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rigorous analysis. 
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Fine structure of cyclotron-resonance lines 
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It is indicated that a spectrum of bound states of an electron in the field of an attracting center of small 
but finite radius and in a strong magnetic field in an arbitrary Landau band exists and leads to a serial 
structure of the cyclotron-resonance lines. The contribution made to the absorption curve by all the 
electron transitions between the bound states and the continuum state is calculated for the single-center 
problem. Cyclotron resonance in parallel fields is considered. The possibility of observing cyclotron 
resonance on the bound states of an electron in a field of neutral impurities in a semiconductor is 
discussed. 

PACS numbers: 76.40. + b 

1. INTRODUCTION ities.[13 They offered also a qualitative explanation of the 
observed effect. The resultant bound-state spectrum 

In 1957 Boyle and Brailsford observed cyclotron was theoretically analyzed by Hasegawa and ~oward. '~ '  
resonance (CR) in InSb on bound Landau electron states Also considered was resonant absorption of the electro- 
in the field of the Coulomb potential of charged impur- magnetic field by such bound states (atomic CR) in 
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semiconductors in the presence of broadening by im- 
puritiescg1 and by acoustic ph~nons.'~' 

It is pointed out in the present paper that atomic CR 
can be observed on bound states of an electron in the 
attraction field of a small but finite radius a in a strong 
magnetic field (a<<l= (cfi/lel H)'" is the magnetic length). 
It is shown that in an attraction field of arbitrarily 
small but finite radius and in a quantizing magnetic 
field there is produced an electron bound-state spec- 
trum that lies lower than the bottom of any Landau 
band. The spectrum is infinite and condenses towards 
the bottom of the Landau band. States lying below the 
bottom of the ground band are truly undamped, while in 
the remaining bands they decay. A system of wave 
functions is constructed for the bound states and con- 
tinuous spectrum of the electron in the one-center prob- 
lem. This system of functions serves as  the basis for 
the calculation of the contribution made to the CR ab- 
sorption curve for four types of transitions: 

1) bound etates- bound states (b-b), 

2) bound states-continuum (b-c) 

3) continuum -bound states (c -b), 

4) continuum -continuum (c -c). 

It is indicated further that atomic CR can be observed 
on the bound states of a short-range potential in a 
strong magnetic field not only in perpendicular (ELH) 
but also in parallel (E I1H) electric and magnetic fields, 
for both intraband and interband transitions. 

We note that neutral hydrogenlike impurities in semi- 
conductors can be regarded as one example of a short- 
range attraction potential, so that the effect considered 
here should be observed in typical semiconductors such 
as Ge or Si at sufficiently high density of such impurit- 
ies (see Sec. 6). 

2. BOUND-STATE SPECTRUM AND CONTINUOUS 
SPECTRUM OF THE ELECTRON ENERGY IN THE ONE- 
CENTER PROBLEM 

Consider an electron situated in a homogeneous mag- 
netic field H ((2 with avectorpotential~,; ($&, A, =A, = O  
and in a spherically symmetrical attraction field1) 
U(lr1). The wave function of the stationary state of such 
an electron satisfies the Schriidinger equation 

[ $ + ~ ( I r l ) l r p ( r ) - ~ ~ ( r ) ,  (1) 

I?, is the Hamiltonian of the electron in the magnetic 
field. 

The projection m of the orbital angular momentum of 
the electron on the magnetic-field direction is conserv- 
ed. The wave functions can therefore by characterized 
by the values of m (Ref. 2) and we can seek for each 
given m a solution of (1) in the form 

where n is the radial quantum number. 

The form of the radial wave functions ~ , , ( p )  is well 

known.c51 From (1) and (2) we obtain a system of equa- 
tions for the coefficients c,,(z): 

m * i s  the electron mass N=n +$(/mi +m 1, wH= /el ~ / m  *c, 
and 

By virtue of the proportionality R,,(P) a p tml  at small 
p c < z , ~ ~ ]  the functions ~ $ ( z )  are of the order of 

-. 

