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It is shown on the basis of an analysis of the nonlinear Ginzburg-Landau equation that a 
superconducting "filament" capable of carrying a superconducting current is produced near an edge 
dislocation at a temperature To> T, (T, is the critical temperature of the homogeneous superconductor). 
Estimates for V3Ge and Nb3Sn yield a value I,- 10-<10-~ A, where I, is the critical pair-breaking 
current (per dislocation). The state is localized in a region with a transverse dimension l>tO, where 4, is 
the coherence length. In a magnetic field H,> H,,, where H,, is the upper critical field of a homogeneous 
superconductor, a superconducting-phase plate appears near the dislocation and precedes the appearance of 
the mixed state. The function To(Hc) is anisotropic in the regions of strong and weak fields. Estimates are 
presented for the diameter of the filament, for the shift of the temperature transition, as well as for the 
magnetic-field interval in which a superconducting plate exists in V3Ge and Nb,Sn. The effects for 
dislocation clusters are considered. 

PACS numbers: 74.60.E~. 74.60.Jg, 74.70.Lp, 61.70. - r 

INTRODUCTION 

A dislocation having a s t r e s s  field u,,(r) interacts via 
this field with a system of superconducting electrons. 
Below the transition temperature T, the dislocation 
s t ress  field leads to a certain change in the order 
parameter, and this in turn affects the plastic proper- 
ties of the metals on going through the superconducting 
state. A substantial number of studies, both theoretical 
and experimental, have been devoted to this phenomen- 
on!" The change of the order parameter can be calcula- 
ted by perturbation theory at all temperatures away 
from the vicinity of T,. 

1. FUNDAMENTAL EQUATIONS 

Recognizing that the effects of interest to us appear 
near T, at  

T= (T-T,) /T,< 1 ,  (1) 

we express the free energy F in the form of a GL func- 
tional (without a magnetic fieldy2': 

where C,  a, and p a re  parameters in the GL expansion 
and depend on the strain tensor I ( , , ,  R = r +z, q(R) i s  the 
order parameter, z =zn, and n is a unit vector in the 
direction of the dislocation axis. 

Near T,, however, the change of the order arameter 
cannot be calculated by perturbation Since, For this dislocation to be valid it i s  necessary, be- 

owing to the anisotropy of the stress field, the neighbor- sides (11, that the characteristic change of the order 

hood of the dislocation contains regions that a r e  more parameter occur Over distances 1>> 50. We shall 

favorable to the onset of superconductivity, one might below that this does indeed take place. ~ e c o ~ n i z i n ~  that 

ask whether it is possible for a localized state of the 1>> a, we expand the coefficients in (7) up to terms lin- 

order parameter, i.e., for a filament of the supercon- ear  in I ( , , .  Finally, i t  is easy to verify that under the 

ducting phase, to be produced at T, T, in the case when condition (1) We can neglect the dependence On r in all 

there is  still no superconductivity in the volume, We the coefficients with the exception of ~ ( r ) .  

show below that such states indeed exist because of the 
slow decrease, ztik = l j r ,  where r i s  the distance to the 
dislocation axis. 

The current that can flow along the superconducting 
filaments is sufficient, according to estimates, to make 
individual filaments observable in experiments.[31 If the 
dislocations a r e  located parallel to one another at a dis- 
tance exceeding the dislocation radius I (it will be shown 
below that 1 - [:/a, where 5, is the coherence length and 
a is the distance between the atoms), then the effect 
due to all the filaments is simply additive. In the op- 
posite limiting case, the dislocation cluster can be re-  
garded a s  one "superdislocation." 

We emphasize once more that a localized state cannot 
be obtained by perturbation theory: we must solve the 
nonlinear Ginsburg-Landau (GL) equation and take into 
account the s t r e s s  field of the dislocation. 

