
and also gives r i s e  to an  anisotropy of this motion. 

The authors a r e  grateful to A. S. Logginov for  his 
help in this investigation and for  a discussion of the r e -  
sults obtained. 
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Exact equations are obtained (in particular, for the anomalous self-energy part H,,(O) = 0 and for the 
scattering vertex of two phonons r,(pi+O) = 0), which indicate that in the general case the usual methods 
of summing the field perturbation-theory diagrams for Bose systems are not valid (the calculation must not 
be stopped when a converging result is obtained in the lower order in some small parameter). An 
investigation of the character of the infrared divergence of the field diagrams has yielded the region of 
applicability of the ordinary summation methods. It is shown that in the case T> 0 or of a two- 
dimensional system at T = 0 one must use a special regularization that calls for introducing the phonon 
vertices counterterms that, in contrast to the relativistic theories, contain no infinities and do not change 
the initial Hamiltonian at all. Examples of effective summation are presented for cases when the usual 
approach leads to an erroneous result [&,(p--+O), n(p-+O), and others]. The derivation of the asymptotic 
Gavoret and Nozieres formulas for the Green's functions and the susceptibilities is re-examined with 
account taken of the equality Z;,,(O) = 0. 

PACS numbers: 11.1O.Jj 

1. lNTRODUCTlON properties of superfluid He4 (primarily the singularities 
of the spectrum; see ,  e.g., Refs. 3 and 4), a s  well 

The field theory developed in Refs. 1 and 2 has been a s  to verify, with the aid of simple models, the cor- 
successfully used for  a qualitative analysis of the rectness of other microscopic approachesf 51 and assump- 
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tions of semiphenomenological character. An advan- 
tage of the field approach is  the simplicity of the ana- 
lytic form of the diagrams, which makes it possible 
to separate readily and to analyze the essential skele- 
ton diagrams, to estimate the contribution of any dia- 
gram, and carry  out partial summation. 

Among the major successes of the field-theoretical 
approach were the i n ~ e s t i ~ a t i o n s , ~ ~ . " ~  aimed a t  a micro- 
scopic corroboration of the acoustic character of the 
long-wave excitations and of the local-equilibrium 
connection between the speed of sound and the com- 
pressibility for a Bose system with an interaction of 
rather general form. 

However, the field-theory diagrams constructed with 
the aid of exact particle lines a re  subject infrared 
divergence. In a large number of approximate cal- 
culations (see, e. g., Refs. 8-11), the diverging 
diagrams of higher order in the small parameter were 
simply discarded (the calculation was stopped when a 
convergent result was obtained in the lower orders 
in some small parameter). 

In this paper (Sec. 1) we obtain for different vertices 
with zero external momenta (in particular, for the 
anomalous self-energy part &,((I)= 0, Ref. 12) exact 
equations that contradict the similar "naive" use of 
perturbation theory. For a low-density system of hard 
spheres, for example, the summation of the ladder 
diagrams with zero Green's functions Go (corres- 
ponding to the lowest power of the small parameter) 
yields 

where a i s  the scattering amplitude.['] This example i s  
of particular interest, since collective theories that 
have no infrared  divergence^['^-^^] cannot be applied to 
this system (they call for  a sufficiently rapid decrease 
of the Fourier transform of the potential, V(q  - -) - 0). 

We investigate in this paper the character of the in- 
frared divergence of the diagrams and determine on the 
basis of the investigation the limits of applicability of 
the usual methods of the partial summation. We show 
that the divergences of diagrams without external lines, 
with not too small external momenta (and their sums), 
can be eliminated from some types of diagrams with 
arbitrarily small external momenta; these diagrams 
characterize, in particular, the energy of the ground 
state, the number of the particles in excess of the 
condensate, and the spectrum at momenta that are  not 
too small. It i s  possible to use here a partial summa- 
tion that i s  governed by the order of the diagrams with 
respect to the small parameter (for example, summa- 
tion of ladder diagrams with nonzero Green's functions 
for a low-density system). The divergences in the in- 
dicated diagrams are  eliminated already in the summa- 
tion over the directions of the internal lines of the 
particles in the case T=O (Sec, 2), and a s  a result of 
a special regularization that i s  somewhat similar to 
renormalizations in relativistic field theories in the 
cases of T > 0 and of a two-dimensional Bose system 
(Sec. 4). In contrast to the relativistic field theories, 
the corresponding counterterms a re  finite and vanish 
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in the sum. The vanishing of the counterterms in the 
Hamiltonian is due to the vanishing of the exact phonon 
vertices r (p i  - O), and this in turn i s  due to the equal- 
ity Cl,(0)= 0 (and makes the meaning of the latter 
simple). 

In the general case of vertices with arbitrarily small 
external momenta (or their sums), the pi divergences 
in the diagrams remain (as pi - 0); since the diver- 
gences cancel the small parameter, a correct  calcula- 
tion of these vertices calls for an effective summation 
that i s  determined by the character of the divergences; 
we present here examples of such a summation (C,, 
(p - 0), TI(p - O), see Sec. 5). The situation recalls 
the "zero-charge" situation (or the situation with "as- 
ymptotic freedom") in relativistic field theories, where 
the diagrams continue to grow after the renormaliza- 
tions in the limit of the large (small) external momen- 
ta  (within the framework of the validity of perturbation 
theory, see, e.g., Ref. 16). In contrast to the rela- 
tivistic approach, in our case we encounter no diffi- 
culties with violation of perturbation theory after the 
effective summation. 

