
curve is also smeared by the electron phonon interac- 
tion. An estimate shows that allowance for this inter- 
action worsens (48) by at most a factor of two. 

The broadening of the absorption of the absorption 
lines on account of the interaction of the electron with 
neutral and ionized impurities can be estimated by us- 
ing the appropriate expressions obtained in Refs. 12 
and 13 for the relaxation times. In our case this broad- 
ening is small compared with the phonon broadening up 
to an impurity concentration on the order of 1016 em-=. 

Third, the intensity of the absorption on bound state 
is proportional to the concentration of the electrons 
captured by neutral impurities. To facilitate the obser- 
vation of atomic CR by such impurities it is expedient 
to use weakky compensated semiconductors, for which 
there exists a temperature region in which the donors 
have not yet been ionized, but the electrons are already 
uniformly distributed over the impurity bandc3'141; this 
increases the number of electrons captured by the neu- 
tral  impurities. 

In conclusion, I am grateful to  Yu. A. Gurvich and 
I. B. Levinson for useful discussions in the course of 
the work and for a detailed evaluation of the result, and 
to M. A. Kozhushner for an evaluation of the results. 

It is  assumed that there are no bound states in the potential 
u(?) in the absence of a magnetic field. 
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An investigation has made it possible to explain the existence of an experimentally observed minimum of 
the resistance in size-quantizing films. Methods are proposed that permit investigations of the Fermi-line 
geometry. The question of quantization of the acoustic spectrum is examined. It is shown that the speed 
of sound oscillates with changing film thickness. 

PACS numbers: 73.60. - n, 68.60. + q 

We investigate in this paper the question of the dis- 
persion law in size-quantizing crystal films. It is 
known that size quantization can be observed in thin 
crystal film. This effect is highly sensitive to the film 
quality. The best conditions for i ts  observation are re-  
alized in semimetal films, where a number of factors 
(such as the low electron density) cause the de Broglie 
wavelength to exceed greatly the atomic dimensions, 
and it is this which makes the surface in fact specular. 
This is why the size-quantization effect was in fact dis- 
covered first  in semi-metallic Bi and Sb films. The ob- 
servation of this effect in thin metallic films (of Sn, Al, 
Pb, Mg, Au, and Ag) is possible, although more com- 
plicated. 

mined by the longitudinal two-dimensional quasimo- 
mentum and by the transverse quantum number n. In- 
stead of the F'ermi surface we have a group of two-di- 
mensional subbands. Strictly speaking, the momentum 
projection k ,  perpendicular to the plane of the film is 
not defined. It can be approximately assumed, how- 
ever,  that the different subbands have different values 
of k ,  = nn/L (see,  e.g., Ref. 1). 

The most interesting situation occurs in the case when 
the concentration satisfies the condition n S La. In this 
case,  only the lowest subband is filled. The film, which 
remains a three -dimensional system in coordinate 
space (L >>a, where a i s  the lattice period), becomes a 
two-dimensional system in momentum space. This 

We confine ourselves hereafter to semimetallic films situation i s  realized, for example, in Bi films a t  L 
in which the size quantization effect is most pronounced. 5 5 x 10' A. The electrons a r e  characterized in this 
In sizequantizing films, the energy ~ ( % , n )  is deter- case not by a Fermi surface, but by the Fermi line 
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Komnik et ~ 1 . ~ ~ '  observed in an experimental study of 
thin quantizing Bi films a low -temperature resistance 
minimum. In the present paper (see Sec. 1) we consid- 
e r  the cause of this minimum. 

A perfectly realistic situation (see below) is one in 
which the Fermi line has linear sections. This leads to 
a logarithmic instability that corresponds to a re -  
structuring of the spectrum, and to the possibility of a 
structural transition. The experimentally observedcz1 
minimum of the resistance of a thin Bi film is apparent- 
ly due to such a transition. 

