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A duality transformation is proposed for gauge and non-gauge Abelian A, models (generalization of the 
Ising model, the field assumes N discrete values on a circle) to include two-, three-, and four- 
dimensional cubic lattice. Besides the known cases of self-duality of the Ising model ( A ,  model) in two 
and four dimensions, an entire series of self-dual models is found (particularly the Z, and Z, self-dual 
models), and accordingly, the phase-transition points for them. A duality transformation is also proposed 
for the simple case of a discrete non-Abelian model (the symmetry group is the group of symmetry axes of 
the tetrahedron). The model turns out to be self-dual and accordingly the dual transformation makes it 
possible to find the phase-transition point. 

PACS numbers: 05.50. + q 

1. INTRODUCTION. DESCRIPTION OF MODELS two different phases (for the Ising model this i s  

It i s  well known that the two-dimensional (20) Ising 
model has a definite thermodynamic symmetry, as 
established by Kramers and wannier.[ll The gist of 
this symmetry i s  that the partition function Z(@), as a 
function of the reciprocal temperature @= 1/T, i s  in- 
variant (apart from an inessential factor) to the trans- 
for mation 

which converts low temperatures into high ones and 
vice versa. The values of Z(@) a t  the points @ and @* 
are connected by the relation 

where 52 i s  the number of lattice points. One of the 
possible proofs of (2) can be found, for example, in 
~ s i h a r a ' s  bookc2' The qualitative form of (1) i s  shown 
in Fig. 1. From (2) i t  follows that the thermodynamic 
properties of the high-and low-temperature phases 
a r e  symmetricaL 

obvious: ordered and disordered phases), then i t  
follows from symmetry considerations that /3, i s  a 
phase-transition point. Thus, the Kramers-Wamier 
(KW) symmetryu' has made i t  possible to obtain the 
phase-transition point for  the 20 Ising model before an  
exact solution has been found for the model of Ref. 3. 

The partition-function transformation whereby Z(@) 
i s  expressed in terms of Z(p*) i s  called a duality 
transformation. The property of the Ising model, that 
i t  goes over into itself under this transformation, i s  
called self-duality. The initial derivation of (2) was 
based on comparison of Van d e r  Warden graphs of the 
expansions of the partition functions of the initial and 
dual models.[" The KW symmetry (self-duality) i s  
actively used in investigations of the Ising 
Kadanoff and cevac5' investigated the physical meaning 
of the duality transformation, introduced the concept 
of the disorder parameter, and established that the 

In the reciprocal-temperature scale, there i s  a 
preferred point defined by the condition P* = @. 
From (I) we have 

If we assume that there i s  only one phase-transition 
I--;-- 

0 I 

point, or ,  which i s  the same, that there a r e  only BC B 

FIG. 1. Schematic plot of 
the function o* = - (1/2)ln tanhp. 
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duality transformation of the Ising model i s  a transition 
from the order parameter to the disorder parameter. 

In the study of phase transitions, i t  i s  of interest to 
generalize the Ising model. ~ o t t s ' ~ '  considered 
stochastic models in which, in contrast to the Ising 
model, the field variable cp (the order parameter) 
can assume N different values. Two types of different 
models were proposed, in which the field i s  specified 
a t  the lattice points and only nearest neighbors inter- 
act: 

1) the field takes on N different values, and the 
neighbor interaction energy takes the form 

2)  the field assumes on a circle N discrete values 
cp= 2 n n / ~ , n  =0,  1, 2, .  . . , N - 1, and the interaction 
energy u(cp,, cp,) depends on the angle between the 
points cp, and cp,. 

The first  model is calledt7' the Potts model proper, 
and the second the Potts vector model, since the field 
variable in this model can be taken to be a two-dimen- 
sional unit vector. 

Using the KW method, Potts found the phase-tran- 
sition point for the model of the f i rs t  type at any N.'~' 
For the vector model, the same method was used to 
obtain the phase-transition point for N = 3  and 4. 
Mittag and ~ t e ~ h a n ' ~ '  investigated duality transforma- 
tions for the Potts model a t  any N in the transition- 
matrix formulation. It i s  interesting to note that, a s  
shown by S~zuki , '~ '  the vector Potts model with N= 4 
breaks up into two independent Ising models and can 
thus be solved exactly. 

It turns out that from the more general point of view 
the duality transformations constitute a Fourier trans- 
formation f$r the field variables. Using this approach, 
Berezinskii 19' was the f i rs t  to effect the duality trans- 
formation for a planar XY model (the field takes on 
continuous values on a unit circle) (see also Ref. 10). 
In this paper we apply this approach in succession to 
various models. For Abelian models on a lattice, 
with a field that takes on values a t  discrete points on 
a circle, the duality transformation i s  very simple to 
perform, by a single method, for any N and for any 
potential of the neighbor interaction. 