The analysis of the infrared divergence i s  based on 
the asymptotic formulas of Gavoret and N ~ z i e r e s [ ~ ] f o r  
the Green's functions Gi,(p - 0). In the derivation of 
these formulas in Ref. 7 they used essentially the as-  
sumption C1,(O)f 0. In Sec. 6 the formulas a re  derived 
for Gi,(p - 0) with Cl,(0) = 0 taken into account. The 
confirmation of a simple connection between the sound 
velocity c and the ground-state energy E means that in 
the calculation of the f i rs t  term in the expansion of the 
spectrum ~ ( p )  a s  p -0 we can use the ordinary field- 
theoretical summation methods; in particular, the use 
of "ladders" with Go for  a rarefied system for the 
calculation of c (as well as of E )  is permissible (where- 
a s  there is no justification for discarding the higher- 
order diverging diagrams from the formula that ex- 
presses the spectrum in terms of the current-current 
response f u n ~ t i o n . ~ ~ l g  

2. EXACT EQUATIONS 

1. Hugenholtz and PinesL8] represented the Belyaev 
field-theoretical diagram method,['] which reduces to 
the operator substitutions a:, a, - n;'' in the Hamil- 
tonian H, in a form convenient for investigations in the 
long-wave limit: namely, the diagrams a r e  constructed 
for the effective Hamiltonian 

in which the number of particles no in the condensate 
and the chemical potential p a r e  regarded a s  indepen- 
dent parameters. The connection between no and p 
as  well a s  the expression for the total number of par- 
ticles n (the system volume i s  V= 1) a re  defined by 
the formulas 

The "energy" E'(H,,, p ) =  (2) is given by the sum of 
all the connected vacuum diagrams. Comparison of 
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the Z,,(p- Q) diagrams with the vacuum ones leads to 
the formula6 

from which i t  follows that there is no gap in the spec- 
trum, e (p - 0) - 0, (the subscripts 1 and 2 in Z,, cor- 
respond to external arrows directed to the right and 
left, respectively). Gavoret and ~ o z i e r e s , [ ~ l a f t e r  ex- 
pressing the coefficients of the expansion of &, ( p )  in 
the momenta in terms of the derivative of Er(u0, p),  
obtained asymptotic formulas for the Green's function 
G,, and for the response functions F,,, corresponding 
to an acoustic character of the spectrum and to the 
usual connection between the speed of sound and the 
compressibility; in particular, 

nOrnc2 
Gii(p+o)=-Gi¶(~+O)-  n(ez-czpz+i6) 9 

n d p  '.I= -- 
rn dn'  

These formulas were derived in Ref. 7 by making 
use essentially of the assumption Z,,(O) +O, which, 
a s  we shall show, contradicts the exact equation for 
Z12(p - 0); these results remain valid also in the cor- 
rect treatment, with C12(0) = 0 taken into account (see 
Sec. 6). 

2. Using arguments similar to the derivation of for- 
mula (3) in Ref. 6, we can easily express, in terms of 
derivatives of Er(~zo, p), the contribution of any exact 
many-line vertex .\I(r,, r,, s) with zero external mo- 
menta, p, - 0 (i. e. ,  the total assembly of diagrams 
irreducible in the particle lines, with fixed number and 
character of the external linesl2): 

(r, i s  the number of incoming particle lines, r, the out- 
going number, and s the number of external potential 
lines). In particular, for 2- and 3-line vertices we 
get (see Fig. 1; the potential line i s  shown dashed; the 
+ and - mark directions of lines of I' towards and away 
from the vertex, respectively) 

a= aE a w  
g i ~ , ~ -  - - ( ) I - ( )  -no- 

ap  an, a p  ,,, apanoz ' ' 
aS . r  

g,z(O,O~ =-no - ap  ano2 ' 
(11) 

3. We now write down the exact equations for n, A, 
and Z, and separate in the skeleton diagrams the loops, 
i.e., the pairs of e a c t  Green's functions adjacent to 
the potential line (Fig. 2; the broken line corresponds 

I P 1 FIG. 1. 

to a condensate particle). By virtue of (4), at zero 
external momentum, the loop introduces into the inte- 
grand a diverging factor G2(q) -l/q4, whichleads to  a 
logarithmic divergence. Summing the diagrams over 
the directions of the ends of the Green's functions in 
the region of small q and taking (4) into account, we 
get 

n(O)  -2i j GVq) [ K , ~ ( O , O )  -gll(O,O) ld'q, (12) 

In all cases the coefficient of G2(q) turns out to be 
connected with C,,(O). For Ai(0) and Z12(0) this i s  seen 
directly from (9) and (10): 

r+-- (o,o)  -r+++(o,  0 ) - - 2 n ? ~ ~ ~ ( 0 ) ,  (14) 

For n(0) this i s  seen from (11) when account i s  taken 
of the connection between the derivatives (apdap),,, 
and ( a p d a  n0),=Z12(0)/no [(I)  and (911: 