In the investigation of the singularities of the electron 
dispersion law in thin films one encounters two related 
questions, although each of them is also of independent 
interest. The first  is the study of the phenomena due to 
the presence of linear sections on the Fermi line. The 
second is connected with the possibility of a detailed 
analysis of the Fermi line. It is possible to formulate 
the question rigorously in a manner analogous to the 
known procedure in electron theory of metals. We have 
in mind the reconstruction of the Fermi line from ex- 
perimental data. 

This paper consists of two sections and an appendix. 
In Sec. 1 we investigate the instability of the phonon 
spectrum and the structural transition. In Sec. 2 we 
consider the question of reconstructing the dispersion 
law in quantizing films. The Appendix discusses the 
quantization of phonons; it is shown that electron-pho- 
non interaction leads to an oscillatory dependence of 
the speed of sound on the film thickness. 

1. INSTABILITY OF PHONON SPECTRUM. 
STRUCTURAL TRANSITION 

Phonun spectrunz. We write down the equations that 
determine the phonon dispersion law in a thin quantiz - 
ing film. The fact that the film is bounded makes i t  
possible also to quantize the phonon spectrum. We 
consider this general case. The phonon dispersion law 
is a function of w,(q) (q is the two-dimensional longi- 
tudinal phonon momentum and v is the transverse 
quantum number). Thus, there a re  many phonon 
branches corresponding to different values of the trans- 
verse number v. 

We shall consider the case when the Fermi line is 
characterized by the presence of a linear section. That 
this situation is realistic follows from an examination 
of the Fermi surface of bismuth, which comprises an 
aggregate of ellipsoid with a very strong effective- 
mass anisotropy. The films a re  evaporated in such a 
way that the z axis, which is perpendicular to the plane 
of the film, is directed along the axis corresponding to 
rn,x O.O1rno. The Fermi line can be regarded approxi- 
mately a s  the intersection of the ellipsoid with a plane, 
i.e., an ellipse, and the values of the Fermi momenta 
in the principal directions a r e  p, = 7.5 X g - C ~ / S ~ C  
and pz = 9 x g-cm/sec, i.e., they differ by an order 
of magnitude. The curvature radius 

takes on values in the interval (0.8 - 1.3) x 10-lS g-cm/ 
sec when p, changes from zero to pz/2, i.e., the curva- 
ture radius is larger than the dimensions of the Fermi 
line itself and even the dimensions of the Brillouin 
zone ( - 0 . 5 ~  10- g-cm/sec for bismuth).cs1 Thus, these 
sections can be regarded as straight lines with high 
degree of accuracy. 

We proceed now to investigate the phonon spectrum. 
We write down (in symbolic form) the Dyson equations 
that define the phonon Green's function with electron- 
phonon interaction taken into account (see,  e.g., Ref. 
4): 

We change to  the momentum representation. To this 
end we write 

Here x is the longitudinal two-dimensional momentum 
and p is the longitudinal coordinate; we have obtained 
for the single-particle functions a representation in 
which the Green's function is diagonal (see,  e.g., Ref. 
5). We do not need the concrete form of the functions 
qv(z). Analogous expressions can be written for the 
functions D and Do. The Green's function of the free 
phonon is equal to Do,(k, w) = w,/(w2 - m i ) .  

We change over next to the momentum representation 
in (1). This produces in the right-hand side the sum xu,, r~,.II,,,. (%, o), which contains the quantities 
II,,, ( x ,  w) that depend (at definite values of the trans- 
verse quantum numbers p and pl) on the two-dimen- 
sional momentum. In fact, we write (1) in the form z j dx' doD.-'(x', o ) e x p [ i x f  (p-p') l exp [ - lo ( t - t ' )  ]E, (z) t . ' ( z f )  

where 

and the functions (,(z) and (,,(z) realize the diagonal 
representations of D and Do, respectively. Multiplying 
both sides by exp[-ix (p - pl)][, (z)[ f (2') and integrating 
with respect to z ,  z l ,  and p - pl, we get 

