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A theoretical investigation is made of the longitudinal magnetoresistance in a strong electric field and a 
quantizing magnetic field in the case when the optical phonon energy is equal to the gap between the 
electron and hole energy levels. The theory is based on an analysis of the energy and camer density 
balance equations. It is shown that the bottleneck effect appears in the system and it increases the 
effective temperature of holes to the electron temperature. Intrinsic and donor-doped semiconductors are 
consdered in the case when the longitudinal magnetoresistance is independent of the camer density and 
the nature of the longitudinal magnetoresistance singularities is governed exclusively by the behavior of 
the electron temperature in the magnetic field. The singularities are basically different for transitions to 
states with different projections of the total momentum. 

PACS numbers: 72.20.My, 72.20.Jv, 71.38. + i 

1. INTRODUCTION 

Magnetophonon oscillations of the magnetoresistance 
of semiconductors[11 a t  low temperatures, when optical 
phonons a r e  frozen out, have been observed mainly un- 
der conditions of electron heating by an electric field. 12s31 

Gel'mont et a1 .[4*51 observed a new type of magnetophonon 
oscillations of the longitudinal magnetoresistance of 
HgTe in a strong electric field: this type of oscillation 
is due to an increase in the probability of recombination 
of an electron and a hole accompanied by the emission 
of an optical phonon in the case when the phonon energy 
is equal to the gap between the electron and hole Lan- 
dau levels. It i s  a s s ~ r n e d [ ~ * ~ ]  that the observed magneto- 
phonon oscillations a re  exclusively due to oscillations of 
the electron density. This assumption is used in devel- 
oping a theory based on an analysis of the balance equa- 
tion for the electron density. 

It should be pointed out that, in the case of strong 
heating of the electron gas when the resonance condition 
is satisfied by interband transitions accompanied by 
optical phonon emission, there a re  singularities not on- 
ly in the particle-number balance equation but also in 
the equations of the energy balance in the electron-hole 
system. Consequently, magnetoresistance oscillations 
observed experimentally may be due to oscillations of 
the carr ier  density or temperature. 

We shall develop a theory of magnetophonon oscilla- 
tions by analyzing a system of balance equations for the 
particles and energy in the electron-hole system using 
the approximation of effective parameters. We shall 
consider the case of low lattice temperatures. Optical 
phonons a re  then frozen out and holes are  heated to the 
electron temperature because of the bottleneck effect.['] 

The interaction of electrons and holes with polar lat- 
tice vibrations is described by the FrShlich Hamilton- 
ian. For this type of interaction the probabilities of 
transitions with and without spin flip depend in different 
ways on the electron quasimomentum, which gives r ise  
to basically different types of magnetoresistance oscil- 
lations. 

2. BASIC EQUATIONS 

We shall consider a zero-gap semiconductor of the 
HgTe type with an inverted energy band structurer7] sub- 
jected to a strong electric and a quantizing magnetic 
field, both in the longitudinal direction. In the investi- 
gated range of electric and magnetic fields both elec- 
trons and holes obey the Boltzmann statistics. In the 
approximation of effective parameters, we have 

*I") - f. - exp1 ( ~ . ( h , - e ) l T ~ ( ~ , l ,  (1) 

where Tech, and pech, a r e  the temperature and chemical 
potential of electrons and holes. 

We shall determine the parameters T and p from the 
energy balance equation, particle balance equations for 
electrons and holes, and electrical neutrality equation: 

Here, E is the electric field intensity; u,,,, i s  the elec- 
trical conductivity due to electrons (holes); p::; is the 
ra te  of loss of energy by electrons (holes) due to the 
emission of optical phonons in recombination processes; 
P,, is the ra te  of energy loss by electrons in the inelas- 
tic scattering by heavy holes; P,PC,, is the power of the 
acoustic phonon radiation emitted by electrons (holes). 
The term (an/at)'*' represents the ra te  of change in the 
number of electrons in recombination of electron-hole 
pairs assisted by optical phonons; %/at is the ra te  of 
change in the number of particles as  a result  of impact 
and Auger recombination processes; n and p a r e  the 
electron and hole densities; N ,  is  the concentration of 
ionized impurities. We shall confine ourselves to the 
case of electron conductivity (0, >>oh) and ignore the 
true heating of holes, i.e., we shall assume that the 
left- hand side of Eq. (2b) vanishes. 