(the direct derivative correspond to physical changes of 
the parameters); hence 

1 dn, 
gii (0,O) -gia (0.0)  = -- 

no d l  
Z,, ( 0 ) .  (16) 

The equality on Fig. 2c can be regarded a s  an exact . 
equation from which it follows that 

2,2(0) -0 (17) 
(this result i s  due to the divergence of the loop in the 
third term and the absence of divergences in the 
others). From (17) follow also exact equations (and a 
finite character) for n(0) and A,(O): 

A. ( 0 )  =O (18) 
(see (8) and (15)) 

-see (7) and (15), with allowance for the equalities 

C 

FIG. 2. 
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Using the identities 

we obtain also 

x,, (0) =Ti, ( 0 )  =o 
(the bars over Z, A, and n indicate irreducibility of the 
set of diagrams with respect to the potential line). 

3. ANALYSIS OF DIVERGENCES. LIMITS OF 
APPLICABILITY OF ORDINARY SUMMATION 
METHODS 

1. The disparity between the exact equations (17)- 
(20) and the results of field perturbation theory is 
easiest to trace with a model for which perturbation 
theory has been directly intended-a system with weak 
interaction 5 = mp,V<< 1 (V and p, a re  the characteris- 
tic values of the Fourier component of the potential 
and of the momentum transfer p, while E i s  the ratio 
of the average potential energy to the characteristic 
kinetic energy (VpV~gtn-~).  Up to high density tdp; 
= B2 - 1 / ~ ,  a simple diagram-selection rule holds: 
each integration with respect to the intermediate mo- 
mentum introduces a small factor; the zeroth approxi- 
mation is that of Bogolyubov GE (0) = noVo, AB(0) = nil2, 
the first  is given by diagrams with single integration 

and so forth (see Fig. 3). 

The exact equations (17), (18), and (20) signify that 
one must not trust  the converging lowest-order ap- 
proximations in e: the divergence in the remaining 
diagrams cancels out their formal smallness. Thus, 
for example, replacement of one of the zero-order 
vertices of the diverging sum of diagrams C::)(O) by 
the exact one 

with simultaneous elimination of the divergence elim- 
inates likewise the small factor 6. Even more unex- 
pected a re  the cases 4 0 )  and Z12(0): although the loop 
N1)(0) - [&I2 converges, replacement of one of its 
zeroth vertices by the exact one Atl)(0) -A'(O) also 
changes i ts  order in ((Af(0)= - AB(0) = - nil2); a 
similar replacement in the converging diagrams z::)(O) 
yields zero (z::)(O) - Z12(0)= O), and in the converging 
diagrams z$Iit '  changes the order with respect to  
((8::)(0) - - Z::)(O); the divergence of the diagrams 

A(0) ar ises  in second order, that in z,,(O) ar ises  in 
the third (Ac2)(0), z::)(O)). The diagrams of the densi- 
ty-density reaction function, which a r e  irreducible in 
the lines of the particles and of the potential, T(p) ,  
diverge even in the lowest (first) approximation II(l)(p) 
= TIo(p) - ([/ vo)ln(p/p0) (as against the exact value 

n ( 0 )  =-nlm (cz-c;), cs2=nVolm, 

see (5) and (19)); the analogous irreducible diagrams 
of the current-current functions F,,(k), used in Ref. 
11 to calculate the spectrum, diverge i ~ t h i r d  order in 
5 (Fig. 3; in the zeroth vertices of the F,,(k) loop 
there a re  factors (p. k/k+ k/2) on top of those in the 
no( k) loop). 

2. In the general case, the analysis of the charac- 
ter  of the infrared divergence is best started with an 
examination of diagrams whose all external momenta 
tend to zero: pi -p - 0. Let us estimate in the dia- 
gram .\I(r, s )  ( r  i s  the number of external particle 
lines and s is the number of potential lines) the con- 
tribution of the region in which all the intermediate 
momenta a re  of the same order a s  the external ones 
(-p); setting each of the 

[ (3n,+4n,-r)/2] +s 

internal lines G(p) - l /p2 in correspondence with each 
of the 

[ (3n,+4n,-r)/2] - (n ,+n , - i )  

integrations p4, we get 

(n, and n, are  respectively the numbers of 3- and 4- 
line vertices). The presented global calculation of the 
degree of divergence x(M) 

z ( M )  =n,+r+2s-4 (22) 

would not be exact i f  there existed subdiagrams L\I' 
with negative degree of divergence x' = nj + r' + 2s' - 4 
< 0-the contribution of such diagrams i s  small: '11' 
-pl*l for only small intermediate momenta, so  that 
the true divergence of ,%I would be larger than indicated 
in (22). No such subdiagrams exist, however: the 
cases s' = 0 and I-' = 1 are  not allowed; in the cases s' 
- - 0, r' = 3 and st = 1, r' = 1 we have automatically nj 
> 0. 

