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The damping of dislocations by conduction electrons in a strong magnetic field corresponding to the 
ultraquantum limit is investigated. A substantial increase of the "electron friction" with increasing 
magnetic field (a H ' I 2 )  is observed. The strongest slowing down is experienced by dislocations oriented at 
small angles 9 to the H direction. For these dislocations, the dependence of the damping force on the 
velocity and on the angle can have a nonmonotonic character. 

PACS numbers: 61.70.Ga, 72.10.Fk 

1. INTRODUCTION 

1. The plastic properties of metals at  low tempera- 
tures a r e  determined to  a considerable degree by the 
damping of the dislocations by the conduction electrons. 
The energy of a moving dislocation is consumed in 
excitation of the electrons, i. e . ,  in the raising of the 
electrons from states with lower energy to states 
with higher energy, and i s  then converted into heat 
when the electron system relaxes. This is how a f rac-  
tion of the energy of the external loads that cause the 
dislocation motion is dissipated. 

field, the electrons move a s  f ree  particles. It is 
precisely this drift motion which plays the decisive role 
in the absorption of the dislocation energy. Owing to 
the drift along H, the center of the electron orbit 
manages, during the cyclotron period, to cross  many 
t imes the fronts of the elastic wave generated by the 
dislocation. Therefore the absorption of such a dis- . 
location phonon has a collisionless character and does 
not depend on H. This result i s  valid if the magnetic 
field i s  not too strong, when the distance ti51 between 
the Landau levels (n= e ~ / n z c  i s  the cyclotron frequency 
and e is the absolute value of the electron charge) is 

We a r e  interested in the energy Q absorbed by the much l e s s  than the Fermi energy G,. 

electrons per unit time. It i s  determined by two fac- 
In very strong magnetic fields, in semimetals and 

tors. First, Q depends On the parameters of the semicon~uctors with low carrier density, the inverse 
of the dislocation strains;  second, the dissipated ener- limiting case 
gy i s  expressed in terms of characteristics of the 
electron system. An external magnetic field H a l ters  t i 8 / e p 8  I (1.1) 
the wave functions and the chemical potential of the 
electrons, i. e.,  the problem a r i ses  of determining the 
dependence of Q on H. The influence of a magnetic 
field on the dislocation damping force was investigated 
in Refs. 1-4 with a simple single-band model of elec- 
trons with a quadratic isotropic dispersion law a s  an 
example. In Refs. 1 and 3 they considered a special 
situation. where a linear dislocation was oriented 

may be realized, and i s  called "ultraquantum." Here 
the cyclotron period 2~//52 becomes s o  small  that during 
this time the electron moves in a field of practically 
homogeneous strains. Therefore in the case (1.1) one 
should expect a strong effect of the magnetic field on 
the damping force." An analysis of this question is the 
subject of the present paper. 

parallel to H. This problem was solved for an a r -  2. Just  a s  in Ref. 4, we confine ourselves to an 
bitrary geometry in Ref. 4. One of the principal r e -  electron gas with quadratic isotropic dispersion. The 
s ~ l t s  of the lat ter  reference i s  the conclusion in most state of the electrons in the external constant and ho- 
cases that the damping force depends little on the mag- mogeneous magnetic field i s  classified with the aid of 
netic field. The point i s  that the magnetic field a l ters  four quantum numbers. Three of them, namely, the 
the character of the electron motion only in a plane momentum projection pH on the direction of the mag- 
perpendicular to the vector H. Along the magnetic netic field, the principal quantum number i l ,  and the 
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component of the spin a along H, determine the elec- 
tron energyf6]: 

-- - 

E.=pEY2m+ (n+'l,) hQ-gpBaX; (1.2) 

a is the aggregate of all the quantum numbers corres- 
ponding to the given state. With respect to  the fourth 
quantum number (which can be chosen to be one of the 
coordinates of the electron-orbit center) we have a 
degeneracy of multiplicity 

K=eHlL~hc 
(normalized to unit area). The continuous quantum 
number pH can assume all values from - to +a, 
n=O, 1, 2,. . . , the projection of the spin o i s  equal 
to  + 1/2 o r  - 1/2. The spin term of (1.2) contains the 
Bohr magneton p, = eE/2r,zoc multiplied by the g-fac- 
tor. Their product determines the effective magnetic 
moment of the electron, which depends on the charac- 
t e r  of the interaction of the electron with the crystal 
field (see, e. g. , Ref. 7). In particular, for a f ree  
electron we have g = - 2. It is convenient to introduce 
a dimensionless parameter y s grrz/2nzo (rlzO is the mass 
of the free electron and nz i s  the effective mass). Then 