In field theory one considers gauge statistical models 
on a lattice; these models constitute a lattice formula- 
tion of the theory in Euclidean space-time. The first to 
introduce such a model was ~ i l s o n [ ~ '  In Abelian 
lattice gauge theory, the field variables takes on values 
on a circle. It i s  of interest to study Abelian models 
with a field that takes on discrete values on a circle. 
Balian et investigated the simplest particular 
case, in which a field specified on a cubic 40 lattice 
takes on only two values, i 1  (the Ising gauge model). 
This model, just a s  the usual Ising model on a quadra - 
tic 2 0  lattice, i s  self-dual and has the same phase- 
transition point. 

As already noted, the duality transformations for 
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%%a% FIG. 2. The field cp speci- 
fied at the points of a 
quadratic 2 0  lattice takes 
on N discrete values cp, 
=2rn/N, n =0,1,2 ,..., N 
-1 on the unit circle. 

Abelian models a re  effected by a single method. For 
the Fourier transformation in the field variable, to 
which the dual transformation equivalent, an important 
role i s  played by the form of the space on which the 
field variable takes on i t s  values. This is why the dual 
transformation is effected in the same way for both 
gauge and non-gauge Abelian models, regardless of the 
dimensionality of the lattice on which the field i s  
specified. 

We now define the Abelian models considered in this 
paper. 

The 202, model. The field p(x) i s  specified a t  the 
points of the quadratic 2 0  lattice and takes on N dis- 
crete values on a circle: cp = 2 r n / ~ ,  n = 0, 1, . . . , - - 
N- 1 (the Potts vector model), see  Fig. 2. The 
Hamiltonian i s  

H = - C V ( ~ ( ~ ) - - ~ ( ~ + & ) ) .  
=.a 

Here x i s  a 2 0  vector an_d 5uns over the points of the 
2 0  lattice; a= 1, 2; 6=l ,  2 a r e  the elementary lattice 
vectors; V i s  the potential of the neighbor interaction. 
The model has a global Abelian discrete symmetry 
group Z, (group of simultaneous discrete rotations of 
the field variable over the entire lattice through angles 
that a r e  multiples of 2 n/N). 

The 4DGZN model. The field B(x),, specified on the 
edges of a cubic 4 0  lattice (or the vector field specified 
a t  the lattice points) takes on N discrete values on a 
circle. The Hamiltonian i s  

where 

~ ( x ) , ~ = B ( x ) , + B  (x+i).-B(x+~).-B(x).=~,B ( x ) . - ~ , B ( x ) ,  

is the curl  of the field over the 2 0  unit face (x, p v ) ;  
= 1, 2, 3, 4 (see Fig. 3). The model has a local Abe- 
lian discrete symmetry group 2,. We note that in the 

FIG. 3. Curl of the field 
B k ) ,  specified on the edge 
edges of the lattice, over 
the 2 0  elementary face 
( x ,  P V ) .  
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gauge model with a lattice the energy i s  accumulated 
actively over the curls of the field on the 2 0  unit faces. 
For more details see ReE 11. 

The usual and gauge models a re  analogously defined 
for a cubic 3 0  lattice. 

The 302, model. The Hamiltonian is 

The 3DGZN model. The Hamiltonian i s  

Here x runs over the sites of the 3 0  lattice; i =  1, 2, 3. 

The generalizations of the Ising model were dis- 
cussed above a s  interesting objects for the model study 
of the physics of phase transitions. The 202, models, 
however, can have also more concrete applications. 
For example they can serve a s  models of layered 
magnetic crystals with anisotropy in the layer z , ~ ~ ~ * ~ ~ ~  
It turns out that a t  sufficiently low temperatures the 
isotropic 2 0  system (the order parameter takes on 
continuous values on a circle) i s  unstable to weak 
anisotropy-see Ref. 14 and 10. Inasmuch anisotropy 
i s  always present in a real  crystal, it follows that at 
low temperatures an isotropic system i s  transformed 
into the discrete model 202,. For  a layered mag- 
netic crystal with sufficiently strong anisotropy the 
202, model i s  a good one in a wide range of tempera- 
tures. Alexanderc151 discusses also a realization of 
the 202, model in a 2 0  layer of atoms absorbed on 
the surface of a crystal with hexagonal lattice. 

We turn now to the gauge models 4DG2,. It i s  pro- 
posed in very recent that the subgroup of 
the center of the SU(N) group, i.e., of the 2, group, 
plays an important role in the problem of quark con- 
finement. It i s  proposed in ReE 17 that the mechanism 
of quark confinement can be understood by studying 
gauge 2, theories. The same paper introduces order 
and disorder operators that go over into each other 
under duality transformations. In the gauge theories 
the phase transition i s  with respect to charge, and 
the different phases a re  the phase with quark confine- 
ment and the phase in which the quarks a re  free. 
Knowledge of the phase-transition point in gauge 
theory provides us  with a knowledge of the critical 
charge that separates the quark confinement and non- 
confinement phases. 