For simplicity we consider an edge dislocation whose 
axis is  proportional to a fourfold o r  sixfold symmetry 
axis of the crystal. In this case the deformation inter- 
action is 7 4 , ,  

b 1-20 sin cp uii= --- 
2n 1-0 r ' (3) 

where b is  the Burgers vector, o is the Poisson coeffi- 
cient, and cp is the azimuthal angle.c51 Asaresul twe ob- 
tain for F the expression 

Here 

where N ( 0 )  is the state density on the Fermi  surface, 6 
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is Planck's constant, m is the effictive mass of the 
electron, V is the specific volume, and k is the Boltz- 
mann constant.r61 

For convenience we rewrite (4) in dimensionlessform, 
introducing the dimensionless quantities defined by 

p=r/l, ;=zil. I$=-q($C)'.la,B. E=rC/a,B2, 
U ,  ( p )  =-sin qlp, 1=-CluJ?, FG= 1 a ,  1 BCIP. (5) 

In this case (4) takes the form 

(Here and henceforth the differentiation in the operations 
of the type V ,  v2, etc. i s  with respect to the dimension- 
less  variables p, p , t;, x, and y , where x and y a r e  the 
components of p along the axes x and y.) 

Minimization of (6) with respect to 4 leads to a non- 
linear GL equation with a potential 

- A t + [  (Ut(p)--E)+I$IZl$=O. (7) 

The boundary conditions a re  the absence of singularity 
at p = 0 and a finite limit as  p - -. 

We shall show that there exists a certain E,< 0 (i.e., 
To> T,) such that Eq. (7) has a nontrivial solution at 
E >  E,(T< T,). We shall calculate Eo and obtain the 
asymptotically exact solution $,(p) of Eq. (7) as  E - E,,  

2. TEMPERATURE OF APPEARANCE OF 
SUPERCONDUCTING Fl LAMENT 

To determine To we must find the value of Eo at which 
a solution of (7) f i rs t  appears. This value (the end 
point of the spectrum) can be determined from the solu- 
tion of the linearized equation (7), a s  the lowest level of 
this equation. Indeed, ihe  "bound" state Jl,(p) exists if 
the functional F{+,)< 0, Obviously, for the functional F 
without the term $ J ~  this is impossible if E <  E,, while 
the term Q4 can only increase the functional (6), so that 
there a re  no bound states a t  E <  E,. On the other hand, 
a t  E >  E,, substituting in (6) the eigenfunction &$,, of the 
linearized equation (7), corresponding to E = E,, and 
choosing the constant & to be sufficiently small, we 
certaintly obtain F{&+~,,,,)< 0, this being obvious for a 
functional without the terms Q4, while the term q4 can 
be neglected if &-  0. Thus, E, is  indeed the end point 
of the "spectrum" of Eq. (7). 

Equation (7) without the nonlinear term takes in cylin- 
drical coordinates the form 

i a a* I alg al$ --- p - - ---1 - - + (U, ( p )  -E) q-0. 
a p  ( a p )  pz a p  d:= 

The variables in (8) do not separate, and we have there- 
fore solved (8) by expanding $ in terms of an appro- 
priate system of functions. To choose this system, a s  
well as  for .a qualitative investigation of a number of 
the problem, we have considered, besides Lrl, also U, 
and Lr3, where 

The potentials U, and U, have the same behavior as U, a s  
p- 0 and p- .o. The potential U2 does not take into ac- 
count the anisotropy with respect to cp, On the other 
hand, the potential CT, i s  more anisotropic than Lr, (the 

hump is infinite). These potentials a re  "normalized" 
in such a way that the angle-averaged values for a given 
p coincide, It can be assumed (as will be proved later 
on) that EAO lies between E!' and E,O (E:') i s  the lowest 
level for the potential CT,). The (unrenormalized) solu- 
tions of (8), with U, replaced by nu2 ,  take the form"' 

t L  ,W =.xp(ik;t) { 'Tmp sin mq } {p / (n+m+l / , )  

x exp[ -pl2 (n+m+'l,) 10 (-n,  2m+l:  pl (n+m+'l,)) , (10) 

where @(a; b;  x )  is a confluent hypergeometric function. 
For L', we have 

En,:=- [ n  (2n+2m+ I )  ]-2+k:z, EaGo=-1/x2. (1 1) 

When C, is  replaced by ZT3 in (8), the boundary condi- 
tions a r e  such that the only remaining functions of the 
system (10) a re  those containing sinmp, so  that for the 
ground state we obtain 

-#iC'r(:=6(cp)pe-n"sin c p ,  ~ d " = - 4 / 9 ~ ~ = - 0 . 0 4 4 ,  (12) 

where 

$(cp)=O at nccpC2x, 6(cp)=l  at O<cp<x. 

