevant variables the 
Yang-Mills fields b, and a, we started with the mi- 
croscopic "frustration" concept discovered by Toulouse 
and Villain. c2* '3 In addition, we included in considera- 
tion the ferromagnetic o r  antiferromagnetic types of 
the long-range order. 

For spin glasses, unfortunately, this process, while 
explaining their low-temperature behavior, is not very 
useful when it comes to phase transition. The point is 
(see, e. g., Ref. 1 and the bibliography therein) that 
spin glasses, in the sense of a phase transition, consti- 
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tute  e i ther  a case of a lower marginal  dimensionality, 
or else the i r  dimensionality is even lower than the 
or iginal  one. In these  situations the Wilson approach 
yields  pract ical ly  nothing if it is necessary  t o  resort 
to exactly solvable models. 

In conclusion, it is o u r  pleasant  duty to thank Walker  
and Walsted f o r  kindly supplying the r e s u l t s  of t h e i r  
numerical  experiment. 

 his term was apparently introduced by Anderson for the de- 
scription of the situation in spin glasses (see, e.g., Ref. 2). 

)We use in this article vector symbols P, bi, pi, and others 
only for vectors in "isotopic" spin space. For the projec- 
tions of these vectors we always use Greek superscripts: 
qu, b i ,  etc. Latin subscript always denotes Cartesian coor- 
dinate, xi = X ,  y, Z. The fact that in our theory the Latin and 
Greek indices a r e  never mixed means that the interaction is 
of the exchange type. 

3'Dislocations actually generate disclinations in the spin sys- 
tem of not only the simplest two-sublattice antiferromagets, 
but also of many-sublattice magnets, such a s  U02 (see, e.g., 
Ref. 12). 

')Actually all the statements that follow hold also for any prob- 

lem with random distribution of the impurities o r  with ran- 
dom bonds. For  the sake of argument, however, we speak 
here of spin waves. 
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Antiferromagnetic resonance was investigated experimentally in the temperature interval 150-320 K and 
in the wavelength range 4.5-1.5 mm. It is shown that the experimental results, are described by two 
different formulas for T< TM = 260.9 K and T> TM. The experimental results are used to calculate the 
temperature dependences of the two uniaxial-anisotropy constants within the framework of the generally 
accepted premises concerning the magnetic properties of a-Fe,O,. 

PACS numbers: 76.50. + g 

Hematite ( a -  Fe203) i s  an ant i ferromagnet  that can one-ion contribution i s  about 7 kOe. It mus t  be empha- 
have a weak f t r romagnet ic  moment because of the s ized  that t h e  magnetodipole and one-ion contributions 
Dzyaloshinskii interaction.['' Even though hemati te  are of the s a m e  sign. 
has  at t racted the  attention of many invest igators  ( see  

According to the accepted p r e m i s e s ,  ['I the thermo- 
the reviewc2'), many of i t s  important  p roper t i es  r e -  

dynamic potential of a- Fe203 can  be expressed  in the 
main unclear  to  t h i s  day. In par t i cu la r ,  w e  d o  not know 

formc1] 
the mechanism whereby anisotropy constant,  as a 
function of t empera ture ,  a c q u i r e s  a n  anomalous be- O=2hio[1/2EM2-1/2A,L12-1/~A2Lz4-D (JizLy-MvLx) ], 
havior that l eads  to  a phase t ransi t ion f r o m  a e a s y  

(1) 

ax is  s t a t e  into a n  easy  plane s tate .  Nor can  w e  ex-  
where  M =  (MI+ h!4)/2M0, L = (MI - M,)/~M,, M, and 

plain the extremely small anisotropy constants  & a r e  the  sublattice magnetizations, M;= M:= M:. 
(~0.2 kOe) that follow f r o m  the prevailing theoret ical  

For homogeneous s m a l l  oscillations of the magnetic 
p r e m i s e s  concerning the magnet ic  p roper t i es  of 

s y s t e m  about the  equi l ibr ium value we can calculate  
a- Fe203. 

the frequencies  (see, e.g., Ref. 2) of the antiferromag- 
F r o m  the dipole energy calculated by Arman et  al.c31 netic resonance (AFMR) f o r  the  low-temperature 

i t  follows that the dipole field i s  approximately 9 kOe; ( T  < T, = 261 K, L, #0) and high-temperature (T> T,, L, 
according to data  on the E P R  of E'e3' i n  a-A1,03, the =0) s ta tes :  
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