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A high homogeneity of the electric field at the depth where the light beam is formed was attained when 
the electroreflectance (ER) spectra were recorded under conditions of nonuniform depletion of the space- 
charge region in germanium samples. Multioscillation ER spectra were obtained for transitions at the 
center of the Brillouin zone (orbitally degenerate critical point of the M,, type). Assuming strict 
parabolicity of the heavy-hole band, these spectra were used to determine the nonparabolicity coefficients 
for the conduction band and for the light-hole band in the vicinity of k = 0. It turned out that the entire 
ER spectrum can be described by two different parameters of the collision broadening T. At T = 300 K, 
for example, r = 3 meV for the principal signal E, and r = 7 meV for the oscillating part. It is 
established that the nonparabolicity of the light-hole band increases with decreasing temperature. 

PACS numbers: 78.20.Dj 

In accordance with the Franz-Keldysh theory, c1*21 
an electroreflectance (ER) spectrum recorded under 
homogeneous-field conditions should have on oscillating 
component. These so-called Franz-Keldysh oscilla- 
tions contain information on the effective masses, on 
the distribution of the built-in-fields, on the matrix 
element of the transition, and on the thermal-broad- 
ening parameter. The spatial inhomogeneity of the 
field in the semiconductor at the light-penetration 
depth can cause these oscillations from the experimen- 
tal ER spectra. [q4] TO decrease the influence of the 
inhomogeneity, the surface field must be modulated 
when the spectra a re  recorded in a way a s  to  deplete 

The experimental spectra were recorded with light 
reflected from the (111) surface of a-Ge with donor 
density 1.3 x 1014 using Schottky ba r r i e r s  pro- 
duced by sputtering a semitransparent aluminum layer. 
When the spectra were recorded the light was polar- 
ized in the direction of the [I101 axis in the reflection 
plane. The resolution of the optical system, in which 
an MDR-2 monochromator was used, was 1 meV. To 
obtain the ER signal, unipolar square-wave voltage 
pulses were applied to the sample a t  a frequency 200 
Hz. The spectra were registered in the region of the 
direction absorption edge of germanium a t  the orbi- 
tally degenerate point r for E, and E,+ A, transitions. 

the space-charge region (SCR), for in that case the Figure 1 shows a number of ER spectra obtained a t  
field decreases most slowly with increasing depth in successively larger amplitudes of the surface-field 
the conductor. modulation. It is seen that the region of the oscilla- 

To obtain "homogeneous" ER spectra at large field tions that follow the signal E, increases with increasing 
intensities in the SCR depletion region, Handler et al.E51 field intensity and successively distorts the spin-orbit 
used doped samples. They succeeded in observing, for  signal E,+ A, and propagates behind it. 
the first  t ime ever, three additional oscillations in the 
ER spectrum of germanium to  which the field was 
applied through an electrolyte. Comparison with the 
theory has shown that their experimental spectrum can 
be well described by using constant interband reduced 
masses. It is to be expected, however, that when the 
photon energy exceeds the interband energy at the 
center of the Brillouin zone by an amount of the order 
of the spin-orbit splitting, i. e. , at  I E, - fiw 1 -A,,, 
band-nonparabolicity effects will come into play. 
Handler et 01. c51 did not succeed in obtaining a suffi- 
ciently large number of oscillations to  observe these 
effects. In later in which the Schottky 
barr ier  was used, the conditions were likewise not 
optimal to obtain high homogeneity of the field. It is 
therefore of interest to obtain ER spectra with large 
numbers of oscillations, covering a wide range of 
photon energies, to  observe the possible effects of 
band nonparabolicity. 

It was shown in our earl ier  analysis[81 that when ER 
spectra a re  recorded the best field homogeneity can be 
obtained by obtaining nonequilibrium depletion in the 
SCR in samples of sufficiently high resistance. 