As the appropriate system of functions for the solution 
of (7) we chose the system (10). The energy eigenvalues 
and eigenfunctions were obtained from the system of 
equations 

The system (13) was solved with a computer. In view of 
the rapid convergence, the functions $goo, $&,, S;,,, $,,, 
a r e  sufficient to obtain E? with 1% accuracy. In this 
case 

E / I I -  --0,089, a,=-0.27, a,=-0,62, a,=0,74, a,=O.O5. (14) 
- 

With the aid of (15) we obtained the connection between 
To and E!': 

r , = - 1 , 8 3 ~ d " ~ ' / ~ , ' ,  TO= (To-T.)/T..  (15) 

This temperature lies in the region 7 - (B, 5,)'. Recog- 
nizing that b-n  and B -  by for a single dislocation, we 
see that the inequality (1) is satisfied at not too large 
values of y ,  

3. STRUCTURE OF LOCALIZED STATE AND FREE 
ENERGY 

To calculate the thermodynamic parameters of the 
produced localized state,  such a s  the free energy, the 
critical current, etc,., i t  is necessary to know the solu- 
tion of the nonlinear equation (7) at E >  E,. We can ob- 
tain an asymptotically exact solution in the tempera- 
ture region satisfying the condition 

AE=E-E,cE,--E,, (16) 

where E is the "level" closest to E,,  i.e., near the tem- 
perature T,, in the linear equation (7) (at kc =O) .  

The point E, is the bifurcation point for the ioniinear 
equation (7), since appears one additional solution $E:') 
appears a t  this point, besides the solution ;I, =0. A 
theorem for the existence of a solution of an equation 
of this type was proved by ~ e r ~ e r . ' * ]  The solution of the 
nonlinear GL equation under the condition (16) is ob- 
tained by us in the Appendix, where it is shown that 
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$E(p) is given by 

$~(~ )=g ( lE) ' . $z . (p )+O(  ( lE) ' - ) ,  

$=(I$;; I ~ ) / ( I*A;I~ .  (1 7) 

We emphasize that the solution (17) cannot be obtained 
by perturbation theory, as  is  evident by the very char- 
acter of the solution. For the potential Cr, we have g2 - 4.2. 

Substituting (17) in (6), we obtain an expression for 
the free energy of the filament (per unit length): 

F=-83FQ(AE) '11. (18) 

In concluding this section. we know that the order 
parameter BE(p) changes substantially over distances 
p - 1 or  r - 1. It follows from (5) that 1 - 52, 'B>> to ,  so 
that the GL equation can be used. 

4. CRITICAL FIELD FOR LOCALIZED STATES 

Superconducting states localized near a dislocation 
appear not only at T > T,, but also in a magnetic field 
H exceeding the critical field H,,. The phase diagrams 
on the T - H  plane is shown schematically in Fig. 1. 
Curve 1 i s  the line of appearance of the bulk phase, 
while curves 2 and 3 a r e  the lines of appearance of 
localized states at different orientations of the field 
relative to the dislocation axis. 

To describe the superconducting states in the general 
case,  we use the GL equations with allowance for the 
magnetic field: 

where 

a=3xl.A/@,. v=x12H/cDo. H=rot.A, @,=hc/2e ,  
v='/, rot a, z= 1.831./b0, i.'= I mc2,3/16;rekQ 1 ,  (2 1) 

x is the depth of penetration of the field in the super- 
conductor at T =0,  c is the speed of light, and e is the 
electron charge. 