The significance of the duality transformations lies 
in the fact that they can reveal a deep internal sym- 
metry of the investigated model, or equivalence, on 
the face of it, of different models. In those cases when 
the model i s  self-dual, the transformation makes i t  
possible to find the phase-transition point. 

Briefly speaking, the results of the transformations 
for the Abelian models discussed above consist in the 
fact that the models connected by duality t r ans forms  
tions a re  

(we note that this still does not mean self-duality, ' 

since the initial and dual models have in general dif- 
ferent interaction potentials V), and 

Concrete examples of self-dual models have been 
found. In particular, the gauge models 4DGZ3 and 
4DG2, a r e  self-dual. 

As already noted, from the formal point of view a 
duality transformation i s  a Fourier transformation for 
field variables. Of fundamental significance to the 
transformations i s  the type of the space on which the 
field assumes i t s  value. The situation is simple in the 
Abelian case with a field that takes on values on a 
circle. For the non-Abelian model the Fourier trans- 
formation i s  of much more complicated form. For 
example, if the field takes on values on a sphere, then 
the harmonics for the Fourier expansion a re  spherical 
functions. In the last sections we make a f i rs t  attempt 
a t  a duality transformation for a non-Abelian model 
using the following simple example: 

The W T  model. The field i s  specified a t  the points 
of a quadratic 2 0  lattice and assumes four discrete 
valus on a sphere at points u1, t t , ,  u,, and u,, which 
the vertices of a tetrahedron inscribedin the sphere 
(see Fig. 4). The Hamiltonian of the model 

has a symmetry corresponding to the group of sym- 
metry axes of the tetrahedron T, i.e., i t  has a global 
non-Abelian discrete symmetry group. Using the 
terminology of group theory we can state that the field 
takes on values on a homogeneous space T/Z, (the T 
group factored in terms of the subgroup 2,); the 
Hamiltonian is invariant to motions of this space. The 
model is  self-dual, and the phase-transition point i s  
obtained. 

2. GENERAL SCHEME OF DUALITY 
TRANSFORMATIONS 

It can be stated briefly that a duality transformation 
i s  a Fourier transformation for the field variables. 
What i s  being transformed i s  in fact the partition func- 
tion of the field. We demonstrate f i rs t  the transforma- 
tion with a simple example of a 2 0  Abelian model (fol- 
lowing Ref. 10). 

Consider a field of unit vectors n(x) distributed over 
the points of a quadratic 2 0  lattice and capable of being 
rotated only in a plane. The rotating vector n(x) de- 
scribes a circle, so  that the field variables must be 

FIG. 4. The field n of the 2 DT model takes on values at four 
discrete pints on the sphere: at the vertices of a tetrahedron 
inscribed in the square. 
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taken to be the points of this circle, identified by the 
rotation angle p(x). The field Hamiltonian 

contains only the nearest-neighbor interaction (as  is 
the case for all the models considered in this paper) 
and i s  invariant to uniform rotations of the vectors 
n(x) over the lattice. 

We carry  out in the partition function 

a Fourier transformation in the variables cp(x). The 
field cp takes on values on a circle, so that functions 
of cp can be expanded in Fourier ser ies  in elementary 
harmonics of the circle 

exp {iScp) , S=O, f l, f 2, . . . 

In particular, each Gibbs factor e x p { ~  (cp, - pz)) can be 
represented in the form 

Here 

1 2= 

exp(V ( S )  )= - 5 dq exp(V (cp) - isq) .  
2* 0 

We substitute the expansion (5) in (4) and integrate 
over the field cp. The_result is the partition function 
for the field S(x, x +  a), specified on the edges con- 
straints of the square lattice and taking on integer 
values: 

The constraints 

S(X-2 ,  2 )  - S ( r ,  X+ i) +s(x-2,  r )  -S(r ,  ~ + 2 )  =O 

appeared in the summation over the field cp and have 
the meaning of the vanishing of the divergence of the 
field S. They can be easily resolved by representing 
the field on the edges in the form of the curl  of a new 
field specified a t  the points of the dual lattice: 

Here c,, i s  an antisymmetrical tensor. The definition 
of the dual lattice i s  given in Fig. 5. To  simplify the 
formulas, we shall omit the asterisks of the subscripts 
pertaining to the dual lattice. It must therefore only 
be remembered that the subscripts of the initial field 
pertain in the initial lattice and those of the dual field 
to the dual lattice. 

Substituting (7) in (6), we obtain the partition function 
for the dual field s(x), specified in the points of the 
dual lattice and taking on integer values on a straight 
line: 

FIG. 5. Definition of the 
dual lattice and of its el- 
ementary vectors. 