- - 

According to the arguments of Keldysh, Konstanti- 
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FIG. 1. ER spectra of Ge for the transitions Eo and Eo +A,,, 
plotted with increasing amplituce of the surface-field modula- 
tion. Temperature T =300 K, 8 II[111], light-wave polariza- 
tion vector e ll[il0]. The amplitudes of the  spectra,  start ing 
with the second oscillations, a r e  magnified 10  times. 
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nov, and Perel',Lgl the ER spectrum registered in an 
orbitally degenerate critical point is a linear combina- 
tion of spectra for each individual band a t  this point, 
i. e. ,  

where A is an amplitude factor that contains the square 
of the matrix element of the transition and the factors 
of the state densities in the bands, iiw is the photon 
energy, B is the ratio of the contributions of the light- 
and heavy-hole bands to the ER spectrum, G(-q,) and 
G(- q,) a re  oscillating electro-optical functions for the 
light- and heavy-hole bands, respectively, and 3 is the 
electric vector of the reflected wave. 

Since the period of the oscillations i s  a function of 
the reduced mass, the oscillations from each band have 
different periods and their sum contains beats in cer- 
tain sections of the spectrum, a s  can be seen in Fig. 
1. The argument of the electro-optical function G(- q) 
is given by 

where E, i s  the energy of the critical point, ti8 
= e2g2R2/2p,,)1/3 i s  the so-called electro-optical ener- 
gy, and pI1 i s  the reduced mass of the electron and hole 
in the field direction. 

Equating the total differential of the function G(- q) 
to zero, we find that the shift of the function G(- q), 
and consequently also of the ER spectrum, along the 
energy axis, following a small change of p by an amount 
Ap, can be expressed in the form 

i.e., it will increase, a t  equal change of the reduced 
mass, in proportion to the energy distance from the 
critical point. Consequently the influence of the non- 
parabolicity effects will be felt more strongly by os- 
cillations that a re  farthest from E,. 

For the sake of simplicity we confine ourselves in 
the analysis of the ER spectra to  the energy region 
from E, to Eo+ A,, inasmuch a s  at higher energies a 
third, spin-orbit split band will contribute to the in- 
terference of the oscillations from the light- and heavy- 
hole bands. 

In the comparison of the signal E, with experiment 
we shall use relation (I) ,  and in the comparison of the 
oscillating part of the spectrum we shall replace the 
electro-optical functions with the asymptotic expres- 
sions obtained in Ref. 10: 

where r i s  the collision-broadening parameter, and 
cp i s  a phase shift that depends on the electron-hole in- 
teraction force and varies little with energy. This 
expression was chosen because i t  was generalized in 
Ref. 10 to include the case of nonparabolic bands. 
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FIG. 2. Solidlines-ER spectraof Ge at $0 (a) and80 K (b) for 
the transitions E,  and Eo +&. Vector 8 11[111], li&t-wave 
polarization vector e Il [ i l~] .  Dashed lines-theoretical ER 
specta obtained using constant reduced masses p, =0.0196 mo 
and ph =0.0354 mo. The energies are E, =0.799 and E, 
=0.872 eV at 300 K and 80 K, respectively. The thermal 
expansion parameters at both temperatures were equal to 7 
meV . 

Figure 2 shows the spectra obtained a t  300 and 80 K, 
with the theoretical spectra shown dashed. .To con- 
struct these spectra i t  was necessary to measure ac- 
curately the field intensity, to choose the effective 
carr ier  masses for a given direction of the electric 
field relative to the crystal axes, the value of the 
collision broadening, and the ratio of the contributions 
of the light and heavy holes to the ER spectrum. 

The effective masses were calculated from the ex- 
p r e s s i o n ~ ~ ~ ~  

where m, i s  the mass of the free electron, m r h  are  the 
effective masses of the light and heavy holes, y,, y,, 
and 7, a r e  the Luttinger parameters, e i s  a unit vector 
along the electric-field direction, and g(e) i s  a func- 
tion of the angles the field makes with the crystal 
axes; the + and - signs in (6) refer to thz light and 
heavy holes, respectively. In our case glI[111] and the 
reduced masses of the light and heavy holes a re  1, 
= 0.0196m0 and ph= 0. 0354m0, respectively. The am- 
plitude of the theoretical curve was chosen equal to the 
amplitude of the positive part of the f i rs t  oscillation of 
the experimental 'spectrum. 

The surface field, which determines the oscillation 
period, must be determined with high accuracy, higher 
than obtained with measurements of the volt-farad 
characteristics of the Schottky barrier.  The field 
was therefore varied by 5-8% of the experimental val- 
ue in order to make the theoretically obtained spec- 
trum agree with the experimental one in the region of 
the f i rs t  four oscillations. It was observed then that 
the negative maxima of E, of the theoretical and experi- 
mental spectra differed by a s  much a s  4 meV, possibly 
a s  a result of Coulomb interaction or  orbital degenera- 
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cy, effects which we did not take into account. 