Equations (20) and (21) describe the dependence of 
the dimensionless critical field v, on the temperature 
(E,) a s  the limit of the set  E and v at  which (20) has a 
nontrivial solution. This limit can be obtained in the 
form of the function Eo(v), where E,, just as  before, 
is the lowest level in Eq. (19) without the nonlinear 
terms,  ice. ,  it is necessary to find'the lowest eigen- 
value of E,  a s  a function of v. An asymptotically exact 
solution can be obtained in two limiting cases: at v<< 1 

FIG. 1. 

and in the opposite limiting case (regions A and B in 
Fig. 1,  respectively). 

In the case v<< 1 we can use perturbation theory in v, 
taking the zeroth-approximation function to be the solu- 
tion of Eq. (19) without the field. It is then easy to 
verify that, accurate to l /xZ, we can neglect the right- 
hand side of (20), i.e., we can assume the field is the 
region of the filament to be equal to the external field. 
We shall assume henceforth that x>> 1. 

For the model potentials U2 and U, can be solved 
exactly (in this approximation). We put 

The perturbation linear in v is given by 

The matrix elements (23) between the functions ;li~i~' and 
Bf) a r e  equal to zero,  inasmuch a s  for the potential U2 
the function #E:' does not depend on q ,  and for U, all 
the functions contain only sinnzq. Thus, the second- 
order correction in v in E is only the result of the 
terms 

vzZ (z2+y') +4 (v,zy=+v:z". (24) 

Averaging (23) over h.5:' and $E?, we obtain for the po- 
tentials L', and U, respectively 

where 9 is the angle between the direction of the mag- 
netic field and the dislocation axis. 

The eigenfunctions, of the dislocation potential U,, 
generally speaking, contain sinvzq and cosmq, so that 
the off-diagonal matrix elements of the term linear in 
the field in (23) between the functions $EA' and $E'(" be- 
come different from zero (the diagonal terms a re  equal 
to zero for all x ) ,  but the functions obtained by us by the 
variational method do not contain, with good accuracy, 
terms xcosmcp. We therefore confine ourselves in the 
calculations of the corrections xu2 only to the diagonal 
matrix elements of the terms av2,  SO that the angular 
dependence takes the form 

E-EQ=58v2f (9, q ) ,  f (9, q) [ 1+0.6 sinz 0 ( l +  1.4 cost cF) 1. (26) 

At not too large x ( x -  I ) ,  the constants in formulas 
(25) and (26) change, but, a s  before, the increment to 
E, is  -v%(B, cp),f,(B, cp) - 1. In the opposite limiting case 
the situation is somewhat more complicated. In the ab- 
sence of dislocations, an Abrikosov structurecg1 should 
appear on curve 1 of Fig. 1,  i.e., a t  H =H,, (v = v,,). 
This structure results from superposition of wave func- 
tions with different centers of the orbits yo, of the form 
4 - exd-2ivxv, - 2v(y -go)2}. In the homogeneous case 
the energy degeneracy with respect to the centers of the 
orbit is partically lifted by the nonlinear terms,  and 
this leads to the formation of the periodic structure. 

In the presence of a dislocation potential, the degen- 
eracy with respect to the orbit centers is lifted already 
by the dislocation potential itself, so  that to determine 
the end point v,(E), a s  well as  the structure of the state 
near this point, we can use a s  before the linearized 
equation (19). (The nonlinear term determines only the 
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FIG. 2.  

amplitude of this state.) 

For a formal solution of the problem, we write down 
(19) and (20) without the nonlinear terms 

a a . a 2 *  a% 
( - i - f 2 s y )  y - - - - + ( U ( ? , y . L ) - E ) $ = O ,  

ax  ag2 a y 3  (2 7) 
y cos cpS11  sin cp 

112'ty:, 
11 = x cos 0 - %sin  0. U ( z ,  y. 5 )  = - - (28) 

The choice of the coordinate system for this case and 
the location of the dislocations relative to the magnetic 
field and the resultant superconducting state are  shown 
in Fig. 2. The magnetic field is directed along the 5 
axis. Just  as  before, the angle cp characterizes the or-  
ientation of the Burgers vector b in a plane perpendicu- 
lar to the dislocation axis, and 9 is the angle between 
the dislocation axis n and the magnetic field. 