A D ' ( x ,  o )  +P..(x,  a ) ,  ~ . - ~ ( x , o ) - c  r0 (2) 
u 

where 

Recognizing that n(x,  x l )=  2iG(x,x1)G(x',x) we arrive,  
after simple transformation, a t  the expression 

P.. ( x ,  01 = z r;,n,, ( x ,  o), 
W' 

r;,=g j dz cp , (~)cp, , ' ( z )e . (~)  

x jclp' dz' dg, dz ,  exp[ ix(p' -p i )  lcpu(z,)vP.'(zi)P(zl.z')E.(~'). 
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Thus, the right-hand sides of (1) and (2) actually con- 
tain the sum C,,, l?Y,,.II,,, (%, w). We investigate next, 
a s  already noted, the most interesting case,  when one 
lowest subband is filled (the generalization to the filling 
of several subbands is not difficult). We consider in 
this connection the quantity 

where q =  ( x ,  w), k,  and % a r e  two-dimensional vectors. 
We consider furthermore the case of interest to us,  
when the Fermi line has a linear section. We assume 
in this connection that the dispersion law takes the 
form 

mi = ( p,, - qo)2/2~, (pXO is the Fermi momentum in a 
direction parallel to the linear section), s o  that a linear 
section exists. The ellipse c ,  =p,2/2m, +p;/2m2, which 
is characterized by a strong mass anisotropy (see be- 
low), can be approximated to high accuracy by Eq. (4). 
Calculation of the integral (3) leads in this case to the 
expression 

Thus, the presence of the linear section leads to a 
logarithmic singularity in the polarization operator. 
This case is analogous to the situation of Ref. 6, where 
the Fermi surface is characterized in the three-di- 
mensional case by the presence of aplanar sectioi (see 
the revied7]). In our case, when one lowest subband 
is filled, the principal role in the formula that deter- 
mines D-'(%, w) is played by the considere! quantity 
lT,(%, w).  For the thicknesses L 5 5 x 10' A under con- 
sideration, we have nu,, " A;:. (A,,, is the difference 
between the transverse levels; for Bi, e.g., A,,, 
-0.01 eV), and therefore the quantities II,,. do not con- 
tain any logarithmic singularities. 

The presence of a logarithmic singularity in II leads, 
a s  usual (see, e.g., Ref. 7), to the appearance of an 
imaginary pole in the D function and to lattice instabili- 
ty. 

This instability can be most clearly investigated with 
the aid of the usual model, when the transversequan- 
tization subbands correspond to different values of the 
transverse momentum. The dispersion equation D" 
= 0 is then easily seen to be of the form 

It is seen directly from (6) that a t  k = 2pY0 the fre- 
quency corresponding to the lower acoustic branch (at 
k,=n/L; see the Appendix) vanishes. In fact, the ex- 
pression for the frequency of this branch contains the 
diagonal polarization operator, which has a logarithmic 
singularity. The instability is therefore connected with 
the lowest acoustic phonon mode. The temperature of 
the corresponding structural transition, Tp (given by 
expression (7) below) is characterized by the vanishing 
of the phonon frequency w,(q) and by the appearance of 

a static -deformation wave. 

Interaction of the electron with the static-deformation 
wave leads to the appearance of a gap in the electron 
spectrum, corresponding to the linear sections of the 
Fermi surface. In fact, the instability considered 
above is described by introducing anomalous phonon 
mean values (a,) with momentumc7' q and correspond- 
ingly anomalous mean values (a;+,ax). This, naturally, 
produces a gap A=g(a,). 

The appearance of the gap can be described with a 
canonical transformation. The interaction of the static- 
deformation wave with electrons belonging to the linear 
sections can not be described by ordinary perturbation 
theory. Introducing therefore the wave function *p 

=u,#,+ v,@,($, is an unperturbed wave function and 
=z,a,_k#h), and writing down the Schre6dinger wave 
function (Ho+ V) \kp= cp\kp, we obtain after simple trans- 
formations the spectrum &,= ([,+ (Ap(2)1'2 ( 5 ,  is the 
energy of the ordinary electron, and p runs through 
the values pertaining to the linear sections). 

