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Cross relaxation in a dilute paramagnetic spin system is considered. The investigation is based on 
configuration averaging (over all possible spatial positions of the particles) of the iteration solution of the 
kinetic equations for the Z component of the spin momentum. The terms proportional to the square of the 
concentration c are retained in the obtained averaged exact solution. The actual calculations were made 
for a quantitative description of the cross relaxation of the 8Li-6Li nuclei; which determines the 
depolarization of the P-active nuclei ' ~ i  in an external constant magnetic field in an LiF single crystal. It 
is shown that the contribution of the first term, proportional to c ', is negligible at the 'Li half-lives 
(Tz0 .8  sec) compared with the retained terms. Some common regularities of excitation migration in 
disordered lattices are investigated. 

PACS numbers: 76.30. - v 

The 1957 discovery of parity nonconservation in 
radioactive /3 decay;"besides being of general physical 
significance, has led to the development of new experi- 
mental spectroscopic methods (see, e. g., Refs. 2-6), 
initially used to determine the characteristics (g-fac- 
tors,  quadrupole moments, etc. ) of @-active nuclei. 
Later, however, P-active nuclei came into extensive 
use a s  unique probes for the investigation of condensed 
b ~ d i e s ! ~ ' l ~ ~  Interest in research of this nature has in- 
creased particularly of late, a s  i s  evidenced by the 
ever growing number of studies. 

The methods developed a re  typically combinations 
of procedures used in traditional magnetic resonance 
and observation methods used in nuclear physics. The 
latter has greatly contributed to the unusually high 
sensitivity of the procedures. The purpose of the 
present paper is to describe quantitatively experiments 
on the observation of depolarization of @-active 8Li 
nuclei in single-crystal LiF and to determine some 
general regularities of the process of migration of ex- 
citation in disordered systems. We shall dwell briefly 
on the experimental setup (a detailed description of 
the experiment and i ts  detailed comparison with the 
theory will be made subsequently; see also Ref. 15). 
The LiF single crystal was bombarded by a beam of 
polarized thermal neutrons. Capture of a polarized 
neutron by the 7Li nucleus produced a polarized beta- 
active 8Li nucleus with a half-life 0.8 sec. At room 
temperature, the depolarization of 8Li nuclei in a con- 
stant magnetic field applied parallel to the initial po- 
larization and of strength 150 Oe c H S 3000 Oe is the 
result of cross relaxation with the stable isotope 6Li, 
whose concentration in the sample was 3.5%. This 
relaxation mechanism was predominant in so  wide a 
range of fields because the g-factors were close: g('Li) 
= 0.8265, g('Li)= 0.8220. The mutual influence of the 
8Li nuclei was negligible because of their small total 
number, -lo8, in the sample. The dependence of the 
polarization of the 'Li nuclei on the time was deter- 
mined from the angular anisotropy of the B decay. 
Thus, to describe the experiment it is necessary to 
solve the problem of excitation transfer (cross relaxa- 
tion) in a dilute paramagnetic system. Very similar 
problems a re  encountered in electron paramagnetic 

r e s ~ n a n c e ~ ' ~ " ~ ~  (except that they a r e  made complicated 
there by spectral diffusion), in the study of the effect 
of resonant dipole-dipole interaction between the donors 
on the luminescence quenching p r o c e s ~ j ' ~ - ~ ~ ~ i n  problems 
of hopping condu~t ion :~~ '~~ 'and  others. From the math- 
ematical point of view these problems consist of con- 
structing a solution, averaged over all possible spatial 
positions of the particles, of kinetic equations that a re  
perfectly analogous to  the fundamental equation of our 
paper, which will be formulated below. Notwithstand- 
ing the dozens of papers dealing with this problem 
since Forster's pioneering ~ o r k : ~ ~ ] i t  i s  still f a r  from 
solved, a s  noted, e.g., in Ref. 20. 

In this paper we average the iteration solution of the 
kinetic equation at arbitrary concentration, and sum 
partially the obtained series.  An estimate of the f i rs t  
discarded term has shown that at times of the order of 
the half-life of 8Li i t  i s  negligible compared with the 
retained terms. The results of the theory agree with 
experiment. Some general properties of diffusion in 
a disordered lattice a r e  discussed and the presented 
approach is compared with earlier studies. 