To calculate the degree of divergence of a diagram 
N with vertex momenta that a re  not small, we separate 
in the diagram the subdiagrams .VL, (which a re  not 
connected with one another) in which all the momenta, 
including the external ones, can be arbitrarily small; 
taking into account the integration over the external 
momenta of the diagrams M,, we get 

a k 

Account was taken here of the fact that the external 
momenta of each subdiagram .\I, a re  connected with 
the external momenta of the diagram N only by the 
summary conservation law, and not by any other equa- 
tions-such equations would not allow them to be a r -  
bitrarily small. 

A special case i s  when the external momenta of the 
diagram R, which a re  not small, add up to  a sum that 

FIG. 3; 
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3%z FIG. 4. 

tends to zero, q, - 0 ( j= 1, . . . nz); The number of in- 
dependent external momenta of ,VI, (and hence the num- 
ber of integrations) can be smaller than (r,+ s, - 1). 
Diagrams of this kind have a maximum divergence 
when the momenta q, - 0 "go over" to the potential 
lines (Fig. 4): 

max Z(R) -n,+2m-4. (24) 

3. A qualitative change in the character of the 
divergence of the diagrams is caused by summation 
over the directions of the internal particle lines. We 
demonstrate this f i rs t  within the framework of the 
global approach. Summation over the directions 
causes one of the lines of each 3-line vertex (excluding 
the vertices of the type of Fig. 5a) to correspond to 
the sum Gll + G,, - l / ~ ~ ( p )  - l/lnp (see (42)) instead 
of the quadratic divergence G,, - l/pZ; to be sure,  such 
a line may turn out to be common to two 3-line ver- 
tices. Thus, each of the n',= (12, - n,) three-line ver- 
tices must be assigned, in addition to (21)-(24), at 
least a factor p (n3 is the number of 3-line vertices 
of the type 5a), i. e., 

max z(M) =Es+r+2s-4, 
x (N) <O, 

mas z (R) =2m-4. 

In the derivation of (25), however, no account was 
taken of the possible unevenness of the distribution, 
in the integrals, of the small factors that arise in the 
summation over the directions-in some integrals the 
divergence may be cancelled out with a margin to 
spare, and in others it may still remain. Thus, 
despite (25), a logarithmic divergence (mentioned in 
Item 1 of the present section) is contained in 2::) and 
x(') (Figo 3). Even the addition of a small factor in 
each zero vertex (e. g. , in the model with V,,, -pa, 
a! 3 1) would not eliminate the divergences, and, in 
particular, a divergence a lnp would remain a s  before 
in the central link JI of Z:i3)(p) (Fig. 3); this divergence 
not integrable in links I and 111. 3, 

On the face of it, the difficulty with the uneven dis- 
tribution of the small factors makes the global calcula- 
tion of rnax x entirely valueless. This i s  not so: the 
only source of the difficulty-the subdiagrams with 
negative divergence (x' < 0)-can be effectively ex- 
cluded. There were no subdiagrams with x' < 0 in the 
derivation of (22)-(24); after summing over the direc- 
tions, two possibilities arise: s' = 0, y' = 3 (r;l)) and 
S' = 1, y' = l(N1)), for which now x =  - 1 (Fig. 6). The 
"global" calculation of max x is justified if the dia- 
grams I'F) and f F) (Fig. 6) a re  regarded a s  single 

FIG. 5. 

497 Sov. Phys. JETP 48(3), Sept. 1978 

FIG. 6 .  

A A yJ 

effective 3-line vertices. Let ascertain whether such 
vertices introduce, like the zero vertices, a small 
factor -p. As a result of summation over the direc- 
tions, the product of the three Green's functions G(p,) 
- l /p,  corresponding to the lines of the diagram rF)  
will enter with a coefficient 

The terms in this sum can be grouped in such a way 
that vertices r::],,, with opposite directions of all the 
lines a re  added pairwise: 

and in this sum each of the diagrams from r:l;,,,,is 
set in correspondence with a diagram rg',, ,& ,,,with 
the directions of all the internal lines reversed, Thus, 
the coefficient rF) i s  equal to the difference of two 
integrals whose integrands differ only in the sign of 
the arguments of the Green's functions: 

this means that rin) contains only terms with odd 
powers of c, (pi 5 pi, t i ) ,  multiplied by expressions 
having the same character of divergence a s  ri;;,,), 
(as will be shown later, the divergence is not higher 
than logarithniic). A similar structure i s  possessed by 
the vertex rr) affer summing over the particle-line 
directions in A(*)'  

l'r' -Vp(li(n) ( p )  -A'") ( - P ) ) .  

Thus, each internal effective 3-line vertex introduces 
at the very least a factor p(1np)"; this justifies the 
result (25), with the only refinement that the number 23 
must include any external vertex (as an effective 3-line 
vertex-Figs. 5a and 5b), excluding only the cases of 
Figs. 5c and 5d (a 3- or  4-line vertex i s  connected- to  
a diagram that i s  irreducible in the two horizontal lines 
of the particles GG). The foregoing explains, in par- 
ticular, why c::)*~~) and X(l) have no divergences but 
z:!r2) and P"z) have them. 

The refined criterion (25) points to the following cases 
of complete cancellation of the divergences: diagrams 
without external lines (e. g., (Hht) - ;,= r= s= 0, x 
= - 4); diagrams Nwith external momenta (or their 
sum) that a r e  not small (pi >>pl; p, is the momentum at  
which the divergence cancels out the small paralfleter); 
diagrams .\I with small external momenta, with n3= 0, 
r= 2, 3 (Ti3= 0 denotes irreducibility in GG) or  ri, =r 
= 0, s= 1 OZ', see (2)). 