E.-pEZ/2m+hQ (n+'l.+ya). -- (1.3) 
As seen from (1.3), the minimum energy 

- 

Emcm=hQ (1- 17 1 ) 12 (1.4) 
is possessed by an electron in a state with pH= 0, n= 0, 
and a magnetic moment directed along H. Relation 
(1.4) for Em,, describes the displacement of the bottom 
of the energy band in the magnetic field. 

The magnetic field not only restructures the states of 
the electrons, but can also change the population of the 
levels, inasmuch a s  the chemical potential p of the 
electron gas changes in the field. The dependence of 
p on H and on the temperature T i s  determined in the 
usual manner from the condition that the electron densi- 
ty N, is fixed: 

- 

j dEw,(E)filE-~(H. UI-N.. (1.5) 
N. - 

Here vH(E) i s  the density of the electronic states (nor- 
malized to unit volume) in the field H; fo is the Fermi 
distribution function. Knowing the spectrum (1.3) and 
the degeneracy multiplicity K, we can easily obtain 
the function vH (E) (Ref. 6). Formula (1.5) yields 
implicitly the function p(H, T). We confine ourselves 
to a summary of the principal results for the case T 
= 0. In the quasiclassical region (mZ << E , ) ,  the change 
of p is insignificant: 

where &, r p(0) alq13. 

In a strong magnetic field (1. I ) ,  the chemical po- 
tential depends substantially on H (See, e. g., Ref. 8): 

It i s  seen that with increasing H the chemical-potential 
level approaches the minimum electron energy (1.4). 
If the inequality (1.1) i s  made stronger, then the pa- 
rameter A i s  quite small. In other words, what is 
populated is a narrow energy interval from E-- t o  p(H), 
Only states belonging to  the zeroth Landau band 

FIG. 1. 

a re  occupied below the chemical-potential level. Their 
transverse-motion energy is E- -An and the longitudi- 
nal energy takes on a value 0 6 p2,/2rrz G AAn. The ratio 
of the longitudinal energy to the transverse one is on 
the order of A s. 1, i.e., in the ultraquantum case the 
fraction of the transverse energy increases noticeably. 

3. In the ultraquantum limit, the premise that the 
electron drift motion plays a predominant role in the 
damping of the dislocations is no longer tenable. In 
fact, the maximum electron displacement across the 
wave front during the cyclotron period i s  u= 2nv,sinQb/ 
0. Here vH=pH/rn i s  the projection of the electron 
velocity on the H direction, and @ i s  the angle between 
the dislocation axis and the magnetic field (see Fig. 1). 
Using formula (1.6), this displacement can be re-  
written in the form 

u- (161113) sin @ (filp,) (e,lfiQ)'. 

This quantity must be compared with a characteristic 
wavelength 2nq" of those dislocation phonons which in- 
teract  effectively with the electrons. 

The matrix element ( b I etW l a )  of the phonon between 
states with one and the same n= 0 decreases exponen- 
tially at q>> l/rH, where rH= (ficleH)lI2 is the magnetic 
length. This follows directly from the law of conser- 
vation of the H-component of the angular momentum 
in the course of absorption of a dislocation phonon by 
an electron. Thus, ,\IH -p,r, - A. The change of ,\I, 
due to absorption of a phonon with a momentum Aq, 
transverse to H i s  equal to Aq,r,. It must not exceed 
a value of the order of ,\.I,, i. e., fiq,r, G A, whence in 
fact s tems the restriction imposed above on q. 

Comparison of u with 2nq-' leads to the condition 
qu-sin @ (e,/hQ)5G1. 

Even this rough estimate shows that the electron i s  in a 
field of practically homogeneous strains. This leads to 
a strong dependence of the damping force on the mag- 
netic field. 

4. The functional relation F(H) follows qualitatively 
from a simple consideration of the initial formula 

in which V is the dislocation velocity and q is the two- 
dimensional wave vector of the dislocation phonon (see 
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Fig. 1); U(q),is the Fourier transform of the energy 
of the interaction of the dislocation with the electron 
and is proportional to l /q;  f a  a f ,(Ea - y ) i s  the Fermi 
distribution function, and W i s t h e  volume of the crys- 
tal. 