The transition from (4) to (8) i s  an example of the 
duality transformation From a more general point 
of view, if the calculation of the partition function i s  
taken to mean the evaluation of a functional integral 
over the field, then the duality transformation i s  a 
generalization of the operation of going over to Fourier 
variables under the integral sign to include the func- 
tional case. 

The actual transformation is ,  of course, different in 
each concrete case. For Abelian models with a field 
that takes on values on a circle (as  e.g., in the 
example above), the transformation is relatively easy 
to perform. The field-variable functions a re  expanded 
in the harmonics of the circle exp{i~cp} and the series 
have the usual simple form. It i s  also easy to inte- 
grate with respect to the initial field cp after the expan- 
sion. The resultant constraints a re  simple 6 functions 
and can be easily resolved. The situation is much 
more complicated in non-Abelian models. For 
example, if the field takes on values on a sphere unit 
vector n rotating in three dimensions), then the 
Fourier expansion is now in the harmonics of the 
sphere, i.e., in the spherical functions Y , ,  (n). The 
dual variables a re  the fields a re  in this case the in- . 
dices that label the spherical functions. 

For example, if in the example considered above n(x) 
rotates in three dimensions, then we must expand the 
Cibbs factor in Legendre polynomials, and these in 
turns must be expanded in spherical functions: - 

exp(V(n, ,  n , ) ) - x  c ,P,  (ar, n,) 
1-0 

Substituting this expansion in the partition function 

and integrating over the initial field n, we obtain the 
partition function for the field of the indices ( I ,  m), 
specified on the constraints of the square lattice: 

Xesp(V ( 1  ( x ,  % + a ) )  1. (9) 

Integration over the field n on each site gives rise to a 
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constraint that constitutes an integral of the product of 
four spherical functions (as against the simple 6 func- 
tions in the Abelian case): 

Whether these constraints can be removed by a redefi- 
nition of the field variables is presently unclear, yet 
unless this can be done the transformation yields no- 
thing, since the obtained partition function in terms of 
the variables ( 1 , m )  is of much more complicated form 
than in terms of the initial field variables n. 

This example of a model with a field that takes on 
values on a sphere i s  given here to demonstrate the 
difficulties that arise in duality transformations for 
non-Abelian models. In Sec. 5 we consider a simple 
example of a non-Abelian model in which this difficulty 
can be overcome. Even in this case the duality trans- 
formation i s  quite useful: a thermodynamic symmetry 
i s  revealed-the analog of the KW symmetry for the 
Ising model. 

To conclude the section, we describe the general 
scheme for duality transformations. Let the field 
v(x) take on values on a homogeneous space 0 with 
a group of motions G. (For the mathematical theory 
of harmonic analysis on homogeneous spaces see, e.g., 
Ref. 18). For example, for a planar n-field a homo- 
geneous space i s  a unit circle with a motion group U(1) 
o r  SO(2); for a three-dimensional n field, 0 i s  a unit 
sphere with motion group SO(3). 

Let the field Hamiltonian 

(we have in mind a lattice model with a nearest- 
neighbor approximation) be invariant to the motions 
of the homogeneous space 0, specified by elements of 
the group G. In the partition function of the field 

1") .,a 

the Gibbs weight exp {V(v,, t i , ) } ,  being a function on 
the space 0, can be expanded in elementary harmonics, 
i.e., in the orthonormal basis of a linear space (desig- 
nated L) of functions specified on a homogeneous space 
0. 

According to group theory, the complete se t  of har- 
monics i s  constructed in the following manner. Let 
T, be a representation of the group G in linear space L. 
It breaks up into irreducible representations T:' and, 
correspondingly, the space of the representation L 
breaks up into subspaces of irreducible representations 
L"). The functions of the bases of the subspace {L'") 
comprise the required set of harmonics for  the func- 
tions on the homogeneous space 0. 

If we have a complete set of harmonics constructed 
in this manner, we can expand the Gibbs factors 
exp(~(v, ,  v,)}and sum over the initial field v. The re -  

sult i s  a partition function for the sum of the indices 
that label the functions of the bases of the irreducible 
representations. The field of the indices i s  specified 
on the edges of the lattice. Summation over the initial 
field v at each lattice site yields a constraint for the 
values of the field of the indices on the edges adjacent 
to the given point. These constraints express the con- 
servation law connected with the invariance of the 
Hamiltonian to the motions of the homogeneous space 
0. We a r e  left with the usually unsimple task of 
attempting to resolve the constraints by redefining the 
field. 