Adding Eqs. (2a) and (2b), we obtain the energy bal- 
ance equation for the electron-hole system: 
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In the derivation of Eq. (3) i t  is assumed that 

@+~*op-tio~ (aniat)*', 

where wo is the limiting frequency of optical phonons. 
The term Pr can be ignored compared with P,C because 
i t  is small in respect of the parameter ~n,/,n, (me  and 
nz, are  the effective masses of an electron and a hole). 
We shall now consider in greater detail the structure of 
the balance equations. For a given lype of the distribu- 
tion function (I) ,  we have 

where 

is the frequency of phonon-hole collisions and 

Here, 

is the energy of an electron in a state with quantum 
numbers{n,k,,k,,i}(n=1,2,3 ,... ; i = a , b f o r n = l  and 
i =a', b' for n 2 2), 

is the energy of a hole in a state with quantum numbers 
{l,k,,k,,j} (1=0,2,3 ,...; j = a , b  for l = O  and j=a ' ,b+  
for 12 -  2) (Ref. 8), Ic;l2 and Ic, l 2  a r e  the squares of 
the Fourier transform of the potential of the interaction 
of holes with phonons and of electrons with holes. The 
quantity I c , o ' ~  for the interaction of holes with phonons 
can be expressed in the usual way in terms of the effec- 
tive deformation potential constant E,,, for an energy 
band with the p-type symmetry.[g1 Interms of the Dirac 
notation, l e ( ~ ) ~ )  i s  the wave function of an electron 
(hole). Energy is measured from the point where the 
bands touch for H = 0. 

The matrix elements of ekr occuring in Eqs. (4)-(7) 
can be calculated sufficiently accurately using a simple 
model in which the interaction between the nearest three 
bands is taken into account. The explicit form of the 
wave functions obtained in this approximation is given by 
~ e l ' r n o n t , [ ' ~ ~  and by Liu ahd   an. [lo] Simple calculations 
yield 

The expressions for M a re  given explicitly in the Appen- 
dix. 

In the calculation of a spectrum in the three-band ap- 
proximation the heavy-hole band has an infinite degree 
of degeneracy in E = O ,  which is lifted only by allowance 
for the interaction with higher energy bands. The dis- 

persion law of heavy holes calculated in this approxima- 
tion is fairly complex. ["I The highest hole band belongs 
to the ser ies  b and its number is 2 =2. For electrons 
the lowest band i s  in the ser ies  a and i ts  number is  
n = 1. Retaining the correct systematics of levels a t  
the point r ,  we shall introduce a simplification for k, 
# 0 assuming the quadratic dispersion law for electrons 
and holes: 

We shall estimate expressions which occur in the bal- 
ance equation. Since in the range of magnetic fields 
under consideration we have me >> T,, electrons occupy 
the lowest Landau level with i = a  and n = 1. The expres- 
sion for (an/at)OPt i s  obtained by substituting Eq. (9) into 
Eq. (4): 

Al  i 1 1 1 1  
x r ,  j . e x P [ - q + ~ , , I , ( ~ - ~ )  +e(Z-z)] 

I ,  0 

where (Y = ( c t i / e ~ ) " ~  is the magnetic length. 