I*" ( z )  - ( d l )  'lmlf, ( z )  . (5) 

The customarily employedE6*71 replacement of the 
short-range potential by a 6-function (in p), which 
leads to the appearance of one (1) bound state located 
below the bottom of the Landau band,[" is valid only if  
m =0, for at m#0, by virtue of (5), this replacement 
leads to vanishing of the right-hand side of (3) and to 
vanishing of the bound-state spectrum. It is important, 
however, that the functions J $ ( Z )  decrease with z over 
characteristic distances of the order of the effective 
radius a of the field. If the well is shallow enough, 

then we can make, without loss of generality, the sub- 
stitution 

J*" ( 2 )  +a*"l-'G ( 2 )  , (7) - 
Ck= dz J ." , ( z )~ .  (8) 

- = 

In the general case, the solution of the system (3)-(8) 
is a difficult task, but if the interaction of the electron 
with the attraction center is  weak enough, 

(f,(O) is the Born amplitude of electron scattering 
through zero angle in the absence of a magnetic field), 
then the system (3)-(8) can be easily solved. 

Consider the spectrum of the electron in the Landau 
bandN. Assume (this i s  confirmed by subsequent cal- 
culation) that the electron longitudinal-motion energy is 
small compared with tie, 

-E,=E-Ao,(N+'l:) t h o a .  (10) 

By virtue of (9) and (19), the coefficient C,,cn +$lrnl +m ) 
=N is the largest, and the remaining coefficients 
~ , , ( k + n )  are of order of smallness a, e l  in compari- 
son. Taking the foregoing into account, we can uncou- 
ple the system (3): 

BC,, - - - ~ ~ ~ ~ , , = - 2 ~ . , 1 - ~ a , " 6  2m' (z) -2z CkmakPl- '8(z) .  (11) 
dzz h' 

k m  

where 
k+'/*( I m 1 +m)  + N ,  anm==a,,.", aO,O=a. 

In (12) we have left out the small term E,,<<tiw,. The 
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sum over k+n must be retained in (11) in order to take 
into account the quasistationary character of the bound- 
state spectrum in a Landau band N #0. 

A more detailed analysis shows that the condition for 
the validity of the uncoupling of the system (3) into (10) 
and (11) is  the smallness of 

where f is the amplitude for scattering of an electron 
with zero energy by a potential u(lrJ) in the absence of a 
magnetic field. 

Using the customary method of solving equations with 
a 6 potential, solving (l2), expressing the coefficients 
C,(z) in terms of C,,(O), substituting (J,,(Z) in the 
right-hand side of ( l l ) ,  and solving the resultant equa- 
tion, we arrive at the following expression for the en- 
ergy of the bound state of an electron with a definite 
angular-momentum projection m on the direction of the 
magnetic field in the Landau band N: 

where m SO, and for m>O we have 

where e is the Heaviside function. 

It follows from (13) and (14) that the longitudinal-mo- 
tion energy spectrum Ell < O  is quantized in the field of 
the attraction center. This spectrum is infinite and 
condenses from below to the bottom of the N -th Landau 
band, and has a ground state E - = -$a2tiw, that cor- 
responds to m = O  and coincides with the corresponding 
result of Ref. 7 taken at CY <<I. 

In the general case m+O the longitudinal-motion ener- 
gy is characterized by the values of m and i s  of the or- 
der of 

with a width 

We note that in any Landau band n #O (!) there is one 
state withm=N>O which is strictly stqtionary. The 
physical reason is that an electron with m =N > O  can not 
drop to a lower Landau band N ' < N ,  since the latter has 
no states with orbital momentum projections m > N'.'~' On 
the other hand the widths of the levels (13) and (14) are 
determined precisely by such electron transitions. 
Without writing out the general unwieldy expression for 
the wave function of the quasistationary state, we note 
also that the characteristic region of its variation along 
z (1 H is within the range z ,ff - Z/CY;. 