Structural transition. To obtain an expression for the 
temperature T,, we write down (3) with the aid of the 
temperature technique. Putting next w,= 0, we obtain 
the transition temperature 

T,%eFe-"*. (7) 

A similar formula is obtained also from the require- 
ment that the parameter A vanish. 

At temperature s lower than T, the film is charac- 
terized by the appearance of a gap corresponding to the 
linear sections of the Fermi line. For example, for 
Bi films the gap is produced on the greater part (-0.9) 
of the Fermi line. Such a transition is accompanied by 
a sharp decrease of conductivity. A minimum of the 
resistance should be observed here. 

Komnik et al.c21 observed a resistance minimum in an 
investigation of the conductivity of thin Bi films. This 
minimum may be due precisely to the transition des- 
cribed above. It is noted in Ref. 2 that the minimum of 
the resistance is observed a t  relatively low tempera- 
tures. Thus, Bi films with L 220 19 a r e  character- 
ized by T,,,* 5 K. The question of the structural 
transition due to the phonon instability has by now been 
investigated for many systems (see,  e.g., Ref. 7). 
This transition usually takes place a t  temperatures 
higher than the values of T,,, of the investigated quan- 
tizing film. The reason why T,,, is small compared 
with the usual case i s  above all the small value of E, 
(c, - 0.01 eV in the films considered). The coupling 
constant in the exponential can be written in the usual 
form h = vow, where vo- (p&)-' is the state density; 
the matrix element V does not contain the additional 
small quantity -a /L (this i s  easiest to see by expres- 
sing the electron wave functions in terms ofC" cos k g ) .  
The Fermi momentum is Po *PI = 7.5 x lo5 cm-' at L 
* 10". so  that poL x 1. Equation (7) leads, taking the 
given values of T, and c, into account, to h z  0.2, 
which is the usual value of the electron-phonon inter- 
action constant (see,  e.g., Ref. 8). Thus, it is the 
anomalously low value of c, in the size -quantizing 
films which leads to the low temperature T,. 
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2. RECONSTRUCTION OF THE DISPERSION LAW IN 
THIN FILMS 

It was postulated above that a situation wherein the 
Fermi line is characterized by the presence of a linear 
section is realistic. A more general and rigorous for- 
mulation of the problem of finding the dispersion law 
E ,  in a sizequantizing film is also possible. The 
Fermi line can be regarded approximately is the inter- 
section of a three-dimensional Fermi surface with the 
plane p,= 0. However, because of the specifics of the 
film state, brought about by the sputtering conditions 
(as well a s  because, strictly speaking, the quantity p, 
is not defined for the considered bounded system) the 
Fermi line can differ from the usual section through a 
three-dimensional Fermi surface. This ra ises  the 
question of finding a method for determining the elec- 
tron dispersion law in a size quantizing film. We r e  - 
gard a s  the most consistent, for this problem, a meth- 
od analogous to the known procedurecg1 developed in 
electron theory of ordinary metals. We have in mind 
here the reconstruction of the Fermi line by using cor- 
responding experimental data. 

The quantization of the transverse motion and the as -  
sociated two-dimensional character of the problem 
makes it impossible for ordinary methods, say galvan- 
omagnetic measurements, to yield the required infor - 
mation. We shall consider here some possible methods 
for the investigation of the geometry of the Fermi line, 
although a number of other methods also exist. 

1. An effective way of deducing the Fermi line can 
be an investigation of sound absorption in thin films in 
a magnetic field. The magnetic field is perpendicular 
to the plane of the film. In this case the sputtered film 
and the substrate must have close elastic constants, s o  
that the phonons in the film can be regarded as the same 
as in the bulk sample. At a definite ratio of the scales 
of the trajectory in coordinate spectrum (this trajec- 
tory, in analogy with the usual situation, is obtained by 
rotating the Fermi line through n/2 and changing i t  by 
a factor c/eH times) to the scale of the wavelength, a 
Pippard resonance sets  in. The resonance condition is 
c ( ~ p f  ),,,,/e~ = (n + 1/2)kaC so that the absorption is an 
oscillating function of H-'. 