When a polarized 8Li nucleus i s  placed in a crystal 
it i s  subjected to a dipole-dipole interaction with the 
nuclei 19F, 7Li, and 'Li. The Hamiltonian of the nu- 
clear spin subsystem of the crystal isc26v271 

l = % , + % , + l r + Z 3 + % & + Z s ,  (1) 

&". i s  the Zeeman interaction of the nuclei with the ex- 
ternal magnetic field, % and % are  the secular parts 
of the dipole-dipole interaction of the 'Li nuclei with 
the 19F and 7Li nuclei; and a re  the interactions 
of the 'Li and %i nuclei and of the 'Li nuclei with one 
another. Finally, BYj includes the secular part of the 
dipole-dipole interaction of the 19F with each other and 
of the 'Li with each other, a s  well a s  the interaction 
between lgF and 7Li. The presence of the terms x, x,  
and in the Hamiltonian causes broadening of the NMR 
spectrum of 'Li and 'Li, whereas the terms and 
lead to cross  relaxation of the nuclei 'Li and 8Li and to 
further dissipation of the polarization in the magneti- 
cally dilute system of the 'Li spins. The nuclei 8Li 
and 'Li a re  located in fluctuating local magnetic fields 
determined by the Hamiltonian + t BY;. The rate 
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of these fluctuations i s  of the order of the ra te  of the 
flip-flop processes in the 8Li-6Li subsystem. The 
8Li-6Li and 6Li-6Li cross relaxations can therefore be 
described by the standard perturbation theory for the 
density m a t r i ~ , ~ ~ ~ ~ ~ ' w h i c h  leads to the kinetic equation 

The external magnetic field H i s  assumed here applied 
along the Z axis. P, i s  the average value of the Z 
component of the k-th spin from the 8Li-6Li subsys- 
tem, v,, i s  the probability of cross relaxation of spin 
k under the influence of spin I: 

S,, g,, and w, a re  respectively the magnitude, g-fac- 
tor, and Zeeman frequency of the 1-th spin, /3, i s  the 
nuclear magneton, g(w) is the cross-relaxation form 
function normalized to unity, ri, i s  the vector that 
separates the spins 1 and k, and O,, is the angle between 
H and r,,. At S, = 1/2 formula (3) coincides with the 
known Bloembergen formula!zg' For the sake of argu- 
ment i t  can be assumed that I = 0 corresponds to the 
spin So= 2 of 8Li, and 1 # 0 to the spin S, = 1 of 6Li. We 
shall hereafter, however, not specify the value of the 
spin, and consider by the same token the more general 
case. 

It must be noted that the function g(w, - w,) depends 
not only on w, - w, but also on the concrete arrange- 
ment of all the 8Li-eLi spins. At a low concentration 
of 6Li, however, this dependence can be neglected, and 
at a high concentration a good approximation i s  ob- 
tained by substituting in (3) the value of g(w, - w,) 
averaged over the configurations of the spins of 'Li 
and 6Li. 

Equation (2) i s  exact within the framework of the 
assumptions formulated above but only if S,= 1/2. In 
the case of arbitrary spins i t  can be obtained by as- 
suming the diagonal part pD of the spin density matrix 
to have the so-called local-equilibrium form 

-- - 

where 9: i s  the operator of the Z-component of the I-th 
spin. This i s  precisely the form of pD at t =  0, Po- 1, 
and P,= - /3,,g,(S, + 1)  H / ~ T  - 0, where T is the tempera- 
ture in energy units, since the nuclei produced in (n, y) 
reactions on thermal polarized neutrons have only di- 
pole polarizati~n!~' In addition, the representation (221) 
usually serves a s  a basis for the description at large t 
(see, e. g., Ref. 27). Estimates show that dispensing 
with formula (2a) leads to corrections amounting to 
several per cent of the solution of (2). We note that 
Eq. (2) can lead to incorrect results in the description 
of systems for which the initial state can not be repre- 
sented in the form (2a), or  else call for allowance for 
effects due to the finite propagation velocity of the ex- 
citations in the dipole-dipole reservoir. 

Introducing the angular-momentum density p, and the 
density of the occupation number lzr 

(the summation is over all the occupied sites), we can 
identically rewrite (2) in the form 

The index z runs here over all the lattice sites, and 11, 

differs from zero if the site z i s  occupied. 

Defining the Green's function jr,(t) of Eq. (4) a s  the 
solution that satisfies at t =  0 the condition 

P . ( ~ = o )  =nuti, (5) 
(8,, is the Kronecker symbol), we rewrite (4) in inte- 
gral form 

, 
+ J d t ,  exp [-z n.v..(t-tl)] z n.v,pqV(tl). 