Besides the spectrum of the energies lying below the 
bottom of any Landau bandN, the SchrMinger equation 
(1) has at Ell =E - tiw ,,(N +$ ) > 0 solutions that constitute 
the system of wave functions of the scattered electron 

(or their superposition), which can also be character- 
ized by the quantum numbers Ell, m , and N, the energy 
spectrum being continuous in Ell . It is convenient to 
choose this system of functions in a form such that on 
the left (or ontheright) of the center there is a scatter- 
ed wave that decreases along z, and on the right (or 
left) there is only the scattered wave. Since at the 
asymptotic distance z - im we have a free particle, the 
energy of the longitudinal motion can be set equal to 
Ell =p2/2m *. The solution of (3) in the approximation 
used above can then be obtained in elementary fashion. 

It is easy to show that the wave function of the con- 
tinuum has in complex p plane a pole at 

which corresponds to a bound state of an electron in the 
field of a center with arbitrary energy Ell =p2/2m*, giv- 
en by expression (13). The last term in (17) yields in 
this case the width of the corresponding quasistationary 
state. An analysis of the wave function of the continuous 
spectrum with m > O  shows that they have in complex p 
plane poles corresponding to the bound states (14). The 
system of the wave functions of the continuous spectrum 
for m = 0 coincides (after changing to another gauge) with 
S k o b ~ v ' s ~ ~ ~  system of wave functions at p2/2m * <<Ew,. 
We note that since Skobov used in fact a 6-function po- 
tential, his papercg'does not containstates (17) with rn + 0. 

3. ABSORPTION IN b + b AND b + c TRANSITIONS 

We investigate now the absorption of an electromag- 
netic field E,sin wt(w - w, = Aw << w) by an electron on 
bound states in transverse fields E,IH. We assume a 
zero electron temperature T, no interaction between the 
electrons, and a weak electric field. 

Under the influence of the weak electric field, the 
electron undergoes transitions from the ground state 
n=m = O  into bound states of the first Landau band (TI =0, 
m = + 1 and n = 1, m = - 1). The probability of these tran- 
sitions is proportional to the square of the modulus of 
the matrix element of the interaction of the electron with 
the electromagnetic field 

V,(r, t )  =-epEo sin ot, (18) 

taken over the corresponding wave functions of the bound 
state. In this case the transition (n =m = O-n = 1, m = - 1) 
is of higher order of smallness in CY than the transition 
(n =m = 0 -n = 0, m = + 1). Simple calculations yield, in 
the first nonvanishing approximation in a ,  the following 
formula for the absorption coefficient of the transition 
(n=m=O-n=O,m=+l) 

b-b 4n2 ao+' qo-+, (a) - c..2%n.'e101z- 6 (o-ot), 
4 a 

where 

nk is the concentration of the electrons captured by neu- 
tral impurities in the semiconductor, and e is the elec- 
tron charge. 

The reasonwhy the absorption peak of the b -b tran- 
sition is a 6-function is that the state n =0, m = + 1 in the 
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first Landau band is stationary and cannot decay with a 
transition into the continuum of the ground Landau band. 
The absorption peak in (19) becomes smeared out as  a 
result of electron interaction with acoustic phonons and 
neighboring i m p u r i t i e ~ . ~ ~ ' ~ '  However, the calculation of 
these effects is beyond the scope of the present paper. 

In analogy with (19), we obtain a term that describes 
the contribution made to the absorption coefficient by 
the transitions of the second type, b -c, taking the ma- 
trix element over the functions of the bound states and 
the continuum: 

where w, =w, +(u2w,/2. 