A more rigorous analysis, similar to that of Ref. 10, 
also leads to this result. The solution of the kinetic 
equation 

df f - f o  - + =  
dt T 

0, 

d a a d p a  a -=- +v-+--+n-, 
dt d t  ar dt ap ucp 

(the conditions 527 >> 1 and a>> w,,, where is the 
Larmor frequency, a re  satisfied), followed by calcula- 
tion of the absorption coefficient 

where S i s  the entropy of the electron gas, 

( e , ) = l / 2 ( ( a ~ / a t ) z ) = p f  o,,Zu,?. U=UO exp [ i (qac r - o ,  t )  1 

lead to the expression 

D, is the projection of the extremal diameter on the di-  
rection perpendicular to the sound-wave propagation 
direction. Thus l? = I?,+ I?, cos (cD,~"/eh,,) and the 
absorption coefficient contains an oscillating part. 
Using (8), we can directly write down an expression for 
the amplitude r,. It is seen that the absorption coeffi- 
cient oscillates as a function of H", with a period 6 
= ehaC/c(2p,),,,(2p, is the extremal diameter of the 
Fermi line in the sound-wave propagation direction). 

2. A highly effective method in the investigation of 
the electron spectrum in thin film can be the study of 
the absorption of an electromagnetic field.'' It is im- 
portant that the film thickness is less  than the depth of 
the skin layer. It is therefore possible to study direct- 
ly the absorption process (the film can be placed in a 
waveguide). In addition, the film is situated in an ex- 
ternal constant magnetic field directed along the z axis 
(the z axis is chosen to be perpendicular to the film 
plane). The electric vector and the propagation direc- 
tion lie in the xy plane. The situation is similar to that 
considered in the preceding section (the sound damping 
is also connected, a s  is well known, with the appear- 
ance of deformation fields) and it is possible to observe 
the corresponding geometric resonance. Writing down 
the kinetic equation in analogy with (8) and calculating 
the absorption coefficient, we find that I' = I?,+ l?, cosA, 
A =  cD,/eh& (D, is the projection of the extremal di- 
ameter of the Fermi line on the y axis). Thus, l? is an 
oscillating function of H-'. 

3. The character of the Fermi line can be deduced by 
a method analogous to the observation of the Gantmak- 
her effect in ordinary metals.c111 We consider the be- 
havior of a thin film of thickness L in a longitudinal 
electric field E, = ~ , e ' ~ '  and a magnetic field H per- 
pendicular to the plane of the film. The field E, can be 
regarded as homogeneous, since 6 >> L (6 is the skin- 
layer depth). We consider a situation wherein one of 
the logitudinal dimensions of the film, d,  is comparable 
with the Larmor radius. We note also that i t  is possi- 
ble to obtain a film that is monocrystalline in the xy 
plane. We write next the kinetic equatioli 

af f-f. af +-v ,e*=+afo .=  -- - 
at  ae a T 

We assume satisfaction of the conditions T, >> T, (T, is 
the relaxation time in scattering by volume defects, 
and T, is connected with the scattering by the bounda- 
ries) and W,T, >> 1. Calculating next the conductivity 
and the energy absorption coefficient q = 4 n ~ ~ c - ~ ~ e a ,  
we get 

The absorption is characterized by a maximum at  
om,= (1+ w:T~)/w,T*. If d > r H ,  then T = T,. The absorp- 
tion is then characterized by a sharp maximum at  w 
= wC. If the field satisfies the condition r, > d ,  then the 
principal role is assumed by scattering by the bound- 
ary. In this case, a s  can be easily seen from the 
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equations given for 7) and om,, the maximum is much 
weaker than in the former case, s o  that ha 
<< 1. 