3. DUALITY TRANSFORMATIONS FOR ABELIAN 
MODELS 

In this section we carry  out a duality transformation 
for the discrete Abelian models 2D2,, 3DZN, and 
4DGZN described in Sec. 1, 

The 202, model. The duality transformation for this 
model i s  a trivial generalization, to include the dis- 
crete case, of the transformation for  a planar n- 
field[g'lO' described in Sec. 2. In the partition function 

where 52 i s  the number of lattice poinfs, we expand 
each Gibbs factor exp{v(cp(x) - cp(x+ 0 ) ) )  in a Fourier 
series: 

We recall that in the 2, mode the field cp takes on 
discrete values on the circle cp= 2nn/N, n = 0, 1 ,  2, . . . , 
N- 1, and therefore the Fourier series for  functions 
of cp a r e  finite syms. The inverse Fourier transform 
i s  

It i s  obvious that exp{V(S)} is a periodic function of the 
whole-number argument S with a period equal to N. It 
can therefore be assumed that S takes on discrete N 
values onthe circle: S =  0, 1, 2, . . . , N - 1. Substituting 
(11) in (10) and summing over the field cp, we get 

The constraints S(x- i, x) - S(x, x +  i) +S(x- 2, x) 
- S(x, x +  %) = 0, which have the meaning of the vanishing 
of the divergence of the field S, can be easily obtained 
by representing the field S in the form of the curl  of 
the dual field 

(see Sec. 2). Substituting (14) in (13), we obtain the 
partition function for the dual fields s specified at the 
points of the dual lattice and having N discrete values 
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on the circle (s = 0, 1, 2, . . . , N - 1): 

Thus, the dual of the 202, model i s  the same model 
2D2,, but with an interaction potential f instead of V. 

The 302, model. Carrying out the expansion (11) in 
the parition function 

and summing over the field cp, we get 

The constraint 

is again resolved by substituting the field S in the 
form of the curl of a new field 

~ ( 3 ,  z+i) = ~ ~ ~ ~ a , s ( x ) ~ = = e ~ ~ ( s  ( ~ + j ) ~ - - s  ( z ) ~ ) .  (17) 

Here cijr is an antisymmetrical tensor and s(x), is  a 
dual field specified on the edges of the dual lattice. 
The definition of the dual lattice for the case of 3 0  
system (analogous to the 2D-lattice case) and of the 
field s(x), having the same vector spatial index a s  the 
fields on the lattice edges i s  shown in Fig. 6 (see also 
Fig. 3). 

We see that in the case of the 3 0  lattice we encounter 
a new important singularity-the dual field i s  of the 
vector type. The  intermediate (in the transf_ormations) 
field S(x, x + i )  specified on the edge ( x ,  x + i )  of the 
initial lattice i s  expressed in this case in terms of the 
curl of the field over the 20 face of the dual lattice 
perpendicular to the edge of the initial lattice-see 
Fig. 6. 

Substituting (17) in (16) we get 

FIG. 6.  Changeover from a field specified at the points (the 
energy is specified on the edges) of the initial 3D lattice to a 
dual field specified on the edges (the energy is specified on the 
2D faces) of a dual 3D lattice, i.e., 402, - 3DGZN. 

Here g(x),,= 8,s(x), - ajs(x), i s  the curl  of the vector 
field s, over the 2 0  face (.v, ij) (see Fig. 3, a s  well a s  
Fig. 3). The factor 1 / ~ "  in (18) cancels out the gauge 
degree of freedom of the field sf. The model dual to 
302, i s  therefore the gage model SDGZ, (a definition 
of a gauge model on a latticet"' i s  given in Sec. 1). 

The 4DG2, model. The partition function of the 
model is  

The curl  of the field f(x), = a,B(x),, - a,B(x), takes on 
the same discrete N values 2m/N on the circle. We 
can therefore use the expansion 

Substituting (20) in (19) and summing over the field 
B,, we get 

We next represent S(x),,, which i s  specified on the 2 0  
face (x, pv) of the initial lattice, in the form of the 
curl of the dual field over the 2D face of the dual 
lattice perpendicular to the 2 0  face of the initial 
lattice (it is  difficult to draw a figure for this case): 

Substituting (22) in (21) we get ultimately 

Here g(x), = 8,s(x), - ~ , , Z ( X ) ~  i s  the curl of the dual 
field over the ( x ,  MU) face. The factor l/Nn cancels 
the gauge degree of freedom of the field s,. 

We note in conclusion that continuous Abelian fields 
on a circle a r e  obtained as a particular case as N -  -, 
by making in the formulas the substitution 

etc. The circle on which the dual field s takes on the 
values 0, 1, 2,. . . , N- 1 i s  then transformed into a 
circle of infinite radius, i.e., into a straight line, 
and we obtain the ordinary Fourier series. 