We note that the difference f a  - f,  can a s  a rule be 
replaced by tiq* Vb(E, - p). From this and from the 
estimate of the matrix elements it follows that a t  q r 1/ 
Y, the coefficient of the 8 function with the energy 
conservation law does not depend on q. The summation 
over the spin and over the continuous quantum numbers 
that enter in b i s  obviated by the 6 symbols. The sum- 
mation of 6(E, - p )  over the initial states a yields, by 
definition, the state density vH(p): 

The sum over q is in fact an integral with respect to 
q and is proportional to q2. The integration over the 
directions of the vector q singles out characteristic 
orientations near q 1 H. In fact, the drift of the elec- 
trons in the H direction does not lead to the intersec- 
tion of the wave fronts of those phonons for which q II  x 
and cp = 7r/2 (see Fig. 1). The discrimination of the 
azimuthal angles cp i s  via the energy conservation law. 
The corresponding 6 function in (1.7) i s  proportional 
to the characteristic time T~~~ - (qp sin@)'' of the in- 
teraction of the electron with the wave. It agrees in 
order of magnitude with the time of travel of the elec- 
tron between neighboring wave fronts. 

Thus, the damping force f turns out to be propor- 
tional to the product 

F - V R  ( p )  q 2 r , f i .  

From (1.6) we get 

V R ~ V ~ ( ' / ~ )  ( e F / M )  m H - ' .  

Recognizing that q =  2n/yH - H1f2, we get T,,,- H1f 2/ 

sin@. Finally, using the expressions for vH and K 
from (1.8), we get v,(y)-P. Consequently 

which is the main result of the present paper. In addi- 
tion to the strong field dependence, the damping force 
in the ultraquantum limit exhibits a curious nonmono- 
tonic dependence on the velocity V and on the angle @. 

2. CALCULATION OF THE DISLOCATION DAMPING 
FORCE IN THE ULTRAQUANTUM LIMIT 

1. To find the dislocation damping force in explicit 
form, we indicate f i rs t  the concrete form of all the 
factors that enter in the "golden rule" (1.7). Just  a s  
in Ref. 4 ,  to simplify the form of the potential U ( q )  
we assume that we a re  dealing with a screw disloca- 
tion. 

A most important question is the allowance for the 
temperature and for the scattering of the electrons 
by the thermal phonons, by defects, etc. Strictly 
speaking, the presence of collisions changes the 
classification of the electronic states. The matrix 
elements and the energy levels E, and E, also change 
in correspondence with the perturbation of the station- 
ary states. The procedure for taking into account the 

changes due to the collisions consists of classifying 
the states in the same manner a s  before (so that the 
matrix elements do not change their form), but now 
they a re  quasistationary with a finite lifetime 7 rv", 
so  that E -  E+ i t iv /2.  The quantity 7 can be inter- 
preted a s  the time interval between the collisions, and 
v(E) can be interpreted as  the frequency of the col- 
lisions of the electron (with energy E )  and the scat- 
terers.  In accordance with the described concept, 
the 6 function in (1.7) must be (see Ref. 9)  "smeared 
out" by an amount iiv. As for the temperature, i t  
enters the expression for the force only via the Fermi 
distribution functions. Taking the foregoing argu- 
ments, we get from (1.7) 

Here B a 3iV,b2,?z E,/2nti i s  a constant that depends on 
the concentration of the electrons and on the square of 
the Burgers vector, p, = (2,12~,)~1~, g,,=A,J&, are  
dimensionless constants of the deformation potential, 
qH= qrsin@ i s  the projection of the vector q on the H 
direction 

g L = ( q Z - q R 2 ) % ,  s=nb-n.: 
M,,,.. . ( t )  =taf2L;(t)  e-'", 

L;(t) i s  a generalized Laguerre polynom'ial normalized 
to unity. Formula (2.1) takes into account the fact that 
the initial matrix elements in (1.7) contain a definite 
aggregate of 6 symbols. 