It must be added to the result (25) that in the diagrams 
with x=  0 the divergences a re  not quite identical: lnp 
can enter raised to different powers (e. g o ,  II, -lnP,- 
n(') -(lnp)'); this makes it possible to eliminate the 
divergences by effective summation. 
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The importance of the remarks made concerning 
formulas (25) is emphasized by the fact that without 
these remarks Eqs. (25) would contradict the exact 
equations: independence of (25) of the internal structure 
of the diagrams would mean covergence of the diagrams 
El,(0) and K(0) and divergence of n(p) -1np: 

x!:l-,y-:x!;', ~ l n J - ~ - ~ ~ ~ : ) ,  nl*J -Y-:&(p) h p ,  

in contradiction to (17)-(20) 

e,,(o) =$o) -0, n(0) =-nlm 

i t  would then follow from the skeleton equation 

that Zl,(0) also contains only converging diagrams 
(Zl,(0) = zl,(0)), the skeleton equation on Fig. 2c not- 
withstanding. It can be shown that in the case T > 0 
(or a two-dimensional Bose system with T = 0), where 
x includes 31zJ2 + n, (rather than it,-see Sec. 4), the 
result (25) without the indicated remarks would formally 
be proved (VpI,,, - Vp(l - vPlI(p))-' - - n(p)-' - - n,(p)-' 
-p), leading thereby to contradictions to the exact equa- 
tions. 

4. It may appear that a ladder made up of exact 
Green's functions and leading to a nonintegrable loga- 
rithmic divergence in diagrams with small external 
momenta (e. g. , z:z)(p - 0) makes a diverging contri- 
bution (actually, infinity) in the diagrams (Hht ), n', 
and N (Fig. 7). This is not the case-the refinement 
of (25) eliminates completely the difficulty with the 
nonuniformity of the small factors; the diagrams of 
Fig. 7 a r e  forbidden in a technique with exact Green's 
functions-would lead to a redundant calculation. The 
convergence of the diagrams (H, ) can also be verified 
by the representation of (H, ) in Fig. 8a. 

The absence of divergences not only permits calcula- 
tion of ( H ,  ), n' , and other quantities in arbitrary 
order in 5 for the model with 5 << 1 and $ 6  1/4 ,  but 
also the partial summation that is dictated by the char- 
acter of the small parameter (e. g., a ladder with the 
functions Go for a low-density system /3<< 1-Fig. 8b; 
summation of the ladders corresponds to replacement 
of Vo of the lowest-order approximation in 5 << 1 by 
41u/nt, where a i s  the scattering amplitude in vacuum). 
At low dispersion, calculation of the speed of sound with 
the aid of Z,,(p>>pl) coincides with a calculation by 
formula (5). 

4. FIELD THEORY FOR TWO-DIMENSIONAL BOSE 
SYSTEM AND FOR A THREE-DIMENSIONAL ONE AT 
T>O. 

For a two-dimensional Bose system, the integration 
with respect to the momenta and frequency, in the 
global calculation of the degree of divergence is intro- 
duced by the factor -p3. We obtain accordingly in 

FIG. 7. 

498 Sov. Phys. JETP 48(3), Sept. 1978 

FIG. 8. 

place of (22)-(24) 

The same formulas a r e  valid if  the 3- and 4-line ver- 
tices a r e  effective (contain an internal structure) but 
a r e  finite a t  zero momenta of the lines. To cause the 
growing divergences to vanish, we carry  out a regu- 
larization procedure analogous to some degree to the 
elimination of the ultraviolet divergence in renormal- 
izable relativistic field theories. We describe this 
theory f i rs t  without taking into account the contribution 
of the three-line vertices to the diverge~ce.  We supple- 
ment the Hamiltonian fi with the term Hl: 

8'-R+B,, 

(27) 
in which I? is the sum of all  the 4-line vertex diagrams 
with nonzero external momenta, averaged over the line 
directions: 

( 5  i s  a dimensionless interaction parameter and is the 
formal field diagram expansion for any system); we 
assume the limiting momentum P to be much less  than 
the characteristic momentum transfer p,, but large 
enough to keep the effects of infrared growth of the 
diagrams from setting in ((p, << P << p,). The diagram 
ser ies  f o r  H' differs from the ser ies  for fi in that in 
i ts  diagrams one subtracts from all the zeroth 4-line 
vertices with pi 6 P one subtracts the _values of these 
vertices a t  p,= 0 (the contribution of Hl of zeroth order 
in 5; this ensures convergence of the first-order 4-line 
vertices; from all the 4-line vertices of f i rs t  order one 
subtracts their values a t  p, = 0-the contribution of Hl 
of f i rs t  order; this results  in convergence of the sec- 
ond-order vertices, and so  forth. As a result, all the 
effective 4-line vertices of the diagrams no longer con- 
tribute to the degree of Givergence (26). It i s  obvious 
that in the definition of H, i t  i s  implied that the coeffi- 
cients I?p>O) a r e  assumed to be regularized (i. e. , in 
the vertices of lower order with pi < P a subtraction 
was carried out of their values a t  pi = 0); thus, in con- 
t ras t  to the relativistic theories, the counterterms 
a re  finite2 Even more peculiar to this case i s  that 
actually Hl = 0, i. e., we a r e  dealing not with a change 
of the initial Hamiltonian, but only with a refinement of 
the meaning of the expansion in 5. In fact, the coeffi- 
cient in the sum of the counterterms of is propor- 
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tional to the total vertex for the scattering of two pho- 
nons: r4(pi - 0) (Fig. I), for which i t  is easy to prove, 
in analogy with the procedure used in Sec. 2, that 