Until an oscillating part  could be obtained in the ER 
spectra, i t  was assumed that the failure was due to the 
large thermal broadening. The broadening I' for a 
direct transition E, in Ge was assumed equal to 30 
meV. ["I Handler et al. ,L51 by obtaining additional os- 
cillations, demonstrated by the same token that I' 
should be much less  than 30 meV. To fit the shape and 
width of the peak E, (within the framework of the one- 
electron approximation), they used a value 3 meV. But 
then the experimentally obtained oscillation amplitude 
decreased with energy much faster than for the theoret- 
ically obtained oscillations, i. e., this value of the 
broadening did not describe the oscillating part of the 
spectrum. 

The determination of the broadening parameter r 
from the damping of the oscillating part  of a spectrum 
with a large number of oscillations makes i t  possible 
to measure the dependence of the broadening on the en- 
ergy in a broad spectral interval. The best agreement 
between the oscillating parts of the theoretical and ex- 
perimental spectra was obtained for both temperatures 
a t  r=  7i 0.5 meV (as against 3 meV for the main 
signal E, at 300 K). Attention is called to two facts: 
f irst ,  the amplitude of the damped oscillations is 
described, up to the signal E,+ A,, by a constant en- 
ergy-independent quantity r; second, the broadening 
for the oscillating part of the spectrum remains un- 
changed when the temperature i s  lowered to 80 K, 
although the broadening for the signal E, decreases by 
a factor 1.5. 

These experimental data demonstrate that the value 
of the broadening parameter J? increases with energy 
near the direct edge E, after which i t  saturates and has 
a weak temperature dependence. 

The ratio B of the contributions of the light- and 
heavy-hole bands to the ER spectrum was determined 
with the aid of the relations given by Aspnes. C71 At 
g1) [ I l l ]  and with the light wave polarized in the [TI01 
direction we obtain 

where Dl and D, a r e  the state-density factors in the 
bands of the light and heavy holes, respectively; PC, is 
the interband-transition matrix element. 

If i t  i s  assumed that the state-density factors a r e  
proportional to p4'3 (Ref. 12) (for a three-dimensional 
critical point), then the ratio of the contributions of the 
light and heavy holes to the ER spectrum is 0.15. At 
this value of B, however, there a r e  practically no beats 
in the theoretical spectrum and this spectrum differs 
significantly in shape from the experimental one. To 
choose the contribution ratio corresponding to the ex- 
perimental spectrum, spectra were calculated with 
values of B ranging from 0.15 to 2.0. The best agree- 
ment with the form of the experimental spectra is ob- 
tained at B= 0.5, i. e. , when the contribution of the 
heavy-hole band i s  double that of the light holes. 

Comparison of the theory with experiment has shown 
that at no value of the field o r  of B can the oscillating 

parts of the theoretical and experimental curves be 
made to agree in the entire range of photon energies 
from E, to Eo+ A, if the reduced masses of the light 
and heavy holes a r e  kept constant. 

Agreement between theory and experiment was ob- 
tained primarily by changing the ratio of the reduced 
masses of the heavy and light holes, inasmuch a s  the 
beats in the spectrum change their shape and their 
localization region when this ratio is varied. It i s  
precisely the observation of three beat regions in the 
spectrum which made i t  possible to  choose the exact 
value of this ratio, permitting in turn the resolution 
of the experimental spectrum into components due to  
the light- and heavy-hole bands. When the shapes of 
the beats of the experimental and theoretical spectra 
coincided, the mass ratio was found to  range from 1.81 
to 1.91 in the energy band from E, to Eo+ A,. 

It turned out further that the functions ti~,(tiw) and 
RO,(tiw) obtained after resolving the experimental into 
components corresponding to "light" and "heavy" holes 
contain terms quadratic in energy. This means that 
the expansion of the interband energy about the critical 
point, for  the purpose of finding the nonparabolicity 
components, must extend to the t e rm that includes l$', 
i. e., must take the form 

where C:,, and c:,, a re  the interband nonparabolicity 
coefficients for transitions from the bands of the light 
and heavy holes, respectively, with thonparabolicity 
increasing with increasing k at (Cp k4 + C$ k6) >0. 