The component of the absorption coefficient (20) in 
the region of small frequency detunings 

is proportional to -(w- o,)'"--0, while in the region of 
large frequency detunings 

o - o ~ ~ l / ~ o H J a o '  l a  (22) 

it has a square-root decrease 

single atom located at the center of a Larmor circle of 
area nz2. The number of atoms falling into this area is 
n , , ~ n l ~ ,  (n,, is the concentration of the atoms). There- 
fore the total probability of electron transition form the 
continuum state (n = 0, m = - 1, p) to the bound state 
(n = 1, m =0) is obtained by multiplying (28) by n,,Ln12. 

We can next calculate the absorption-coefficient com- 
ponent due to c -b transitions. To this end we must 
know the form of the equilibrium distribution function 
of the electrons. For the case of free electrons and 
arbitrary statistics, this function was obtained by Zi1'- 
bermanC lo' and for Boltzmann statistics by ~evinson.~l l '  
At sufficiently low impurity concentration, n,,lS << 1, it 
is legitimate to use the functions from Refs. 10 and 11. 

In the case of Boltzmann statistics, the electron lon- 
gitudinal-energy distribution takes the formclll 

and the absorption coefficient is given by 
e21Z n, omR' 1 .  

, , ~ - b ( ~ )  =2n'4~,13a3 ---€I o, - - a-ox-o 
h'" T'!' (ox--oll I 2  I 

q- (o-02) -**. (23) In the region of small frequency detunings 
The maximum of (20) occurs at the frequency 
- O < O ~ - ~ / Z ~ ' O , - Q ~ ~ / ~  Iao-'l 'opaT/h (31) 
0 , , . a r = ~ ~ i ' / 2 ~ ~ ( ~ ' t  110' 1 ') 
- 

(24' Eq. (30) has a square-root dependence on the frequency 
and is equal to detuning: 

(25) I ~ * - ( O ~ - ~ / Z ~ ~ O ~ - ~ ) L *  . 
In the intermediate region 

4. ABSORPTION IN c + b  AND c + C  TRANSITIONS %lao-'J Z~aaoa-%a20a-o~T/R (33) 

The probability that an electric field EOlH can cause 
an electron transition from the continuum state of a 
lower Landau band (n= 0, mcO,p) into bound states of 
the Landau band (n= l , m +  1) and (n=O,m =+ 1) is deter- 
mined by the matrix element (18) taken over the wave 
functions of the indicated states. Transitions with de- 
crease of m(m-m- 1) are of higher order in a, and will 
not be considered. Simple calculation yields for the 
probability of the allowed transitions per unit time 

Here 

and L=vlls, where V is the volume. 

The transition easiest to resolve experimentally 
6/1 <<I) corresponds to an initial state m = - 1: 

Equation (28) describes the electron transition prob- 
ability per unit time when the electron interacts with a 

the absorption coefficient decreases in square-root . 
fashion 

and finally, in the frequency region 

the square-root dependence (34) gives way to the expo- 
nential one 

qc-b- esp - - ( ~ ~ - ' / ~ a ~ o a - o )  . r l  I (3 6) 

The probabilities of transitions of the fourth type c-c, 
allowed, in the lowest order in 0 ,  between the states 
(n=O,m=O,p,-n=O,m=+l,p) and (n=O,m<O,p,-n=l, 
m + l , p ) ,  are given respectively by 

It follows from (37) and (38) that scattering by an in- 
dividual short-range potential does not influence the ab- 
sorption-line contours in electron transitions in the 
continuum-just as  in the case of CR on free electrons, 
it has a 6-function dependence on the frequency detun- 
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ing. Therefore the result obtained by ~ u r v i c h ~ ~ ~ ~  in the 
Born approximation, namely that there i s  no inhomo- 
geneaus broadening of the CR absorption curve when an 
electron i s  scattered by a short-range potential, re-  
mains valid also in the exact solution of the scattering 
problem. 

To obtain the component of the absorption coefficient 
in the c -c transitions it i s  necessary to sum (37) and 
(38) over all m. For a short-range potential we have in 
this case 0 ~ - 6 / 1 ) ~ ~ ~ ~ < < l ,  and we arrive at an expres- 
sion that differs insignificantly from the usual one (see, 
e.g., Ref. 12). 