2. The quantum oscillations of the damping force in 
the quasiclassical situation &,/tiC2 >> 1 were considered 
in Refs. 2 and 4. Here we investigate the ultraquan- 
tum case (1.1) a t  T = 0.  The results will be valid 
when the following degeneracy conditions a r e  satisfied: 

The inequality (1.1) makes i t  possible to retain a 
single term in the triple sum over s, n, and o and by 
the same token simplify greatly formula (2.1). To 
verify this, we estimate the order of magnitude of the 
energy terms in the arguments of the Fermi functions. 
If n = 0 and o= - sgny, then the argument of the f i rs t  
of these functions i s  minimal: 

Furthermore, it can be either positive or  negative. 
On the other hand, if n#.0 or  if the spin o i s  chosen 
to be different, then a large positive on the order of 
KC2 i s  added to the argument. Since A 51 and qV<< 52, 
the arguments of both Fermi "steps" a re  positive in 
this case, and both functions f, a r e  equal to zero, i. e., 
the terms with n # 0 and o # - 4 sgny vanish. 

The index s enters the matrix elements (2.2) in such 
a way that the quantities .lll,(n = 0) vanish identically 
for all s < 0. The physical reason for this selection 
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rule is that only the zeroth Landau band i s  located un- 
der the chemical-potential level. Likewise forbidden 
a r e  electronic transitions with s > 0. The point is that a t  s 
> 0 the argument of the "smeared" 6 function in  (2.1) be- 
comes positive, this means that t e rms  with s # 0 a r e  negli- 
gibly small (-v/G?). The positiveness of the arguments is 
established by the following chain of reasoning. The fourth 
term in the argument i s  much smaller than the f i rs t  
(s 3 1) because of the small dislocation velocity, and 
can be neglected. The third term is larger than the 
second a t  fil q, l r 2 Ip, I .  Since it is always positive, 
the entire argument i s  also positive in this case. In 
the opposite case at El q, 1 < 2 Ip, I ,  the maximum of 
the modulus of the second term i s  

2prh_ /mtS1==4A=GI. 

Thus, for terms with s2  1 the argument does not 
vanish in this case, too. 

As a result, all that i s  left of the entire triple sum 
is the term with ,I= s = O  and o= - hsgny. The matrix 
element dl, corresponding to this term turns into the 
exponential exp(- ti$d4,1za), which "cuts off' the inte- 
gral at q s r,". Since the magnetic length r, in real-  
istically attainable magnetic fields is much larger than 
the Burgers vector, the integration with respect to q 
can be carried out not to b" but to infinity. The inte- 
gral  with respect to pH i s  calculated in elementary 
fashion if the difference between the Fermi steps is 
replaced by 

iiqV6(p,z/2m-F.QA). 

This replacement i s  valid because the shift of the a r -  
guments i s  fiqV.<< EnA. This inequality is satisfied 
because of the smallness of V for any of the values of 
q that a r e  possible in this problem. Thus, the inte- 
gration with respect to pH reduces to the appearance of 
a factor tiq- Vln/ lp; I and to replacement of pH by 
p: = f (2111ti~~~) 'r~.  

This reasoning should make i t  clear that to calculate 
the force F it remains only to integrate with respect 
to the two-dimensional vector q. This integration is 
conveniently carried out in the cylindrical coordinates 
q and cp (see Fig. 1). The quantity q must be made 
"dimensionless" by introducing the variable x =  qrH/a.  
We arrive ultimately at the following formula for the 
dislocation damping force in the ultraquantum limit: 

- t rz  sin cp)'D(zd,)exp[-zz(i-sin' 0, cos' cp) 1, (2.3) 

3 m v  
d, (2, cp) - ---cos(q-$) *cos cp sin (D 

4 er vr 

It i s  impossible to integrate with respect to x and cp 
in (2.3) in explicit form. It may seem therefore that 
we must find the asymptotic forms of Fwith respect 
to the separate parameters in (2.3). However, in view 
of the large number of these parameters (r, fin/&,, 
v/v,, and the angles # and a) this manner of using 
formula (2.3) is not constructive. We shall show that 

i t  is possible to combine these parameters into a single 
one (albeit of rather cumbersome structure) and write 
down asymptotic expressions for F at  small  and large 
values of this parameter. 

3. We turn to formula (2.3) and attempt to integrate 
with respect to cp. This has helped to a considerable 
degree by two circumstances. The first ,  which can be 
directly verified, i s  that the third t e rm of the function 
d, of (2.4) can in practice always be neglected. The 
second important aspect reduces to the use of the 
smallness of the parameter I? in strong magnetic fields. 
The function D is then similar to a 8 function. It 
reaches a maximum at d,= 0, i.e., at the points cp= cp, 
defined by the relation 

Ocrcos $f sin 0 n 
WcP*- - m C ~ i n  $ Icp+lCz. 