Thus, an increase of the external magnetic field 
leads to satisfaction of the condition r, = d  at  a certain 
value of H. A maximum appears then a t  w =  w, and 
qm,, changes jumpwise. By varying the value of d in 
various directions, we can determine the main para- 
meters of the Fermi line. 

In conclusion, we a re  sincerely grateful to V. F. 
Gantmakher and V. N. ~ u t s k i r  for interesting discus- 
sions concerning the experimental situation, and A. L 
Larkin for a useful discussion. 

APPENDIX 

We consider here the behavior of the function w(q) 
that describes the phonon dispersion law, a t  low val- 
ues of q. We obtain an expression for the speed of 
sound in sizequantizing films; in particular, it turns 
out that a consistent allowance for the electron-phonon 
interaction leads to an oscillatory dependence of the 
speed of sound on the film thickness L. 

It is clear that a t  small q the reflection of the phonons 
from the surface is specular and the quantization of the 
phonon spectrum must be taken into account (for simp- 
licity, we shall omit the polarization index). The dis- 
persion law is determined in the course of the solution 
of the system (1). We use hereafter an approximation 
wherein the role of the transverse quantum number is 
played by the phonon transverse momentum q,, which 
takes on a discrete ser ies  of values q,=nn/L. A more 
rigorous analysis, in which the transverse quantum 
number v is not se t  in direct correspondence with q,, 
is more cumbersome but leads to analogous results. 

The phonon spectrum w(q) as 9,- 0, which is of in- 
terest to us, is determined from the equation D" ( a )  
= 0. From this equation and the system (1) we readily 
obtain 

oz=o:l(i-VII), (A.1) 

w, is the plasma frequency, equal to 4 r e 2 ~ ,  /M, V = 4ae2/ 
(4: + 9 3 ,  and 

is the polarization operator. We consider, as above, 
the case when one electron subband is filled. Calcula- 
tion of II(q,, q,) a s  q, - 0 yields 

~ ( 0 ,  q.) =-2rnli-c~. (A.2) 

Taking (A.l) and (A.2) into account, we arrive at the 
following expression for the dispersion law of interest 
to us: 

w2=ol;+u~q~, (A.3) 

where 

We see thus that size quantization causes the phonon 

spectrum to break up into branches corresponding to 
different values of the transverse quantum number. 
The fact that the film is bounded leads to w(q)# 0 a s  
q, - 0. In addition, the speed of sound, a s  seen from 
(A.4), depends on q, and is thus not the same for differ- 
end branches. 

As L increases, an  increasing number of subbands 
becomes gradually filled with electrons. If v, is the 
number of subbands filled a t  a given L ,  then the ex- 
pressions for w, and u, take the form 

As L - a(a t  small q,), taking the equality v,=p,~/2a 
into account, we obtain from (A.5) w2=u2(q;+ q:), where 
u ~ = ~ w ~ / ~ ~ I ~ ~ ~ = ~ ( ~ / M ) v ~ ,  i.e., we arrive a t  the usual 
acoustic dispersion law (see, e.g., Ref. 12). 

Formulas (A.4) were written for the case when one 
electron subband is filled. With increasing L ,  a s  noted 
above, the remaining subbands become gradually filled. 
As seen from (A.5), at the thicknesses corresponding to 
the filling of the new subband, the speed of sound 
changes jumpwise. These changes, which correspond 
to oscillations of the electron state density, cause thus 
the speed of sound to oscillate with changing film thick- 
ness L. The oscillation pe5icd is AL = ( r n ~ ~ ) - ~ / ~ .  For 
Bi, for example, AL = 300 A. The oscillations of the 
speed of sound a r e  directly connected with the singular- 
ities of the electron-phonon interaction in s izequan-  
tizing thin films. 

ti he possibility of using this method to sfpdy the Iaw of 
electron dispersion in thin crystalline films was called to 
our attention by V.  F . Gantmakher . 
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