4. CONCRETE EXAMPLES OF SELF-DUAL ABELIAN 
MODELS 

In the preceding section i t  was shown that the models 
202, and 4DGZN become their own duals if the inter- 
action potential V i s  replaced by v. For these models 
to be self-dual i t  i s  necessary that the excitation ener- 
gies of the initial and dual models a r e  the same. We 
introduce the natural definitions 

where cp,=2ns/~, ,9 i s  the reciprocal temperature, and 
u(cp) i s  the energy of the excitations, Self-duality 
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means that 

V (0) -V (s)-F(O) -V (m.). 

If this condition i s  satisfied, then can be chosen such 
that 

In this case 

where /3* is the temperature of the dual model and i s  
defined by the condition (25). 

We emphasize that the self-duality condition i s  (24). 
The potential V(s) is  determined by the Fourier trans- 
formation (12) and i s  obvious that the proportionality 
in (24) i s  possible only in particular cases. For the 
models 2, and 2, the condition (24) i s  always satis- 
fied, since there i s  only one value of the excitation 
energies. For the models 2, with N > 3 it  is  necessary 
to make a special choice of the interaction potential 
in order to satisfy (24). It turns out that the model 2, 
i s  self-dual with the natural interaction 

We present concrete results for the models Z,, Z,, 
and 2, with interaction (27). 

The 202, model. This model i s  cited here only to 
demonstrate the method with a well known example. 
In this case 

' z e x p { p c o s ( $ n ) - i $ n s ) ,  exp(V (s) 1- - 
2 

n-D.1 

exp {P (0)) -ch p, exp {V (1))  -sh a. (28) 

From (28), (27), and (26) we have 

v=-'/.ln th B. 

The phase-transition point Po i s  determined from the 
condition P* = 8: 

In (~2- t  i ) .  (3 0) 

From (10) and (15) we easily obtain 

z(B)=(sh2$)QZ($'). (3 1) 

The 202, model. In analogy with the preceding, we 
have 

exp ( 8  (0)) =I/, (ep+2e-"'), exp {V (1)) = ' 1 3  (es-e-Va). 

Next, 

From (10) and (15) we get 

The 202, model. Here 

exp {V (0)) -ch2($/2), exp {V (1)) -exp {V(3)} -ah (8/2)ch (9/2), 
exp (V (2)) =sha (p/2). 

For this case we have 

f=-ln th($/2). &=ln (vz+i ) ,  

Z($) -(sh B)zQZ(B'). 

For gauge 40 models everything i s  exactly similar, 
since the curls f(x), andg(x),, of the initial and dual 
models take on the s a p e  values a s  the ':two-dimension- 
a l  curls" cp(x) - cp(x+ a) and s(x) - s(x+ a) of the initial 
and dual 2 0  models (all that changes i s  the degree of 
the factor of Z(B*), 51 - 351). 

We write down the results in compact form: 

The 4DG2, model: 

The 4DG2, model : 

The 4DG2, nzodel : 

We present also an example of a 202, model (a 1 

4DGZN model similarly defined) that i s  self-dual for 
any N, but in which the parameter j3 does not have the 
meaning of the reciprocal temperature. Namely, if in 
a model with a Gibbs weight of the constraint 

i- 

e x p ( V ( ( ~ ~ - ( ~ ~ )  1- z e ~ p ( - ~ / , p  (cpl-cp2-2nm)z) (4 1) 

(the ~ e r e z i n s k i r  model, see Ref. 9) the field cp assumes 
"V discrete values cp,=2nn/N on a circle, then the model 
i s  self-dual. The Gibbs weight of the constraint of a 
dual model i s  given by 

where cp*=21rs/~ i s  the dual field, which also takes on 
N discrete values on the unit circle: 

The symmetry point relative to the duality transforma- 
tion i s  

BC=N/2n. (44) 

At j3>> 1 i t  is  possible to regard 8 as a reciprocal 
temperature to the extent that the following expansion 
i s  valid: 

We note that a t  any N the model (41) has only one 
special point 8, (44). As N - m, however, the model 
(41) goes over into the ~ e r z i n s k i r  isotropic modelc0' 
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(the field cp takes on continuous values on the circle) 
in which there i s  a singularity at B,," 1 (Ref. 9, and 
also 10, 14, and 19). In our case there i s  no such 
point for any N,  and 8,- .o (T, - 0)  a s  N - m. The 
following explanation can be offered for this situation. 

For any finite LV in a discrete model there i s  one 
phase- transition point (44). At P > PC there exists an 
ordered phase: 

and at /3< PC we have a disordered phase: 

The ordered phase vanishes in the limit as N - m and 
T, - 0. In this case, however, a new singularity ar ises  
a t  the point PC,- 1 ,  corresponding to a phase transition 
in the isotropic model. Namely, a singularity i s  pre- 
sent only in the limit a s  N - m ,  and does not exist for 
any finite N. 