r , (a l -O)  ==12no-LZ1z(0); 

on the other hand, the sum of the regularized diagrams 
Cl,(p) satisfies the skeleton equation on Fig. 2c, from 
which it follows that Cl,(0)= 0. 

We now take into account the 3-line vertices. In the 
two-dimensional case, interest attaches both to the 
factor 

(the coefficient of the product of the pole terms of 
three Green's functions ~(p,)G(p,)G(p,), and to the 
factor 

(the coefficient of the product 

A G ( P I ) G ( P * ) G ( P ~ ) ,  Gu(p )= ( - i ) '" 'G(p )+AG,  

see (42)). We verify first  that 

r:)=i/,[r;;;a-r::i,,l 

does not contain terms of either zeroth or  first  order 
in the momenta. This follows from the equations 

+~, :" ( -p )  -22,:"' ( p )  1 ~ 2 n ; "  c::' ( 0 )  +O (p'),  (28) 

i f  i t  i s  recognized that the function l??)(p&p,) i s  sym- 
metrical in the arguments. It i s  clear therefore that 
in terms of the type r:")G(p,)G(p,)G(p,) the contribution 
of r:") to the degree of divergence has been completely 
eliminated. We consider now terms of the type 

(Fig. 9; C,, G,,(p,)= 4AG(pl), see (42)); if I?:::, (0) +O, 
then the additional factor -p:, due to  replacement of G 
by AG, i s  insufficient to eliminate the contribution of 
two 3-line vertices to the degree of divergence (26); 
we therefore apply a regularization procedure similar 
to the preceding one, and supplement the Hamiltonian 
with a three-operator expression 

where 

Just a s  in the case (27), this does not mean a change in 
the initial Hamiltonian, since 

(see (28)). This solves the problem of eliminating in 
the two-dimensional case the infrared divergence that 
increase with the order of the approximation. 

We note that the skeleton equation for C,,(p) does not 

'3-h 

Po =I.?! pu 
FIG. 9. 

- ( f )3  [7)3 

FIG. 1 0 .  

change when counterterms a re  introduced-the vertices 
used here a re  exact, and consequently their correction 
should be effected by an exact sum of the contributions 
of the counterterms, which vanishes precisely a s  a 
result of the skeleton equation. 

The described approach i s  valid in the case of a 
three-dimensional Bose system at  T > 0 (the integration 
with respect to frequency is accompanied by an addition- 
a l  factor 

5. EFFECT OF SUMMATION OF DIAGRAMS WITH 
INFRARED DIVERGENCES 

The region of validity of field perturbation theory 
can be greatly expanded by using the effective summa- 
tion dictated by the character of the divergence (in 
particular, the exact equalities of Sec. 2); it thus be- 
comes possible to  calculate quantities for which a naive 
application of the field theory i s  impossible or  leads to 
an error .  With the aid of (19) and (5) we obtain4) 

n ( o ) = - r  nto)=- 
me2' m (c2-cs2) (~$2) . (29) 

Assuming that the function r (p ,  - 0) i s  finite (Fig. 10) 
and accordingly replacing the integrals of r with pairs 
of Green's functions by the product of r ( 0 )  and loga- 
rithmically diverging polarized loops, we get 

n @-O) = no (P- .o)  i -.-- 
I-[v,-r ( 0 )  in, (p -+o)  ' v,+r (01 ' 

whence, taking (29) into account, 

( r  is the 4-line vertex summed over the direction of the 
lines, reducible with respect to the potential line and 
with respect to one (G) and two (GG) lines of particles 
in the horizontal direction: 

where i, k, I, and ,n are  indices of the line directions). 

To calculate C,;(p - 0 )  we use the identity 

which can be easily obtained by the method used in Sec. 
2; y =  Zikikr,,,, and r,, i s  a 3-line vertex irreducible 
in G. 

We break up the aggregate of the diagrams y into 
irreducible ones yo and reducible ones in the pairs of 
the Green's functions GG (Fig. l la) .  The diagrams yo 
have no divergences: 2,= 0, r= 3, s = 0; x =  - 1 (see 
Sec. 3). From among the diagrams with pairs of 
Green's functions (A, B, C), only C has a singularity 
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a s  might appear from a comparison of (4) with (37): 

(see Ref. 171, since B= 0, i. e. ,  (37) is indeterminate). 
Actually, using the equalityc7' 

as  well a s  (I), (2), (15), and (I?), we get 

.- 

FIG. 11. Substitution of (38) in the definition of B (see Ref. 17) 
yields B =  0. 