0 I 

Here and below we put vl,= 0; $=,(t) is the 2-component 
of the angular momentum at  the point x if the entire 
angular momentum of the system was concentrated a t  
the site y. For the angular momentum to be located 
a t  the point y, this point must be occupied by the nu- 
cleus; this i s  taken into account by the factor n, in (5). 
In the 8Li-6Li system the site y i s  occupied by the spin 
of 8Li, and the spins of 6Li can be situated in the re- 
maining sites. 

After introducing the matrix 

Eq. (6) reduces to 

p ( t ) = ~ ( t ) + J  e ( t - t , ) ^  vp(t , )dt , .  (7) 
0 

The last equation i s  convenient for obtaining the itera- 
tion solution 

The problem consists now of finding the matrix element 
pry(t) averaged over the random positions of the spins, 
i.e., over all possible sets of the values of the occupa- 
tion numbers in,) at arbitrary X. 

To illustrate the employed technique, let us examine 
in detail the averaging of the zeroth term in (8). We 
assume that the occupation numbers of the different 
si tes do not correlate, i. e. , the probability of filling- 
the site x does not depend on whether or  not the site z 
is occupied a t  z f x, but not more than one spin can be 
located in one site. Therefore, assuming that (q)= c 
(c i s  the concentration of the occupied sites), we have, 
for example ( t p , ) =  2 at  x #  y and ( I ~ z , ) =  c if X= y. 
In addition, exp(- 12, y t )  -= 1 + tzAexp(- v,t) - 1). The 
function 
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contains a sum only over different sites, whose occu- 
pations do not correlate, therefore 

active nucleus "Li. Let us continue its calculation, 
separating from the se r i es  (12) all the t e rms  propot- 
tional to 2 (only two unequal indices, q and y ,  for any 
n). In this approximation, 

~rr( t)=c n{i+c[exp(-v.,t)-l~} 

The last equation, previously derived in Ref. 19, is 
convenient on going to the limit of low concentration; 
this is done by expanding the logarithm in powers of 
c. Introducing 7;= t, - t,, to= t, t,, = 0, we obtain for 
the integrand A'") in the n-th term of the ser ies  in (8) 

A: -(e(~.);e(~,). . . ^Yc(T~))~  

The integrand in (13) depends, in any order in n, only 
on two temporal arguments, t and T ,  and there is no 
integration with respect to  t. Rearranging the inte- 
gration limits, we have after obvious intermediate 
transfor mations 

It follows from this, taking into account the equality 
% f (%I= & f (l) ,  which i s  valid for any bounded f (n,), 
that 

Putting c = v,v, f ,(t - t,) we obtain ultimately 

x ( exp (- 2 nzvr., TI)) . 

x (i+c[exp(-vfl-v.,(t-tr)) -11). (14) 
:+a,v 

In the same approximation, 

Here go = x and qn = y. The quantity 

is the number of different vectors in the set  {q,, 
q,. . . a) (the calculation of mean values of this type 
is described in greater detail in Ref. 30), E:, ,, means 
that the sum over k includes only these different q,, . U . V  

Here I,(%) and I,(x) a r e  Bessel functions of imaginary 
argument. Formula (14) was used by us for numerical 
calculations with the B&SM-6 computer. 

whereas the sum over I is taken in the usual manner. 
The exponential in (11) is calculated in exactly the same 
way a s  in (9). As a result, the averaged solution of (4) 
takes the form An estimate of the upper bound of the f i rs t  term, 

proportional to c3, has shown that the contribution 
made to p,(t) in times of the order of the half-life of 
'Li is negligible compared with the contributions of the 
retained terms. The figure shows plots of p,(t) and of 

n ,  

x e -  q . l )  + c  ( - ) -  (12) 
k.1-0 **Q.,.O. ... C" 1-0 

We have denoted here by p,, the quantity (5,). For- 
mula (12) i s  exact. We call attention to the normaliza- 
tion p,,(O)= i3wc. The factor c stems here from the 
fact that we have averaged expression (8) with respect 
to n, on a par with all other I&,,. The calculation could 
have been made under the assumption )Z,P 1, which 
would correspond more accuracy to the gist of the pro- 
cess  in the 'Li-'Li system, but we would then obvious- 
ly obtain a result that differs from (12) only by an ines- 
sential common factor c, but would have lost greatly in 
the symmetry of the exposition. 