Following Kane's paper,[13] where the valence bands 
of germanium near k = 0 were calculated by the k - 6 
method, we assume the heavy-hole band to parabolic. 
In this case we can determine the nonparabolicity coef- 
ficients of the conduction band and of the light-hole band 
from the interband nonparabolicity coefficients. The 
interband-nonparabolicity coefficients Ct and Ch, for 
transitions from the heavy-hole band must in this case 
be due entirely to the nonparabolicity of the conduction 
band, i. e., Ct= C, and Ch,= Czc. For transitions from 
the light-hole band, the interband-nonparabolicity co- 
efficients will be determined by the sum of the contri- 
butions of the conduction and light-hole bands: 

Knowing the coefficients C,, and C,, we can determine 
the coefficients C,,, and C,,, for the light-hole band. 

We now write down separate expansions of the energy 
in powers of k near the center of the Brillouin zone for 
the conduction and valence bands: 

E. ( k )  =Eg+hzk'/2m.+CI.k'+C,,k', 
E, (k )  =-fr'l;?/2mh, 

E.,(k) =-h2kz/2ml-CI.lkL-Cr.lke. 

Using the stationary phase method, a s  was done by 
A s p n e ~ ~ ' ~ ]  for the expansion of the interband energy 
with one nonparabolicity coefficient, we have obtained 
an asymptotic expression for the oscillating parts of 
the ER spectrum, with allowance for the two non- 
parabolicity coefficients C l '  and C$ ', in the form 
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FIG. 3. Solid curve-ER 
spectrum at 300 K shown 
in Fig. 2a. Dashed curve- 
theoretical ER spectrum 
obtained using the inter- 
band nonparabolicity co- 
efficients of (12), r 
=7 meV, and E, = 0.799 eV. 

1 2(Ao-E,)'hr 4 ~ , ~ z r  o - ~  '1, tween theory and experiment was obtained when the 

(Au)~(Aco-E,) { (fie)" ( )  interband nonparabolicity coefficients were 
8C2par (no-E.)"' - 28C.'pSr , (no-E,)'" + 

+. - C,"= (0,4*0,1) .10-"eV ,cm4 Clh- (-6,0*0,2) .10-"e~ .cm6, fie (fie)" it8 (lie)'. 
CI1- (1,2*0,3) . iO-"ev. cm? Czl= (-24,6*0,3) .10-"eV . an9 

(12) 
6 Crp2 xcos {. + $ (9) ' [ 1 - 5 T ( ~ ~ - ~ , )  This yields the nonparabolicity coeffients for the con- 

From a comparison of expressions (11) and (4) i t  i s  
seen that the nonparabolicity effects lead both to addi- 
tional damping of the oscillations and to an energy shift 
of the oscillation. A s p n e ~ , [ ~ ~ ]  fo r  example, proposes 
to determine the nonparabolicity from the additional 
damping. But since the nonparabolicity effects in- 
fluence more strongly the oscillations that a r e  f a r  from 
E, and have low amplitude, the oscillations will vary 
within the limits of the experimental e r ro r ,  whereas 
the spectrum shift corresponding to this variation can 
be equal to the oscillation period and can be easily ob- 
served. Therefore, even though the corrections that 
must be introduced in the amplitude and in the period 
of the oscillations to account for the nonparabolicity 
a r e  of the same order,  the experimental conditions 
a re  such that the nonparabilicity i s  determined more 
accurately from the change of the period of the oscilla- 
tions. 

A comparison of the theoretical spectrum obtained 
with the aid of the sum of expressions (11) for transi- 
tions from the light- and heavy-hole bands with the ex- 
perimental data is shown in Fig. 3. Agreement be- 

duction and light-hole bands 

The band structure obtained for  germanium by using 
these coefficients is shown by the solid lines in Fig. 4, 
where the straight solid line in the valence band i s  
constructed for a parabolic heavy-hole effective mass 
m: = 0.508m0. The dashed E(k2) line in the conduction 
band was obtained with Kane's three-band modelc141 
with a nonparabolicity coefficient 