An important role in the expansions of C,,(p) in the 
4-momentum p, which a r e  needed for the derivation of 
the formulas for G,,(p- 0), is played (because of the 
vanishing of the zeroth t e rm of Z12(p)) by the nonanlyt- 
ic t e rms  of AX,,; by virtue of the relations of Ref. 7, 
we have for Zll(p) - Z12(p) 

A~11=AZ12(=AZ(p) ) (39) 

a t  small momenta in the integrand of / GGr3r4, since 
summation over the directions of all the lines of r, 
eliminates the singularity in the diagrams A and B (the 
vertex r4 in diagrams A and B i s  characterized by a 
divergence not higher than logarithmic: 'i ,= 0, since 
a line with momentum (- p) can not be added with the 
aid of a zeroth 3-line vertex of the type of Fig. 5a and 
5b-the corresponding diagrams a re  already accounted 
for in C). 

(for the explicit form of AZ(p) - Zl,(p) see  Sec. 5). 
Substituting in Belyaev's general formulas[21 

If the vertex f (Figs. l l b )  i s  approximated by i ts  
value at zero momenta f'= - l/n(O) = , 1 ~ 2 / 1 t ,  then the 
equation on Fig. l l a  

Glr=~+~po--p+Plr  (-P)/Z, 
G,,=-Z,z(P)/Z, (40) 

Z l l ( ~ ) - z l l ( - ~ )  - (epo-p+ z l L ( ~ ) + ~ l l ( - ~ )  )=+Zl$(p) Z= (e- . 
2 2 

the expansion of ~ , , ( p )  with (17), (38), and (39) taken 
into account 

z , , (p )  =p+e+AZ(p)+ae2+bp2+. . . , 
ZIZ(P) =AZ(p)+ale2+blp2+. . . (41) 

and recognizing that AZ(p) >> cZ and AC(p) >> p2 [see (36)], 
a s  well a s  thatL7] 

is transformed into a closed integral equation for the 
calculation of the function y, using field perturbation 
theory without divergences (for yo, A, B, and c2) ,  and 
in particular by using partial summation (ladders for 
a low-density system). 

For the model with 5 << 1 and f i -  E,-lr2, in the lowest 
perturbation theory order, the equation for y takes the 
form shown in Fig. l l c ;  the right-hand side of the 
equation is independent of q, so  that the integral equa- 
tion reduces to  an algebraic one. We obtain 

1 an'  n' 
a -  - ( ) , b-1.- - . , 

2n0 a p  .. 2nom 

we get 

i. e., 

comparison of (7) and (19) yields 
with (32) taken into account, we get 

so that (43) agrees with (5). It i s  remarkable that the 
statistical susceptibility F4,(c = 0, p - 0)= - d n / d j ~  co- 
incides with the analogous characteristic of a system 
of particles in excess of the condensate at a fixed num- 
ber  of particles in the condensate. I v o ~ o  @) - (3 6) 

- ( )  (T > 0 or a two-dimensional system at T = 0) 

In the general case, assuming a weak dependence of the 
right-hand side of the equation on q a s  q - 0, we obtain 
by replacing the integral equation (33) by an algebraic 
one 

In analogy with the derivation of (43), we can verify 
the f o r m ~ l a s [ ~ ] f o r  F,,. It is interesting to note that 
the function Gl,(p) - Gl,(p) (the pole t e rm of the func- 
tions G,,) can be expressed exactly (without cancelling 
out Z12(0)) in a form from which i t  is clear that i t  is 
independent of &,(O) in the lowest order in p and &: 

6. ASYMPTOTIC FORMULAS FOR THE GREEN'S 
FUNCTIONS 

1. Proceeding to the derivation of the formulas for 
G,,, F,,, and 2 with allowance for (17), we note first  
that (17) does not mean that the sound velocity vanish, 
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This explains why the results of a calculation essen- 
tially based on the erroneous assumption z,,(O) +O 
agrees with the correct results. 

2. All the exact results given in Sec. 2 were based 
on allowance for the divergence of an integral of two 
exact Green's functions, in contact with the line of a 
potential with zero momentum. We indicate also 
another (more lucid) derivation of these relations: 
from the formula 

(see Ref. 7 with allowance for (8), (15), and (9)), i t  
follows that 

an' n ( o ~ - = - ( ~ )  . 
i s  finite. We now recognize that 

where D i s  the contribution made to 

by the nonpole singularities of G,, (p) .  Finite ( a n ' / a ~ ) , ~  
means that an infinitesimally small change of p a t  a 
fixed 12, can not produce in the spectrum of c, a gap 
A(&, = (A' + ~ ' p ~ ) ~ / ' )  such that ( a ~ ~ / a ~ ) , , ~ ~ ~  =K if0; other- 
wise ( a n ' / a ~ ) , , ~  would contain the logarithmically di- 
verging term 

But 
At-[XI, (0) -2,?(0) I-P, 

so that the fact that - II (O)= (an'ap)no is finite means 
validity of the relation 

and hence also of (17)-(20) [see (Is)]. 