5. ABSORPTION IN PARALLEL FIELDS 

We consider now the absorption of the electromagnet- 
ic field by an electron in parallel (E, ((H) fields. The 
Hamiltonian of the interaction of the electron with the 
field takes in this case the form 

V,(r, t )  =-eE,z sin ot . (39) 
In the absence of a center, there i s  no absorption due 

to transitions of the electron between states of different 
Landau bands, in view of the orthogonality of the radial 
wave functions 

The interaction of the electron with the center leads, 
first, to the appearance of a bound-state spectrum be- 
low the bottom of any Landau band, and second, to a 
mixing of states of different Landau bands having the 
same value of m .  By virtue of these circumstances, 
two types of absorption are possible in parallel fields: 
low-frequency intraband absorption at a frequency w 
,r - ,a, z w, <<w , and interband absorption at a frequency 

w-W,. 

The intraband absorption at T=O i s  due to electron 
transitions between states of the lower Landau band 
(n = 0, m = 0 -n = 0, m = 0, p ) ,  and the contrilxltion made by 
such transitions to the absorption coefficient is 

The absorption coefficient qint* has a maximum at the 
frequency 

~ - = ~ / , a ' o ~ .  

equal to 

At high frequencies 

owe- (43) 
the absorption coefficient decreases in proportion to 
wSh: 

while at low frequencies 
o<'/.aZorr (45) 

the coefficient tends to zero in proportion to 
- ( ~ - c r ~ w " / 2 ) ~ ~ .  

Finally, for the interband transition (n = rn = 0 - 1, 
m =O,p) the absorption coefficient in parallel fields i s  

given by 

At low frequencies 

we have for the absorption coefficient 

tl,?" (o) - (o-on-aZo$2)". (47) 

The maximum of the absorption coefficient qtntQ lies in 
the frequency region w = ($)w ,. 
6. DISCUSSION OF RESULTS 

The effects considered here are realized in semicon- 
ductors such as Si and Ge when an electron interacts 
with hydrogenlike neutral impurities. However, the 
possibility of observing atomic CR on bound states of 
an electron in the field of such impurities i s  limited by 
a number of conditions. 

First, the produced bound-state spectrum becomes 
smeared by the interaction of the electron with the 
phonons as  well as  with the surrounding neutral and 
ionized impurities. At low temperatures, the principal 
role is played by the interaction with the acoustic pho- 
nons. The characteristic widths of the electron-phonon 
interaction are of the order of tiY - 6 . 3 ~ 1 0 ~ ~  eV. The 
ionization energy of hydrogenlike neutral impurities in 
Ge i s  of the order of eV. Similar neutral impurit- 
ies  can capture electrons to form type-d- impurities. 
The binding energy of the captured electron is 1/20 
of the ionization energy of the neutral-impurity elec- 
tron. The characteristic radius of such impurities if 
of the order of a=0.5~10-'  cm. Therefore a t ~ = 4 x 1 0 ~  G 
the dimensionless interaction constant i s  a=0.5 and the 
magnetic length is I = lo-' cm. The ground energy level 
(in the Landau band N )  with m = O  lies EySO= - 2 . 5 ~ 1 0 ~ ~  
eV below the bottom of the band, and the levels with 
m+O are lower by E: = - 2 . 5 ~ 1 0 ~  eV. Comparison of 
the obtained values of E; and K, yields~:'~/ti,=40, 
E :"/tiy =2.5, ~ r " - ~ / t i ,  = 0.16, i.e., one should expect the 
levels with m = O  and m = k 1  to be resolvable. 