The dislocation potential cannot be taken into account 
by perturbation theory, because of the degeneracy of the 
ground state. However, a s  is clear from (27), by virtue 
of the condition v >> 1 ,  the localization of the wave func- 
tion 4 in the direction of the v axis i s  determined a s  be- 
fore by the magnetic field, and U ( x ,  y, t;) is inessential 
for this motion. The characteristic localization distance 
with respect to y is p, - v - " ~  , where p, - R / I  and R is the 
Larmor radius of the lower level, given by 

R=(@o/nH)"=1/(2v)", (29) 

so that we c a n i s e ,  a s  before, the concept of "orbit 
center." We shall show that an approximate separation 
of the variables i s  practically always possible in the 
system (27) and (28). 

We consider f irst  the case yo >> p,. In the potential 
(28) we can then replace y by yo, since (y  -yo 1-p,, and 
the relative change of the potential (28) over such dis- 
tances is small (-p,/y,). The variables can then be 
separated: 

Here 

(P=lP1(~)g"( t )  exp ( - -2 ivzy0) ,  
P-yo/sin20, e"=EN sin' 0 ,  E=Ef+E", t=q/sin2 0. 

We investigate now the function E,,"(p). It is obvious 
that a t  p >> 1 the potential in (31) has many levels, and 
the lowest one l ies near the bottom of the well, so that 
E ~ - I / . V ~ .  At p,/sinz9<<pc< 1 the solution can be ob- 
tained by joining together the exact solutions in the 
regions t > > p  and t - p .  It can be shown that in this case 

E M = - f 2 ( ~ ) / s i n 2  0, f , ( q ) = c ( l + s i n  2cp), c=l .  (32) 
It is important that E" does not depend on yo in this 
case. 

If yo sp,, asymptotically exact formulas a r e  obtained 
a t  Icp - n/2 I<< 1. Indeed, if this inequality is satisfied, 
we can neglect the t e r m  y coscp relative to 77 sincp in the 
numerator of (28), and then discard also the term y 
- p , e  1 in the denominator, inasmuch a s  in the potential 
in the form 1/q, obtained after discarding y, the con- 
tribution to the energy is due to q - 1 ,  since there i s  no 
falling to the center. Thus, the variables separate in 
this case,  too, and formulas (32) remain in force, 

At 1~ - n/2 I - 1 the variables, generally speaking, do 
not separate, since the contribution made to the energy 
by the t e rm y coscp in (28) turns out to be of the same 
order as the contribution of the t e rm 77 sinq. It is ob- 
vious that (32) is of the right order of magnitude, but 
f2(cp) is now an arbitrary function of cp such that f2(cp) - 1. 
Comparing the expressions for E " at  different values 
of yo, we find that the minimum of E" is reached a t  yo 
Sp,  and is determined by the formula (32), where f2(cp) - 1. 

The final forms of the energy and of the wave function 
a r e  

E,=2v-f,(cp) /sina 0, 
g-erp [-2v ( y - ~ , ) ~ -  I qIIsina 0-2ivzya1, 

i.e., the produced state takes the form of a plate of 
width 1 in the direction of the q axis and thickness p, 
along the y axis. 

Let us estimate the region of small  angles 9 a t  which 
our arguments become incorrect. An important factor 
for the separation of the variables in (27) and (28) is 
that the characteristic distance over which the wave 
function changes in the direction of the q axis exceeds 
substantially the characteristic length of localization in 
the direction of the y axis. Therefore our analysis does 
not hold a t  angles 8< 8,. The quantity 8, and the value 
of the energy E, at f3 = 8, a r e  determined from the con- 
dition 8; - po and take the form 

0,-V-"', E0=2v-v". (35) 

At 9 = O  we can estimate the corrections to E b by per- 
turbation theory, for in this case there is no localiza- 

FIG. 3. 
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tion in the direction of the magnetic field. The esti- 
mate leads to the value E:- -v1I2, i.e., E: (0) - Et(0,) 
s o  that at 0< 9< 9, we have E; ( 9 )  - E: (9,). 