FIG. 1. Plot of the functionp,, (t) calculated by formula (14). 
Line 1 represents the contribution of the first term of (14). 
the dashed-line shows this term calculated in the Forster a p  
proximation. Line 2 i s  the contribution of the second term of 
(14). Line 3 represents p,, . An external field H =  200 Oe is  
applied along [loo]. 

The experimentally observed quantity is p,,, i. e., 
the Z -component of the angular momentum of the a- 
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both terms of (14), a s  well a s  plots of the first t e rm of 
(14) as  calculated in Forster's approximation, i. e. , in 
the limit of low concentration and with the summation 
replaced by integration. We used in the calculation 
the numerical parameters corresponding to the system 
8Li-6Li a t  small H. We note that for this system the 
e r r o r  due to the low-concentration approximation is 
about l%, whereas the discrepancy between the 
Forster approximation of the f i rs t  term of (14) and i ts  
exact value is due a t  low values of the time to  the re-  
placement of the summation by the integration: 

e x p  ( Z h [ i + c ( e x p  ( - v d )  - I ]  ]* exP {C [exp( -V .J)  - I ] }  
z+= .+* 

Here C2 i s  the volume of the unit cell, and is defined 
by the relation 

r,=a(l-3c0s2 O,,) '/( 1 x-z l  )'. 

We consider now some general properties of the 
series (12) in the low-concentration limit. In this case 

P X ~  ( t )  = ~ 8 -  e x p  { c x  [ e x p  ( - v ~ )  - I  1 1 I 

We introduce new integration variables: x,=t,/t. We 
rearrange (15) into a ser ies  in powers of the concen- 
tration, in the same manner a s  when the lower terms 
in c were separated in (13). We replace the summation 
over the lattice by integration: 

As a result we get 

- 
d'q, d3q,-l + rcnj 7...j-~,,, -- 

I-: 
Q 

Here 

Here {xi} is the se t  of xi with 0 a i a k, {tvqi,,) is the set 
tvgi,, at 0 d i k ,  0 j s  R; a, and b, a r e  certain func- 
tions of {xi}, {tv,,,), independent of the-concentration 
and dependent on t and c only via the indicated argu- 
ments, The explicit form of these functions is imma- 
terial in what follows. The difference between the 
powers of the concentration (c" in p,, and c"" in pry) i s  
due to the fact that for p, we have 

since % = q n z y ,  whereas for p,,we have x=%# q,,oy. 

Introducing now in (16) 2nd (17) new spatial integra- 
tion variables Gi = qi/ra, z =  z/ya, where ya = (S2/c)'l3 
is the average distance between spins, we get 

Here V ,  is the average (over the orientations) rate of 
cross  relaxation between two spins separated by a dis- 
tance Y,. The functions f and g themselves do not de- 
pend on the time, coordinates, or  concentration, and 
a re  dimensionless. 

We examine now the physical meaning of (18). In it 
a re  separated the natural parameters that determine 
the evolution of p,,(t): the average distance between the 
spins, and the cross-relaxation rate at this distance. 

On the other hand, the difference between the powers 
of the concentration in f and gof  (18) i s  due to the 
following. The initial condition for (14) was chosen in 
the form p,(t= 0)= IZ,~,,. This corresponds to the con- 
dition that the site y is reliably occupied by a spin. 
Actually, n, can take on two values, n,=l with probabil- 
ity c ,  and n, = O  with probability 1 - c. But a t  n, = O  we 
we have pr(t)= 0. Thus, only realizations of the ran- 
dom spin distributions for which the site y i s  occupied 
contribute to p,,(t). Any other angle in these realiza-. 
tions i s  occupied with probability c. Consequently, in 
the res t  of space there is only one spin for No= l / c  
sites. Cross relaxation equalizes, in order of mag- 
nitude, the angular-momentum projections per spin in 
various points of space. Consequently, after the lapse 
of a sufficient time we can write 

Here V i s  a volume containing No sites. Therefore 
p,,,-cp,, a fact indeed reflected in (18). From the 
derivation of (18) it follows that these relations a re  
valid regardless of the actual dependence of v,. on 
Ix-z  I. 

It is now easy to ascertain which is the true expan. 
sion parameter for p, in (16). Since v, - 8, this 
parameter is, apart from a numerical factor, T 
= (vat)ll2. 