The expressions for P,, and PF will be considered 
in the ultraquantum limit for holes and electrons. In 
this case the scattering of electrons by holes is quasi- 
elastic and the initial expressions can be simplified by 
expanding in terms of the small inelasticity parameter: 

Since in the situation under consideration the character- 
istic quantities k, and k: a re  small compared with q,, i t  
follows that we can calculate the integrals in the matrix 
elements iM retaining only the f i rs t  nonvanishing terms 
in k,and k:: 

Substituting Eq. (13) into Eq. (5) ,  we obtain the ex- 
pression for P',C (employing the expansion in terms of 
K ~ , / T  << 1 accurate to within terms of the second order 
of smallness): 

Here, C = 0.577. . . is the Euler constant. 

The left-hand side of the particle-number balance 
equation is a sum of two terms: the rate of generation 
of particles in impact ionization processes and the rate 
of change in the number of particles in Auger recombin- 
ation; in the approximation of effective parameters this 
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sum can be represented in the form["] 

 o or T, =Th, Eq. (1 5) becomes exact.] 

The expression for (an/at)imD.iOn can be represented 
in the formr4] 

imp. bn  ($1 = Y (k*)!". 

It follows from the laws of conservation that the impact 
ionization coefficient y(k,) differs from zero, beginning 
from a certain threshold value of the momentum 

where AE(H) is the gap between the conduction and val- 
ence bands in a magnetic field. Above the threshold the 
coefficient y(k,) depends weakly on the momentum and 
this dependence can be ignored. We shall assume that 
the quantity y is  a parameter of the theory. In the 
adopted approximation, we have 

3. INVESTIGATION OF BALANCE EQUATIONS NEAR 
A RESONANCE UNDER BOTTLENECK CONDITIONS 

An effective temperature Th is established in the sys- 
tem of holes by exchange of energy with two thermo- 
stats: the electron system, whose temperature is T,, 
and the lattice, whose temperature is  T. We shall con- 
sider the case when the energy relaxation channel be- 
tween holes and the lattice is  "narrower" than the chan- 
nel along which energy is transferred from electrons to 
holes. In this case we may assume that Te=Th=T* and 
we can find T*, n,  and p simply from Eqs. (2c), (2d), 
and (3). Under the bottleneck conditions the expression 
for (an/at)oPt in the vicinity of a resonance AjI <<fiSZ,,FiQ, 
becomes 

where 

In  the derivation of-Eq. (17) alL the terms in the sum 
over I and j-except for the term j=b*,  1 =2, which di- 
verges-are simplified by dropping the following quanti- 
ties from the denominators containing q:: 

The expression (an/atYPt in Eq. (17) has a singularity 
every time the following condition for the magnetopho- 
non resonance is satisfied: 

For transitions to the series a- the expression (an/at)'pt 
corresponding to A,, = O  changes discontinuously by a 
finite amount. For  transitions to the ser ies  b the func- 
tion (an/at)oPt is  continuous a t  the resonance point (Abr 
=0), but the f i rs t  derivative has a discontinuity. Ex- 
pression (17) i s  obtained for T, =T,. The nature of the 
dependence of (an/at)oPt on the magnetic field in the case 
Te+Th was studied by Gel'mont et ~ 1 . ~  and i s  more com- 
plex. 

Substituting Eqs. (16) and (17) into the balance equation 
(2c) we obtain the following explicit particle-number 
balance equation: 

Here, 

Depending on the impact ionization coefficient 7, a 
steady-state number of electrons may be established 
either because of recombination involving optical phon- 
ons or  because of Auger recombination. 

a) Infrinsic ser~ticonductor (n = p ) .  The Auger re- 
combination process predominates when 

The electron density i s  given by 

n- ( A V , N A ) ' ! * ~ X ~ [ - A E ( H ) / ~ T ' ] .  