The general form of the angular dependence of E - 2v 
(i.e., of the magnetic-field interval in which localized 
states exist but there is still no Abrikosov structure) i s  
shown in Fig. 3. (The dashed lines mark the region in 
which our analysis is only qualitative in character.) 

5. CRITICAL CURRENT 

We now estimate the current that can be made to flow 
through a single superconducting filament in a zero ex- 
ternal field (v =O). It is easy to show that in the case 
x>> 1 considered by us we have A>> I ,  so  that the critical 
current, just a s  in the case of athinplate,'lol isthepair-  
breaking current. 

To solve the problem, we use Eqs. (19)-(21) and ne- 
glect the magnetic field produced by the current. In 
this case the vector potential takes the form 

a= ( 0 . 0 ,  a: ) .  
1 (36) 

We seek the order parameter in the form 

The right-hand side of (20) is the dimensionless current 
density. Integrating both halves of (20) over the (x, y) 
plane we obtain the connection between the dimension- 
less  total current J, the vector potential a ,  and q: 

where I is the total current. 

It follows from (38) and (19) that X satisfies the equa- 
tion 

-Ax+[U, (p )  +Pv . ' I~ ' -EIx+~'x~=O.  (39) 

This equation is formally equivalent to (7). Therefore 
a t  E - Eo<< E,  we obtain x'x, ,  and consequently 

qZ=[  (E-Eo)  - P ~ ' l q ' l (  lx0 1')-', ( 1  xo 1') - '~167,  (40) 

3 = E - J ' K ~ / ~ ~ ,  and X ,  is the normalized solution, of 
lowest energy, of the linearized equation (29). 

Equation (40) connects the current with q2. The criti- 
cal value of the current is the maximum value of J at  
which (40) has a solution. At this value of J, the deriva- 
tives of both halves of (40) with respect to q2 a re  equal. 
As a result we have 

I.=Z,o(AE)'", I,ozo.9~cD$/ht. (41) 

Formula (41) is asymptotically exact at AE<< E,. At 
AE - Eo we get the estimate I, - 0.031,,. 

CONCLUSION 

tion of the nonlinear GL equation. 

In a weak magnetic field (He H,@/[~,H,=H,,(T =O)) 
the temperature a t  which the filament appears is shifted 
by an amount 6T, and in accordance with (26) and (2 1) 
we have 

6T=8(HEoIH0B)'f ( 0 ,  p). (43) 

Below the transition point, at T >> p/(i, the fields close 
to critical a r e  strong (H>> H0B2/5:). In this case there 
exists a field interval AH =H,(T) -H,,(T) in which local- 
ized states exist near the dislocation that take in this 
case the form of plated of thickness 6 - t 0 / ~ l f 2  and width 
-1, arranged parallel to the dislocation axes (Fig. 2). 

The quantity AH has strong anisotropy and increases 
sharply with decreasing angle between the dislocation 
axis and the magnetic field. Since formulas (34) and 
(35) determine only the angular dependence on 9 and the 
order of magnitude of the quantities, i t  is convenient 
down here an interpolation formula 

€Ic= (Bigo)  "2~-'1*. (44) 

The critical current that can be made to flow through 
a unit dislocation a t  T,< T <  To is determined by formula 
(41). At T -  T, its maximum is given by 

Zo=0,1ccDaBlz2E.2. (45) 
From (42)-(45) it is clear that all the effects depend 

essentially on the derivative aln~,/alnV, so  that the ef- 
fects a re  particularly strong for those substances which 
have a strong dependence of T, on the pressure and a 
low value of 5,. 

Some compounds of the A-15 type satisfy the foregoing 
criteria. We present some examples (for a single dis- 
location). For  V,Ge we have according to Refs. 11-14 

gO='iO A, T,=6.3 K ,  a z4 .7  A, oz0 .35,  K = 3 .  lo6 bar , 
aT,/ap - 6 x  b bar. Here K-I is the compressibil- 
ity. Assuming also A -  2 x lo3 A and b -a, we obtain 

B e l o  A, 1 ~ 2 5 0  A, AT-IO-2 It, AH-4. lo5  G ,  0,-0,4, 10-5. lo-' A. 