In the derivation of this formula we have neglected the 
third term in the function d, (2.4) and have put 

The condition under which the function D in (2.3) can 
be replaced by a 6 function is the satisfaction of the 
relation xl ad, ( acp 1 >> r at  the points 9,. With the aid 
of (2.5) this relation can be rewritten in the form 

The quantity G, i s  in fact the aforementioned single pa- 
rameter of the asymptotic form. It is easy to verify 
that after making the substitution 

- 

D(zd,) +6(zd*) 

in formula (2.3) only the last  exponential factor i s  
integrated with respect to x. The integral of this fac- 
tor converges at x s 1 and i s  equal to 

n"/2(1-sinz 0 cos") ". 
Thus, the final result for F takes the form 

9n'h . m  '1, 
F = T B V  (=) sinz m sin' 9 

The applicability of this formula is restricted by the 
condition that the third (proportional to x) term in the 
d-function (2.4) be much less  than the sum of the two 
f i rs t  terms. An analysis of (2.4) shows that if we 
disregard the third term we have 

d , a - ~ , a ~  sina (cp-9,) . (2.8) 
This indicates directly that the third t e rm can be left 
out if 

Combining this inequality with (2.6), we obtain a final 
criterion in the form 

'32 sin' *r-'+sin cP - ( In. (2.9) 

In practice this always reduces to  the condition (2.6). 

Let us dwell on the inverse limiting case 
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It is easy to conclude from (2.6) that this situation is 
possible only at small angles @r a,,. The smallness 
of the parameter G, means that in the vicinity of the 
points cp, both the derivative ad,/acp and the function d, 
itself a re  close to zero. We use this circumstance a.nd 
replace D (xd,) in (2.3) by the constant l / n r .  Since @ 
<< 1, the argument of the exponential i s  simply - .?, 
the sum C yields the factor 2, and elementary integra- 
tion with respect to x and cp in (2.3) leads to 

Comparison of the third term for d, in (2.4) with r 
leads to the inequality sin2@<< v / n .  Just a s  before, 
however, it imposes no additional restrictions on the 
angle 4 since i t  i s  less  stringent than the general 
criterion (2.10) for  the validity of (2.11). 

4. Expression (2.7) for F is due to the collisionless 
mechanism of the energy dissipation of the moving 
dislocation, and describes almost all the limiting cases. 
What i s  singled out, however, i s  a very small region 
of angles @ and ii; (cp is  close to zero and ij i s  close to 
zero o r  n), when the 8-function contribution written out 
in (2.7) becomes small. Mathematically this means 
that the residue of the function a t  the point cp= cp, i s  
equal to zero and it i s  necessary to take into account 
the contributions of the remaining cp f pi, which a r e  
proportional to r. 

To this end, we again neglect the third term in (2.4), 
and f i rs t  integrate in (2.3) with respect to x with log- 
arithmic accuracy: 

Here A= 1 - sin2@ cos2p. Then, prior to the integration 
with respect to cp, the intermediate formula for F takes 
the form 

In the case (2.10) we have d 7 A r 2  << 1 and after ex- 
panding the logarithm we obtain directly (2.11). 

If we use now the formula (2.8) and the identity 
ws"(q-t) -cosa(qt-*I +sin(qt-q)sin(q+g,-2$), 

then we can represent (2.13) in the form 

It i s  easy to verify that at large G, (2.9) the f i rs t  term 
in the curly brackets of (2.14) yields, in order of mag- 
nitude, the 8-function contribution already written out 
by us in (2.7). Indeed, at G'>> 1 we have 

The approximate answer obtained in this manner dif- 

f e r s  from (2.7) by a factor ~ " ~ / 2 .  The reason is that 
the calculation of the integral (2.12) i s  asymptotically 
exact only a t  small and large values of the parameter 
d v A r 2 .  If it i s  approximately equal to unity then the 
result (2.12) i s  valid only in order of magnitude. This 
is precisely the situation a t  G>> 1. In the integral with 
respect to  y written out above the important quantities 
a re  y a G", i.e., the argument of the logarithm in 
(2.12) i s  indeed of the order of unity. 