The E(kZ) plot for the light-hole band, obtained in the 
same model, l ies much higher than the experimental 
curve. The reason i s  that Kane's model neglects the 
interaction with bands higher than the conduction band. 
To compare the theory with the experiment we have 
therefore used for the light holes the more accurate . 
function E(k2) obtained by Kane by the k - 6 method for 
Ge. The smaller  range of the experimental values 
of E(k2) for the light-hole band in Fig. 4 is due to the 
fact that the transitions from this band a r e  localized 
closer to the center of the Brillouin zone than those 
from the heavy-hole band at  the same values of the 
interband energy. It i s  seen f rom the figure that 
theory agrees well with experiment a t  (fiw - E,) 
s 200 meV. 

Comparison of theory with experiment a t  80 K shows 
that the nonparabolicity of the conduction band remains 
the same a s  a t  room temperature, and the nonparabol- 
icity of the light-hole band increases slightly. 

In conclusion, the authors thank 0. A: Makarov for 
help with the work and I. G. Neizvestnyi for a dis- . 

cussion of the results. 

Ill11 dinetion ' 

FIG. 4. Solid lines-band structure of Ge, obtained using the 
band nonparabolicity coefficients (13). The straight line in the 
valence band is drawn for a parabolic heavy-hole effective 
m a p  m$= 0.508 mo. Dashed line in valence band-plot of 
~ ( k ~ )  for the heavy-hole band, taken from Kane's 
Dashed line in conduction band-plotted in accord with Kane's 
three-band model. 
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A duality transformation is proposed for gauge and non-gauge Abelian A, models (generalization of the 
Ising model, the field assumes N discrete values on a circle) to include two-, three-, and four- 
dimensional cubic lattice. Besides the known cases of self-duality of the Ising model ( A ,  model) in two 
and four dimensions, an entire series of self-dual models is found (particularly the Z, and Z, self-dual 
models), and accordingly, the phase-transition points for them. A duality transformation is also proposed 
for the simple case of a discrete non-Abelian model (the symmetry group is the group of symmetry axes of 
the tetrahedron). The model turns out to be self-dual and accordingly the dual transformation makes it 
possible to find the phase-transition point. 

PACS numbers: 05.50. + q 

1. INTRODUCTION. DESCRIPTION OF MODELS two different phases (for the Ising model this i s  

It i s  well known that the two-dimensional (20) Ising 
model has a definite thermodynamic symmetry, as 
established by Kramers and wannier.[ll The gist of 
this symmetry i s  that the partition function Z(@), as a 
function of the reciprocal temperature @= 1/T, i s  in- 
variant (apart from an inessential factor) to the trans- 
for mation 

which converts low temperatures into high ones and 
vice versa. The values of Z(@) a t  the points @ and @* 
are connected by the relation 

where 52 i s  the number of lattice points. One of the 
possible proofs of (2) can be found, for example, in 
~ s i h a r a ' s  bookc2' The qualitative form of (1) i s  shown 
in Fig. 1. From (2) i t  follows that the thermodynamic 
properties of the high-and low-temperature phases 
a r e  symmetricaL 

obvious: ordered and disordered phases), then i t  
follows from symmetry considerations that /3, i s  a 
phase-transition point. Thus, the Kramers-Wamier 
(KW) symmetryu' has made i t  possible to obtain the 
phase-transition point for  the 20 Ising model before an  
exact solution has been found for the model of Ref. 3. 

The partition-function transformation whereby Z(@) 
i s  expressed in terms of Z(p*) i s  called a duality 
transformation. The property of the Ising model, that 
i t  goes over into itself under this transformation, i s  
called self-duality. The initial derivation of (2) was 
based on comparison of Van d e r  Warden graphs of the 
expansions of the partition functions of the initial and 
dual models.[" The KW symmetry (self-duality) i s  
actively used in investigations of the Ising 
Kadanoff and cevac5' investigated the physical meaning 
of the duality transformation, introduced the concept 
of the disorder parameter, and established that the 

In the reciprocal-temperature scale, there i s  a 
preferred point defined by the condition P* = @. 
From (I) we have 

If we assume that there i s  only one phase-transition 
I--;-- 

0 I 

point, or ,  which i s  the same, that there a r e  only BC B 

FIG. 1. Schematic plot of 
the function o* = - (1/2)ln tanhp. 
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