For Nb,Sn with 

EoZ~O A, T . c l 8  K, ac5 .3  A, 0=0.37, Kz2 .5 .10 .  bar, 

--- 
aTc a D l .4.10-s W bar 

we obtain 

The quantity B is proportional to the Burgers vector 
and therefore increases in proportion to the number iV 
of the dislocations contained in the cluster in the case 
when the distance d between these dislocations satisfies 
the condition d<< I .  Such a cluster can be regarded a s  
one "superdislocation" with a Burgers vector Nb, and 
this leads to a sharp increase of all the effects. 

Thus, a superconducting filament with diameter 1 is 
produced near the dislocation a t  T > T, in the absence of The effects considered by us can be revealed by the 

a magnetic field, and it follows from (4), (5), (14), and following: 1) the sharp decrease of the resistance at 

(15) that the points where the dislocations of their clusters em- 
erge to the surface of the sample o r  when the disloca- 

AT==T,-T,=0.16B21;,Z, 1=0.53~,'/B. (42) tion or system of dislocations is "connected" into the 

At T <  To the order parameter and the energy of the current circuit; 2) the sharp anisotropy of the smear- 
localized state per unit length a re  described by formulas ing of the critical field (H,,) in strongly case-hardened 
(18) and (19), which a re  obtained as  a result  of the solu- samples in fields with various orientations relative to 
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the dislocation axes (it is assumed that the dislocation 
axes a re  parallel). It can also be shown that in this 
case the critical pair-breaking current should be 
strongly anisotropic. For a two-dimensional periodic 
system of dislocations with distance d between them, 
the anisotropy factor (the ratio of the critical current 
perpendicular to the axes of the dislocation system to 
the critical current along the system) is proportional to 
the overlap of the wave functions of the individual fila- 
ment, =e'*/'. In addition, one can expect the appear- 
ance of localized states to lead to a change in the dis- 
location damping force, and consequently to a change 
in the plastic properties in the vicinities of T, and H,,, 

We note also that although the theory described above 
is valid, strictly speaking, at B<< to,  localized states 
should exist also a t  B 2 5,. Moreover, for some sub- 
stances the quantity B can be unusually large. In such 
a case we can have a situation wherein the supercon- 
ductivity is caused by the existence of dislocations, 

The authors thank V. L. Ginzburg and I. M. Lifshitz 
for interest in the work, I. 0. Kulik, and A. I. Larkin 
for useful discussions, and N. E. Alekseevskii for a 
discussion of the possibilities of experimentally observ- 
ing the described effects. 
APPENDIX 

The GL functional with a potential and the correspond- 
ing nonlinear equation and equation without the nonlinear 
terms take respectively the forms (6), (7), and (8). We 
obtain an asymptotically exact solution of Eq. (7) near 
the bifurcation point E =Eo (E, is the smallest eigen- 
value of Eq. (8)) under the condition (16), which pre- 
supposes that E, is separated from E,  by a finite inter- 
val. We seek the solution of (7) in the form 

By summation over E' we mean summation over dis- 
crete values and integration over continuous values, 

is the se t  of those eigenfunctions of (8) which do 
not depend on 5 ;  this se t  is assumed to be complete. 
Substituting (Al) in (6) we easily verify that the mini- 
mum of the functional (6) is reached for A, and BE, in- 
dependent of 5.  Assuming that BE,<< &, we retain in 
the functional only the terms that a re  linear and quad- 
ratic in BE,, after which we vary (6) with respect to & 
and BE,. As a result we get 
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It is clear from (A2) that BE,/& - A E ,  and it i s  this 
which justifies the possibility of expansion with respect 
to BE,. To be able to use the procedure described 
above, it is necessary also that the sum (integral) over 
E' in (Al) exists, i.e., the coefficients EE, must de- 
crease rapidly enough. The corresponding coefficients 
calculated for  U, decrease like l/n3 for the discrete 
spectrum (E,,) and like l/k5, for the continuous spec- 
trum (E'=k2) SO that (17) is valid. BE, has a similar 
form for U, and U3. Substituting (A.l) in (6), we obtain 
the expression (18) for  the f ree  energy. 
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