This remark does not pertain to the second fraction 
in the curly brackets of (2.14). It describes the sought 
damping-force increment due to the collision absorp- 
tion of the dislocation phonons. Bearing inequality 
(2.9) in mind, we can neglect within the logarithmic 
accuracy used by us the unity term and the quantity 
sin2(cp - cp,)/A under the logarithm sign, and the final 
result fo r  8, in the form 

where 

i == "'(5 = ZE (Lw cos q-Eyr sin q)', 
sin(q,+q-2$) 

sin(q,-(~) ' 
0 

The explicit form of the factor ,B, i s  not very impor- 
tant, since the main anisotropy 8F(@, 4) is described 
by the denominator of the f i rs t  formula of (2.15). This 
i s  al l  the more valid since the angular dependence of 
9, i s  determined mainly by the type of location (edge 
o r  screw) and by i ts  orientation in the crystal. There- 
fore the actual formulas that describe the "smooth" 
anisotropy of F($)  depend on the model and a r e  of no 
interest. 

It may seem at  f irst  glance that in those situations 
when F of (2.7) becomes smaller than 8 F  of (2.15) i t  
is necessary to retain, besides the 8, term, also all 
the collision terms with s > 0. Analysis shows, how- . 
ever, that the sth term in the sum (2.1) differs 
from the term with s =  0 only by the value of the D- 
function, i. e., by a factor of the order of 

(e,ltiQ)J[@cpin"+ (@,,cos $*sin 0)" < I .  

At the same time, the sum over s converges well be- 
cause D-l /sZ.  Thus, with respect to the parameter 
(1.1) (and all the more a t  small @ r@,) the electronic 
transitions with s + O  result in a negligibly small incre- 
ment. 

5. In concluding this section, we consider the single 
case in which the third t e rm of the d, function becomes 
the principal one. As seen from (2.9), it corresponds 
to the inequality 

From the definition of G, in (2.6) i t  follows that this 
situation i s  realized in the geometry ii; = 0, I at small 
deviation angles a- @=, such that 

If the condition 
@c;f:>r/~ (2.17) 

i s  additionally satisfied, then we can replace the D 
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function in (2.3) by b(.?IX2v-' cos2 cp sin2@), and ele- 
mentary integration yields 

Thus, formulas (2.7), (2. l l ) ,  (2.15), and (2.18) 
constitute the solution of our problem. 

3. DISCUSSION OF RESULTS 

1. We note f i rs t  that sin @ >> a,, almost always, since 
the dislocation velocity i s  much less  than the Fermi 
velocity. This means that the principal parameter of 
the asymptotic form 

is large at large values of @. Using (2.7), we obtain 

9 ~ ' "  AP ' 5,: sin¶$ 
F = - B Y  z1 (_) 

sin 0 . (3.1) 

In the ultraquantum limit this expression holds true in 
a very wide range of variation of both the angle param- 
e ters  and the dislocation velocities. It i s  seen from 
(3.1) that in strong magnetic fields the damping force 
increases substantially, like H 7/2.  No such behavior 
appears at moderately strong magnetic fields; on the 
other hand, in the ultraquantum limit (1.1) i t  is due 
mainly, a s  indicated in the introduction, to the mono- 
tonic growth of the state density at the level of the 
chemical potential and to the appreciable decrease of 
the role of the drift motion of the electron along the 
vector H. 

The "dislocation friction" force remains linear with 
the velocity. Eq. (3.1) does not contain the electron 
frequency v. This means that almost any geometry the 
absorption of the dislocation phonon i s  of the collision- 
less  type, i. e., during the time between the collision 
the electron "manages" to interact effectively with the 
strain field. The quantity g9,z A,,*/cF, which enters 
in (3. I ) ,  can be a rather large number because the 
Fermi energy decreases like -\$I3 for substances with 
low carr ier  density. A comparison of F from (3.1) 
with the deceleration force in the absence of a magnetic 
field (see, e. g., Ref. 4) yields 

2. Formula (3.1) does not work in two ra re  cases. 
The first  i s  the region of relatively small angles: @ 
-( @,. The second i s  when sin$ is small. Let us dis- 
cuss these situations separately. 