It follows from (18), in particular that a t  c<< 1 the 
value of p,, does not tend with increasing t to the solu- 
tion of the macroscopic diffusion equation: 

- -  - - 

ap/at=D.ip, p ( t = o )  = b ( ~ - y ) .  (19) 

Let us assume that the opposite is true. Relations (18) 
a re  asymptotically exact (for time at  which the summa- 
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tion over the lattice indices can be replaced by inte- 
gration, at low concentrations, but at arbitrary values 
of T) solutions of the initial equation (2) under the con- 
dition that at the initial instant of time the polarization 
source is located at the point y. Since p,,(t) i s  the 
Green's function of (19) we get 

We thus obtain 
D-c'". 

A similar analysis for p,(t) (we equate pyy(t) to the 
polarization in the source) leads to the estimate 

- - 

D-cZ. 

Thus, the assumption that the diffusion equation is 
valid i s  untenable. For no value of the time does the 
averaged solution of Eq. (2) coincide with the solution 
of the diffusion equation, nor can i t  be represented by 
a smooth function: there is  a singularity at the point 
y. This circumstance highlights the fundamental 
difference between the migration of an excitation over 
ordered and disordered lattices. In the former case, 
Eq. (19) is valid at large enough t. 

We note that relations (18) a re  violated a t  small t .  
The reason is that in the derivation of (18) the lattice 
sums were replaced by integrals over all of space, 
including the points where the functions uaiV ( I rai - ra, 1) 
have singularities. At sufficiently large t the contri- 
bution of these points becomes insignificant, because 
these functions enter the integrand in the form of either 
u,'~' or simply e-"'. At low values of t, however, the 
difference can be appreciable from the point of view of 
the reduction of precision experiments of the type 
described in Ref. 15. 

We note finally that merely the asymptotic accuracy 
of (18) leads to a conservation of the normalization 

only under the condition lim,,,p,,(t)= 0. In fact, 

d'x + ~ P = ~ ~ P ~ ~ +  J. - P=V - lim P.". 
=7'u 

Q X+" 

But 
d'x d3z x-y 

jT".(t) =cZ j T b  (_. Tot)  

From the equality 
cj(v,t) +cv(T.:) +c2g(o; ~ \ . , t )  =c 

i t  follows that to ensure the normalization we must have 
g(0, vat) = liq,,p,,(t) = 0. It i s  easy to show, however 
(assuming in 14a) for simplicity us,= u,), that 

and thus, the condition (20) has in fact been violated. 
It must be emphasized, however, that  the normaliza- 
tion-violating term in (21) i s  proportional to the small 
factor c2 and i ts  inclusion in (21) exaggerates the accu- 
racy of (18). 

In conclusion, we compare the presented approach 

to the description of diffusion in a disordered lattice 
with the results obtained in earlier studies that a re  
closest to ours in their scope. 

To solve Eq. (4), Sakufg'introduced an occupation- 
number formalism and developed a diagram method 
with the aid of which he obtained the exact formula (9), 
which generalizes the Forster decay law. To describe 
diffusion by the same method, .on the other hand, an 
irreducible operator was introduced and defined by an 
expansion in powers of the concentration c, in the 
lowest order in c. It follows from our results that such 
an expansion is in reality an expansion in ct1I2 and can 
be valid, just a s  our formula (14), only for the s tar t  
of the process. Sakufg'separated correctly the natural 
scales of the variation of p,,, but the solutions obtained 
there still does not satisfy relations (18), since i t  does 
not account for the special nature of the site y to which 
the excitation is initially applied. 

Scher and developed a general phenomenologi- 
a1 concept of random walk in a disordered lattice, in 
which, just as  in Ref. 19, the natural units of distance 
and time were correctly separated in the case of small 
c. ButcherCu1interpreted this approach a s  a partial 
summation of an iteration series,  a summation re- 
placed in Refs. 17 and 18 by an uncontrollable decou- 
pling procedure. In the sense of the described con- 
structions the method developed in these papers should 
yield an averaged solution of Eq. (4). The singular 
character of the initial point was not noted in these 
papers, however, so  that their results do not satisfy 
the relations (18). This manifests itself quantitatively, 
for example, in the fact that the iteration solution of 
Eq. (6) of Ref. 17, which should be close in i t s  meaning 
to our ser ies  (15), accounts correctly for the first  
term in p,, but yields a coefficient c3 instead of 2 for 
the second term. 