We emphasize that we a r e  dealing here with a dis- 
crete 2, model to which a physical model with suf- 
ficiently strong anisotropy corresponds. If the 2, 
isotropy i s  weak, it i s  possible to reconstruct the 
SO(2) symmetry, and this leads to new singularities 
(see Refs. 10 and 14). We recall that in an isotropic 
model we have G ( x )  - 0 a s  I x  1 - m for  any P, but at 
/3> /3& the ccrrelator decreases in power-law fashion 
(Berezinskii phase), and a t  /3 <PC, the decrease i s  
exponential (see Refs. 9, 10, 14, 19). 

5. SIMPLE EXAMPLE OF DUALITY 
TRANSFORMATION FOR NON-ABELIAN MODEL 

The 2DT model was described in Sec. 1. We carry  
out here a duality transformation for this model, 
using the general scheme described in Sec. 2. 

The representation of the group T in a linear space 
of functions specified on a homogeneous space T/Z3 
(see Fig. 4) breaks up into a identity transformation 
with a basis function 

foo(u) = (I/?, 1/2, $12. */2) (45) 

(it i s  implied that f,(v,) = foo(v,) = f,(v3) = foo(v,) = 1/2) 
and a three-dimensional irreducible representation 
whose basis functions a r e  chosen to be 

f u )  = z ,  ' 2 ,  ' 2 ,  f,P(U) =(t/p, -1/*( I/*( 

f,*(u) - (l/z, -1/2, -'/z, Il2). (45') 

The complete set  of harmonics for the functions on 
T/Z, i s  

{f,, (u));  l=O, m=O; I=l ,  m = l ,  2, 3. 

In the partition function of the field 

Z = & E ~  . x ~ ~ v ( ~ ( ~ ) . ~ ( ~ + P I ) ~  (46) 
(01 =,a 

we expand the Gibbs weight of each constraint: 

esp(V(v , ,  v,) J =CoPo(ul, u,) +C,P, (c,, L.:). (47) 

Here 

FIG. 7. Differences of the dual field w, which take on four 
values; this corresponds to I = O  at  wi =wz and I = 1 and 
m = l ,  2, 3 at w r *  wz .  

The expansion in Po and P, and the expansions of Po 
and Pl in products of the functions f,,(v) i s  the analog 
of the expansion in Legendre polynomials and spherical 
functions. Next, 

where 

e s p  {f ( 0 ) )  = K O ,  esp {l* ( I ) }  ='I3C,. 

Since the model has symmetry with respect to mo- 
tions of the space T/13, it follows that V(v,, t~,) de- 
pends only on the distance between the point v, and v, 
(or on the absolute value of the angle between n, and n, 
corresponding to the points v, and 0,). Therefore 
V(z>,, u,) takes on two values (for v, and Y, on T / Z s ) :  

We substitute the expansion (47') in (46) and sum over 
the field v: 

FIG. 8. Configuration corresponding to the coefficient 

The statistical weight of the picture and of the coefficient is 
equal to unity. We note that one of the vectors, e.g., w(x 
+I*) must be fiied, since we cannot turn the configuration of 
the vicinity of a given lattice point completely independently 
of the neighbors. 
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FIG. 9. Configuration I 

corresponding to the coef- R \ A- FIG. ll. Configuration 
ficient corresponding to 

The statistical weight of I 

the picture and of the coef- 

I 
Statistical weight 3x  2  x  4. 

I ficient is 3x4.  I 

xf,,,,(,, . + , - , ( ~ ( 3 ) ) f l , , , ( ~ . ~ . 2 ,  ( r ( r  -1. a)) 
=&Cn( l ( x - l , ~ )  L ( Z . X + ~  L ( X - Z , Z )  - L ( Z , X + ~  

a ~ ~ t l x . a  m ( x - i ; x )  r n ( x , x + l ) r n ( x - 2 , ~ )  m ( x , x + . ) )  

xexp (f' ( I  (3 ,  r -t ;))I. (48) 

Here 

It will be shown below that the limitations imposed on 
the field of the indices ( l m )  by the coefficients (49) can 
be interpreted a s  the requirement that the divergence 
vanish for the field (lwz), i.e., the values of (In?) can 
be interpreted a s  corresponding to the values of the 
spatial vectors of the dual field. This field i s  specified 
a t  the points of the dual lattice (see Fig. 5) and takes 
on values on the same T / Z ,  tetrad a s  the initial field u. 
We designate the dual field by tc3(x). 

Fi rs t  of all ,  if the dual field takes values on T/Z,, 
then i ts  differences up2- ul, at a fixed, say rc, actually 
take on four values corresponding to (see Fig. 7) 

1=0 npn w?=w,; l=1, m = i ,  2, 3 at w,=zc,. 