Let JI *O, T. It is seen from (3.1) that when -3 de- 
creases the deceleration force increases like l/sin@. 
This variation of F(@) i s  described by the right-hand 
wing of the dashed line in Fig. 2a. It continues down 
to small angles @=a,. At smaller values of @ i t  is 
necessary to use the more accurate formula (2.7). 
This formula reflects the fact that a t  @ =$, the F(@) 
curve has a smeared-out maximum. On its  plot, F 
reaches a value 

With further decrease of @, formula (2.7) also ceases 
to be valid. 

FIG. 2. Damping force vs  the inclination angle O: a) v / u F  
>> ( ~ / m ( t i n / e , ) ' / ~ ,  dashed-arbitrary #, solid-geometry satis- 
fying the condition (3.4); b) v / v F < <  ( v / n ) (  

The collisionless regime of phonon absorption gives 
way to a situation wherein an electron drifting along H 
does not manage to negotiate the distance between the 
neighboring "hills" of the inhomogeneous strains during 
the time between the collisions. Relation (2.15) now 
becomes valid and F ( @ )  assumes a small  constant value 

The transition from (2.7) to 6F via (2.15) takes place 
at angles 

sinZ cP sin' $ G - - 
This estimate follows directly from a comparison of F 
and 6F. 

The foregoing analysis is valid for small  angles @ if 

G=='I3 (eplAQ)'- (017)  @=>I. 

In the opposite case of extremely slow dislocation 
motion, 

the right-hand wing of F(@) from (3.1) assumes at 

a constant value determined by (2.11). The variation 
of F(@) i s  monotonic in this case (Fig. 2b). 

3. The nonmonotonic angular dependence of the 
deceleration force is particularly emphasized in a 
special geometry wherein the dislocation moves in the 
yz plane and += 0, n. In this case formula (2.7) is 
not suitable. The entire behavior of F(@) is described 
by relation (2.15) for 6F. An exception i s  the vicinity 
of the maximum (2.16), where F coincides with (2.18). 
At as@, the deceleration force follows the dashed 
curve (3.3). At finite angles @ the force F decreases 
much more steeply, a: sin"@, to  a value 

[ 8  ( e p )  ''I 3 Xln - - 
3 RQ 

x(t.,'+f ,,'I. (3.6) 
At large inclination angles (on the right-hand wing) 

the deceleration of the dislocation is much smaller 
than at @ =  0 [see (3.311. A plot of the function F ( a )  
for this geometry is shown schematically by the solid 
line on Fig. 2a. 

A common feature of all the curves shown in Fig. 2 
i s  the substantial increase of the damping of the dis- 
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only a t  small angles @. 

FIG. 3. Nonlinear dependence of damping force on the dislo- 
cation velocity. The notation is the same as in Fig. 2. 

locations making small angles & with the external 
magnetic field H. This means that when curved dis- 
locations move in a metal they may straighten out in 
the direction of H. 

4. We discuss in conclusion the dependence of the 
damping force on the dislocation velocity. At large 
velocities 

(this inequality i s  meaningful only a t  quite small values 
of sin@) we have F(V) a 1/ V. This dependence is uni- 
versal and i s  described by formula (3.3). The real 
situation wherein the dislocation moves slowly 

v< v, (3.7) 

is characterized by the linear law Fa V .  The propor- 
tionality coefficient, however, depends on the geom- 
etry of the experiment. In the most general case 
(cp f 0, n) the function F(V) varies in accord with rela- 
tion (3. I ) ,  and its plot i s  shown dashed in Fig. 3. 
But if the dislocation moves in a plane that contains its 
axis and the magnetic field H($ = 0, n), then the left- ... 

hand wing of the function F(V) (the solid curve of Fig. 
3) is  given by the relation (3.6). Near V= V, both 
curves go through a maximum. Since V<< up,  a non- 
linear dependence of the force on the velocity exists 

Thus, an important feature of the ultraquantum limit 
i s  a noticeable strengthening of the metal, i .e , ,  an 
appreciable increase of the resistance to the disloca- 
tion motion. Such a phenomenon can be observed under 
experimental conditions in semimetals and semicon- 
ductors with sufficiently low carr ier  density. For 
these substances, the ultraquantum limit (1.1) i s  
realized in presently attainable magnetic fields 

Another object of experimentation may be conductors 
under conditions of a phase transition of order 2$, due, 
for example, to pressure. 

The authors thank I?. A. Kaner for suggesting the 
topic and for a discussion of the results. 
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