An approach similar to that proposed in Ref. 22 is 
treated in Ref. 24 a s  a gross-structure averaging. 
This method is presently under intensive study (see, 
e.g., Ref. 31). The results of the gross-structure 
averaging should no longer satisfy formulas (18), but 
they cannot yield information on the function p,, which 
is essential for experiments with &active nuclei. 
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S. S. Trostin, and I. S. Shapiro for discussions. 

'c. S. Wu, E. Ambler, R. Hayward, D. Hoppes, and R. Hud- 
son, Phys. Rev. 105, 1413 (1957); 106. 1361 (1957).  

2 ~ .  L. Shapiro, Usp. Fiz. Nauk 65, 133 (1958).  
3 ~ .  Connor, Phys. Rev. Lett. 3, 429 (1959). 
4 ~ .  G. Abov, 0. N. Yermakov, A. D. Gulko, P. A. Krupchit- 

sky, and S. S. Trostin, Nucl. Phys. 34, 505 (1962). 
5~erturbed Angular Correlations, eds. E. Karlsson et a1 ., 

North-Holland, 1964. 
6 ~ .  D. Gul'ko, S. S. Trostin, and A. Khudoklin. Zh. Eksp. 

Teor. Fiz. 52 ,  1504 (1967) [Sov. Phys. JETP 25 ,  998 (1967)l; 
Yad. Fiz. 6, 657 (1967) [Sov. J. Nucl. Phys. 6,-477 (1967)l .  

7 ~ .  I. Bulgakov, A. D. Gul'ko, Yu. A. Oratovskii, and S. S. 
Trostin, Zh. Eksp. Teor. Fiz. 61. 667 (1971) [Sov. Phys. 

518 SOV. Phys. JETP 48(3), Sept. 1978 F .  S. Dzheparw and A. A. Lundin 51 8 



JETP 34, 356 (1972)l. 
OJ. Mertens, H. Ackermann, D. Dubbers, P. Heitjams, 

A. Wtnnacker, and P. von Blanckenhagen, Z. Phys. 262, 
189 (1973). 

g ~ .  K. McNab and R. E. McDonald, Phys. Rev. B 13, 34 (1976). 
'OT. Minamisonsi, J. W. Hugg, D. G. hfavis, T. K. Saylor, 

S. M. Lasarus, H. F. Slavish, and S. S. Hanna, Phys. Rev. 
Lett. 34, 1465 (1975). 

"R. C. Haskell, F. D. Correll, and L. Madansky, Phys. Rev. 
B G ,  3268 (1975). 

1 2 ~ ,  Ackermann, D. Dubbers, H. Grupp, M. Grupp, P. Heit- 
jams, and H. J. Stockmann, Phys. Lett. A 54, 399 (1975). 

1 3 ~ .  E. McDonald and T. K. McNab, Phys. Lett. A 63, 177 
0977). 

"D. Dubbers, K. Dorr, H. Ackermann, F. f i j a r a ,  H. Grupp, 
M. Grupp, P. Heitjans, A. Korblein, and H. J. Stockmann, 
2. Phys. 282A, 343 (1977). 
'%I. I. Bulgakov, S.P. Borovlev, A. D. Gul'ko, F. S. Dzhe- 

parov, I. G. Ivanter, and S. S. Trostin, h e p r i n t  ITEF-150, 
1976. 

l6v. A. Atsarkin and M. I. Rodak, Usp. Fiz. Nauk l W ,  3 (1972) 
[Sov. Phys. Usp. 15, 251 (1972)l. 

"B. E. Vugmeister, Phys. Status Solidi B 76, 161 (1976). 
'*B. E. Vugmeister, Fiz. Tverd. Tela (Leningrad) 18, 819 

(1976) [Sov. Phys. Solid State 18, 469 (1976)l. 
'9. P. Sakun, Fiz. Tverd. Tela (Leningrad) 14, 2199 (1972) 

[Sov. Phys. Solid State 14, 1906 (1973)l. 
2 0 ~ ~ .  K. Voron'ko, T. G. Mamedov, V. V. Osiko, A. M. 

Prokhorov, V. P. S a b ,  and I. A. Shcherbakov, Zh. Eksp. 
Teor. Fiz. 7lJ 478 (1976) [Sov. Phys. JETP 44, 251 (1976)l. 