Second, the powerful peak of the CR (on the free 
electrons) has a half-width of order tiy, as  a result of 
which the observation of absorption, with a maximum at 
frequencies of the order of w, - (r2wH/2, i s  made diffi- 
cult for the c -b transitions [see (30)] by the presence 
of an absorption wing for c-c  transitions. They can be 
resolved if the maximum of the absorption in the c  -b 
transition i s  large compared with the height of the ab- 
sorption curve in the c - c  transition on the wing at the 
very same frequency; this takes place if the following 
inequality holds: 

At temperatures T=4 K and at the assumed values of 
the parameters, a numerical estimates yields n,,>> 1014 
~ m - ~ .  In real situations, the requirement (48) becomes 
somewhat more stringent because the c-b  absorption 
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curve is also smeared by the electron phonon interac- 
tion. An estimate shows that allowance for this inter- 
action worsens (48) by at most a factor of two. 

The broadening of the absorption of the absorption 
lines on account of the interaction of the electron with 
neutral and ionized impurities can be estimated by us- 
ing the appropriate expressions obtained in Refs. 12 
and 13 for the relaxation times. In our case this broad- 
ening is small compared with the phonon broadening up 
to an impurity concentration on the order of 1016 em-=. 

Third, the intensity of the absorption on bound state 
is proportional to the concentration of the electrons 
captured by neutral impurities. To facilitate the obser- 
vation of atomic CR by such impurities it is expedient 
to use weakky compensated semiconductors, for which 
there exists a temperature region in which the donors 
have not yet been ionized, but the electrons are already 
uniformly distributed over the impurity bandc3'141; this 
increases the number of electrons captured by the neu- 
tral  impurities. 

In conclusion, I am grateful to  Yu. A. Gurvich and 
I. B. Levinson for useful discussions in the course of 
the work and for a detailed evaluation of the result, and 
to M. A. Kozhushner for an evaluation of the results. 

It is  assumed that there are no bound states in the potential 
u(?) in the absence of a magnetic field. 
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An investigation has made it possible to explain the existence of an experimentally observed minimum of 
the resistance in size-quantizing films. Methods are proposed that permit investigations of the Fermi-line 
geometry. The question of quantization of the acoustic spectrum is examined. It is shown that the speed 
of sound oscillates with changing film thickness. 

PACS numbers: 73.60. - n, 68.60. + q 

We investigate in this paper the question of the dis- 
persion law in size-quantizing crystal films. It is 
known that size quantization can be observed in thin 
crystal film. This effect is highly sensitive to the film 
quality. The best conditions for i ts  observation are re-  
alized in semimetal films, where a number of factors 
(such as the low electron density) cause the de Broglie 
wavelength to exceed greatly the atomic dimensions, 
and it is this which makes the surface in fact specular. 
This is why the size-quantization effect was in fact dis- 
covered first  in semi-metallic Bi and Sb films. The ob- 
servation of this effect in thin metallic films (of Sn, Al, 
Pb, Mg, Au, and Ag) is possible, although more com- 
plicated. 

mined by the longitudinal two-dimensional quasimo- 
mentum and by the transverse quantum number n. In- 
stead of the F'ermi surface we have a group of two-di- 
mensional subbands. Strictly speaking, the momentum 
projection k ,  perpendicular to the plane of the film is 
not defined. It can be approximately assumed, how- 
ever,  that the different subbands have different values 
of k ,  = nn/L (see,  e.g., Ref. 1). 

The most interesting situation occurs in the case when 
the concentration satisfies the condition n S La. In this 
case,  only the lowest subband is filled. The film, which 
remains a three -dimensional system in coordinate 
space (L >>a, where a i s  the lattice period), becomes a 
two-dimensional system in momentum space. This 

We confine ourselves hereafter to semimetallic films situation i s  realized, for example, in Bi films a t  L 
in which the size quantization effect is most pronounced. 5 5 x 10' A. The electrons a r e  characterized in this 
In sizequantizing films, the energy ~ ( % , n )  is deter- case not by a Fermi surface, but by the Fermi line 
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