The authors thank D. A. Kirzhnits and L. Pitaevskii 
for a discussion and for interest in the work. 

l)If E' (no, p)  is regarded as  the thermodynamic potential of 
two subsystems, in one of which (condensate) the number of 
particles no is  fixed, and in the other (the system of par- 
ticles in excess of the condensate) the chemical potential p 
is  fixed, then Eq. (1) means that equality of the chemical po- 
tentials of the two subsystems, due to the possibility of par- 
ticle exchange: p= pa, pO(nO,p) = (a E1/anO),, is the chemical 
potential of the condensate. 

*) In the derivation of (3) and (6) it is recognized that the limit 
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of M ( p  - 0) (if finite) does not depend on the relation be- 
tween the external momenta when they tend to zero (the dif- 
ference from a Fermi system is due to the different distri- 
bution of the poles of the integrand). 

3, This example demonstrates also the mechanism that makes 
possible the change of the order of magnitude even of a con- 
verging diagram if the zeroth vertex is  replaced by the ef- 
fective one (see Item 1 of the present section): the vertex 
made up of links I1 and III introduces a divergence asp-  0, 
but this is  not due to power-law singularity 2 l/q2, but to the 
nonintegrable factor lnp. " It i s  of interest to note that for a system with B << 1, at  not 
too high a density we have c 2 <  cB2,  i.e., 1 - VOn(O) < 0, (over- 
screening: Vefi(>-O)=Vp/(l-Vpff(p))<O at  Vp-0>O). 
This, however, does not lead to difficulties similar to the 
case of non-Abelian gauge theories: in the total line of the 
interaction Vp [ l + ~ , , ~ ~ ~ ( p ) ] ( ~ ~ ~ ( ~ ) = n p ~ / r n ( ~ ~ -  cZp2) is  the 
density-density response function[11) the overscreened func- 
tions Veff, jointly with the "tachyon" propagators 

make up after summation a quantity that does not contain 
anomalies. 

'N. N. Bogolyubov. Izv. Akad. Nauk SSSR Ser. Fiz. 11, 77 
Q 947). 

2 ~ .  T. Belyaev, Zh. Eksp. Teor. Rz .  34, 417 (1957) [Sov. 
Phys. JETP 7, 289 (1957)l. 

3 ~ .  P. F'itaevskir, Zh. Eksp. Teor. Fiz. 37, 577 (1959) [Sov. 
Phys. JETP 10, 408 (1960)l. 

4 ~ ~ .  A. ~ e p o m n ~ a s h c h i j  and A. A. ~ e p o m n ~ a s h c h i ~ ,  Zh. Eksp. 
Teor. Hz.  65, 271 Q973) [Sov. Phys. JETP 38. 134 (1974)l. 

5 ~ .  K. Lee, Phys. Rev. A 4, 1670 (197L); J. C. Lee, Phys. Rev. 
B 12, 3749 (1975); F. Family and H. Gould, Lett. Nuovo 
Cimento 12, 337 (1975); Phys. Rev. B 12, 3739 (1975). 

6 ~ .  M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959). 
IJ. Gavoret and P. Nozieres, Ann. Phys. (N.Y.) 28, 349 (1964). 

T. Belyaev, Zh. Eksp. Teor. Fiz. 34, 433 (1958) [Sov. 
Phys. JETP 7C 299 (1958)l. 

's. V. Iordanskii, Zh. Eksp. Teor. Fiz. 47, 167 (1964) [Sov. 
Phys. JETP 20, 112 (1965)l. 

'%. S. Babichenko, Zh. Eksp. Teor. Fiz. 64, 612 (1973) [Sov. 
Phys. JETP 37, 311 (1973)l. 

"s.-K. Ma, H. Gould, and V. V. Wong, Phys. Rev. A 3, 1453 
(1971); H. Gould and V. K. Kong, Phys. Rev. Lett. 27, 301 
(1971). 

1 2 ~ .  A. ~ e p o m n ~ a s h c h i r  and Yu. A. ~epomn~ashchi r ,  P i s h a  
Zh. E k s ~ .  Teor. Flz. 21. 3 (1976) [JETP Lett. 21, 1 (1976)l. 

lSN. N. &golyubov and D, N. Zubarev, Zh. Eksp. Teor. Fiz. 
28, 129 (1955) [Sov. Phys. JETP 1, 83 (1955)l. 

"G. S. Grest and A. K. Rajagopal, Phys. Rev. A 10, 1395 
(1974). 

lSs. Sunakawa, S. Yamasaki, and T. Kebukawa, Prog. Theor. 
Phys. 41, 919 (1969); 53, 1243 (1975); 54, 348 (1975). 

1 6 ~ .  M. Lifshitz and L. P. Pitaevskir, Relyativistskaya kvan- 
tovaya teoriya (Relativistic Quantum Theory), pt. 2, Nauka, 
1971 [Pergamon]. 

'IA. A. Abrikosov, L. P. Gor'kov, and I. E. ~z~a losh insk i f ,  
Metody kvantovor teoril polya v statisticheskor fizike (Quan- 
tum Field-Theoretical Methods in Statistical Physics), 
Nauka, 1962 [Pergamon, 19651. 

Translated by J. G. Adashko 

Yu. A. ~epomnyashchi~and A. A. ~epomnyashchiT 501 