?(l(x, x+  6))  in (48) depends only on the modulus of the 
difference, a s  i t  should. 

stemming from the argument that (lm) i s  equivalent 
to the differences of the field m. It i s  easy to verify, 
by using the definition of the functions f,,(u) (45), the 
following of the cosfficients (49) differ from zero: 

1 1 1 1  1 

(ml mz m3 m r )  = 
at any pairwise equality of m.. q. m. ma. 

Figures 8-12 show pictures that interpret the differ- 
ent cases when the coefficients (49) do not vanish a s  
states of dual field w. We see that the correspondence 
i s  exact, i.e., each nonzero coefficient (49) i s  set in 
correspondence with a geometric configuration of the 
dual function, and that the coefficient and the geo- 
metric configuration have equal statistical weights. 

The partition function (48) can then be rewritten in 
the form 

Since w ,  just a s  v ,  takes on values on T/Z,, we have 

We now establish the correspondence between the 
( l p n )  combinations picked out by the (49) in and co"sequentlY there i s  only one excitation energy. 

the partition function (48), and the combinations 
Therefore the 2DT model with arbitrary V i s  self-dual. 

FIG. 10. Configuration corresponding to 

(::::). 
The statistical weight is 4 x 2  (we recall that w(x* +f *) is fiex). 
The cases of Figs. 8 and 9 can be combined into one. 

FIG. 12. Configuration corresponding to 

are pairwise equal. The statistical weight of the picutre equals 
3x  3x 2  +3x  1 x  3  =21. The statistical weight of the coefficient 
is 3x2x3+3-21 .  

554 Sov. Phys. JETP 48(31, Sept. 1978 V. S. Dotsenko 554 



Let V(0) = 0 and V(1) = - &J; we then have from (4 7) 

l=Co+C,, e-PJ--Co-llsC,; 
exp {v(O)) =?Co=1+3e-PJ, ' exp {V ( I ) )  ='/,CI-'l-e-DJ, 

Using these expressions we get from (26) 

The critical temperature i s  

$<=I-' In 3. 

From (46) and (50) we easily obtain 

Z ( p )  =['lZ(1+3e-9') 12"Z($*). (5 3) 

w e  note in conclusion that tne models 2 0 2 ,  and 2DT 
are  equivalent to Potts models of the f i rs t  type (see 
Sec. 1) with N =  3 and 4. For these models the phase 
transition point is  known from other transformations 
of the partition function (see Refs. 6 and 20) and co- 
incides with the results (34) and (52) obtained here as 
a result of the self-duality of these models. 

I wlsh to thank A. M. Polyakov for proposingvthe pro- 
blems solved here,  a s  well a s  V. L. Pokrovskii for 
useful discussions. 
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It is shown that besides the three propagating "acoustic" modes predicted by Halperin and Saslow (Phys. 
Rev. B 16, 2154, 1977) there exist in spin glasses also localized zero-gap degrees of freedom connected 
with a system of uniformly distributed discliiations. In this connection, the Poisson-bracket method is 
used to derive nonlinear equations of motion, which generalize the linearized version presented in a 
preceding article by the authors [J. Phys. (Paris) 39, 693, 19781. The cited version of spin-glass 
description is furthermore extended to other systems and it is shown that it is in fact a variant of the 
renormalization-group method of Kadanoff and Wilson. 

PACS numbers: 75.25. + z 

1. INTRODUCTION cp(x,) in the "isotopic" space of the spin directions. 

We have recentlyc'] constructed a microscopic spin- 
glass theory wherein the spin glass i s  represented as  
consisting of balls of dis'clinations in a spin system, 
which a re  entangled in a complicated and disorderly 
manner (something recalling a dish of spaghetti). We 
have arrived a t  this picture by starting from the micro- 
scopic "frustration" concept1' developed to  apply to 
spin glasses by ~ o u l o u s e ~ ~ ~  and Villain. c31 We have 
shown that at the microscopic level such a magnet can 
be described by specifying at each point of space x a 
coordinate frame rigidly connected to a disclination 
ball located a t  this point, a s  well a s  a continuously dis- 
tributed macroscopic disclination density. The orien- 
tation of the coordinate frame secured a t  the point xi 
is specified in natural fashion by i ts  rotation angle 

To describe the disclinations we introduce (see Ref. 
I ) ,  in analogy with dislocation theory (see, e. g. , Ref. 
4), the quantity b,. If the macroscopic disclination 
density i s  zero, then b, = acp/8x,, s o  that the disclina- 
tion density i s  (in the linear approximation) 

where e,,, i s  a unit antisymmetrical tensor. In analogy 
with the theory of plastic flow in elasticity (see, e. g., 
Ref. 4) we introduce also the disclination flux 

A characteristic feature of the microscopic spin- 
glass theory based on the "frustration" concept i s  the 
use of local discrete invariance (LDI) of the exchange 
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