2 1 ~ .  I. Burshtein, Zh. Eksp. Teor. Fiz. 62, 1695 (1972) [Sov. 
Phys. JETP 35, 882 (1972)l. 

2 2 ~ .  Scher and M. Lax, Phys. Rev. B 7, 4491 (1973); 7, 4502 
(1973). 

2 3 ~ .  N. Butcher, J. Phys. C 7, 879 Q974); 7, 3533 (1974). 
2 4 ~ .  Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975). 
2 5 ~ .  Forster, Z. Naturforsch. Teil A 4, 321 (1949). 
26A. Abragam, Principles of Nuclear Magnetism, Oxford, 

1961. 
2 7 ~ .  V. Aleksandrov, Teoriya magnitnor relaksatsii (Theory 

of MagneLic Relaxation), Na$ka, 1975. 
2 8 ~ .  M. Fain. Fotony i nelineinye sredy (Photons and Nonlin- 

ea r  Media), Sov. Radio, 1972. 
2%?. Bloembergen. S. Shapiro, P. S. Pershan, and J. 0. 

Artman, Phys. Rev. 114, 445 (1959). 
3 0 ~ ~ .  A. Izyumov and M. V. hfedvedev, Teoriya magnitoupor- 

yadochennykh kristallov s primesyami (Theory of Magne- 
tically Ordered Crystals with Impurities). Nauka, 1970. 
021. 

3 1 ~ .  T. Gillespie. Phys. Lett. A 64, 22 (1977). 

Translated by J. G. Adashko 

Dynamic damping of dislocations by magnetizations in 
ferromagnets 

V. V. Kursanov and Yu. S. Pyatiletov 

Nuclear Physics Institute, Kazakh Academy of Sciences 
(Submitted 21 March 1978) 
Zh. Eksp. Teor. Fiz. 75, 1029-1036 (September 1978) 

The dynamic damping of dislocations by magnetizations in ferromagnets is considered. The temperature 
dependence of the damping force is investigated in the vicinity of the Curie point within the framework of 
the molecular-field approximation. The relative efficiencies of the phonon, electron, and magnetic 
contributions to the damping force are compared. It is shown that the magnetic contribution is decisive 
only in ferromagnets with low Curie points. 

PACS numbers: 75.40. - s, 61.70.Ga 

It is by now rel iably establ ished that the plast ic  prop- 
e r t i e s  of meta l s  are connected in one way o r  another  
with the motions of dis locat ions that are ei ther  pinned 
by s tat ic  obstacles  ( impuri t ies ,  complexes or impur  - 
i t ies ,  other  dislocations, long-range f ie lds  or e las t i c  
s t r e s s e s ,  and others) ,  or are dynamically damped by 
phonons, e lectrons,  and other  elementary excitations. 
Dynamic damping is decis ive a t  high dislocation relo- 
ci t ies ,  when the motion is above the b a r r i e r .  It  mus t  b e  
taken into account a l s o  in the case of low velocities when 
dislocations glide between obstacles. The mos t  effec- 

tive among the dynamic mechanisms is a r u l e  damping 
by phonons. Contributions of other  elementary excita- 
tions manifest themselves only in  s o m e  distinct s i tua-  
tions: thus, dislocation damping by e lec t rons  is sig-  
nificant a t  sufficiently low tempera tures ,  and damping 
by magnons takes place in fe r romagnets  below the Curie  
point. 

Dynamic damping of dislocations by phonons and elec- 
t rons  has  been studied qui te  thoroughly, and is the sub- 
ject  of exhaustive reviews. r'*2' T h e r e  is still no corres- 
ponding descript ion of dislocation damping by magnons 
in ferromagnets .  Among the la tes t  papers  connected 
with this  problem mention should be  made of the a r t i c le  
by 3ar'yakhta.r and Druinskii,  who investigated disloca- 
tion damping by magnons and obtained the tempera ture  
dependence of the magnon damping 

where  V is the dislocation, B(,2) is a coefficient indepen- 
dent  of the t empera ture  T, and 8, is the Curie  tempera-  
ture .  Bar'yakhtar and ~ r u i n s k i i [ ~ l  used the spin-wave 
approximation, which descr ibes  fe r romagnets  at re la -  
tively low temperatures .  Equation (1) therefore de- 
s c r i b e s  cor rec t ly  the t empera ture  dependence of the 
magnetic-damping f o r c e  a t  low values of T, but is not 
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