When the inequality is  opposite to that given by Eq. 
(20), the recombination process assisted by optical 
phonons predominates. We then have 

n;J 
y T ) ( l e s p [ R o o / ~ - 2 ~ ~  ( H )  IT' ]  

2n"1e 'a 'oo( i lx , - i lx . )  AE(In(H) 0 ( H )  ' (21') 

b )  Extrinsic donor-doped s evliconductor (n =p + N , ,  
p <<Nd) .  The Auger recombination process predominates 
if 

The hole density is given by 

In the case of recombination accompanied by optical 
phonon emission the expression for the hole density is 
identical with the expression for p =n in the case of an 
intrinsic semiconductor [ ~ q .  (2111. 

The behavior of the electron temperature near a reso- 
nance is found from the energy balance equation (3) us- 
ing the expressions for n and p .  At low temperatures 
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the electron scattering occurs mainly on charged cen- 
ters. In this case the electrical conductivity i s  inde- 
pendent of the electron density and, therefore, 
o = o , ( T ~ T ) ~ ' ~ ,  where uo is  the-electrical conductivity 
in the limit E - 0. We shall now write Eq. (3) in the 
dimensionless form for the case when the loss of energy 
occurs in one of the real  channels (losses due to the in- 
teraction with acoustic or optical phonons): 

The quantities Eo, t, s ,  and r a r e  described by the fol- 
lowing expressions. 

In the case of the interaction with acoustic lattice 
vibrations and for recombination accompanied by the 
emission of optical phonons, we have 

t (T /T ' )  - (T /T ' )" ' ( I -TIT) ,  s= [Aoo-2 lE(II )  ]/T. r - - t  1; 

f o r s < O ,  I s ~ > > I ,  

( T I T ) ,  =2 1 s  1, La =E,O-"' ( H )  ( 2  1 s J ) -";e-":, 

for s > o ,  I S  I >>I ,  

( W T ) ,  =l+s-', E, =E,O- : ( H )  e'ls. 

For the interaction with polar optical vibrations and 
for the recombination in the Auger channel 

For the interaction with polar optical vibrations and 
recombination accompanied by optical phonon emission, 

t(T/T') = (T'/T)'". s=[hoo-3AE ( H )  ]/T, r--+ 1. 

We note that the function ~(T/T*)  should tend to zero 
in the limit T* - T. However, in those cases when the 
energy loss channel involves optical phonon emission, 
~(T/T*) does not have this property because we a re  ig- 
noring the processes accompanied by phonon absoprtion. 
In such cases the results a r e  valid if the heating is  suf- 
ficiently strong. 

The values of E,, t, s ,  and r a r e  identical for intrin- 
sic and extrinsic semiconductors in all cases,  with one 
exception when the major relaxation and the recombina- 
tion of ca r r i e r s  a r e  due to the interaction with optical 
phonons. In this case, an extrinsic semiconductor is 
characterized by r = 0 and, therefore, T* has no singu- 
larities under resonance conditions. 

A graphical analysis of Eq. (24) gives the results 
shown in Fig. 1: i t  demonstrates that there is  a maxi- 
mum (critical) value of the electric field E,, in which a 
steady state of the system is still possible and that in 
the range E > E ,  the energy balance equation breaks 
down and the system of electrons and holes i s  heated 
without limit. In this range of electric fields Eq. (24) 
has no solutions. The field E,, corresponds to TF1, the 
critical value of the electron temperature which divides 
the range of electron temperatures into the ranges 

FIG. 1. The continuous curve represents the right-hand side 
of Eq. (24) considered as a function of T t / T .  The left-hand 
side of the equation, which has a discontinuity at the reso- 
nance point, is  shown dashed. 

T* < Tzl and T* > T s .  In the temperature range T* < T,, 
there i s  a root T: of the equation and this root r i ses  
with the electric field. In the temperature range T* > 
> Tg the root Tf lies in the falling branch (Fig. 1) and 
i ts  value decreases on increase of the electric field. 
At the critical point T* = T b  the two roots coincide. 

The equation suitable for finding TZr is obtained by 
equating to zero the derivative of the right-hand side of 
Eq. (24): 

tl+ts=O. (25) 

The critical values of the electric field and temperature 
deduced from Eqs. (24) and (25) a r e  given above. The 
nature of the singularity of T* a t  resonance is governed 
by the sign of r and by the branch on which T* is lo- 
cated. The amplitude of the temperature oscillations 
depends on the steepness of the branch and has its maxi- 
mum value in the vicinity of the singularity T* = T*,. 

Under resonance conditions for transitions to the 
ser ies  a the function @(H) has a discontinuity. It i s  
clear from Fig. 1 that in this case in the range T* < Trl 
the value of T* suddenly decreases for r > 0 and in- . 

creases  for r < 0. If T* > TZr, the value of T * suddenly 
increases for r < 0 and decreases for r > 0. For  trans- 
itions to the ser ies  b the function @(H) remains contin- 
uous with a kink at the resonance point, but its f irst  
derivative exhibits a jump. In this case the value of T* 
also has a kink a t  the resonance point. Thus, when the 
resonance condition (18) is satisfied, the singularities 
for transitions to the ser ies  a a r e  stronger than for 
transitions to the ser ies  b .  Such a considerable differ- 
ence between the nature of the oscillations is  due to the 
different dependences of the matrix elements on k, for 
transitions between the levels belonging to the same 
ser ies  and transitions between the levels belonging to 
different series.  .This feature is characteristic of the 
matrix elements describing the interaction with polar 
lattice vibrations. The elements describing the scatter- 
ing of ca r r i e r s  by deformation optical vibrations a r e  of 
the same order in k, for transitions in either series.[13] 
In the case when the scattering by deformation optical 
vibrations predominates, the oscillation singularities a t  
resonance should be the same for transitions to different 
series.  

Since at low lattice temperatures, when the momen- 
tum is dissipated mainly by interaction with charged 
centers, the magnetoresistance is p,, =o,,-' cc T,~",  for 
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intrinsic and donor-doped semiconductors, i t  follows 
that the singularity of the magnetoresistance under reso- 
nance conditions is  determined entirely by the behavior 
of the electron temperature. 

4. RANGE OF VALIDITY OF THE THEORY 

We shall now obtain the criterion for a bottleneck in 
the investigated situation. It follows from the energy 
balance equation (2) that 

Th=T. Q.h 7 T  a= 
Q.~+QY TG?' P'.~+Q? t ~ y f '  (26) 

where the energy relaxation frequencies a r e  given by 

We shall now obtain expressions for the relaxation fre- 
quencies 52,, and 52; in the ultraquantum limit. We shall 
also estimate nip' assuming that 3(H) = 1 and T, = T ,: 

We shall consider the relative width of the energy ex- 
change channels. We shall do this employing the rela- 
tions hips 

Ase 

where e0 = J I Z , ~ ' / ~ X ~ E ~  is the Bohr energy for electrons 
in a crystal and q, = (4ne2n/~e)"2 is the reciprocal of 
the screening radius. If a2q: << 1, then 

We shall obtain estimates using the parameters of 
HgTe (E,,,-4 - 5 eV, which is typical for semiconduc- 
tors with the zinc-blende structure,'%o a 21, x,  = 15, 
p = 8  g/cm3, ) 1 1 d i ~ i , ~ 2 0 ,  f?wO=17 meV, n=10"- 1015 
~ m ' ~ ) .  For ~ / k = 4 " K ,  T,/k= 1 0 " ~ ,  and H= 10' Oe the 
ratio of the relaxation frequencies is of the order of 

Hence, i t  follows that the bottleneck effect (T, =Th) oc- 
curs when the following inequality is satisfied: 

[Aol-3E(H) ]:T>I. 

This criterion may possibly break down only near the 
last  resonance, when the hole temperature differs con- 
siderably from the electron temperature. 

We recall that the results obtained above apply to non- 
degenerate electrons and holes and that the range of 
magnetic fields i s  limited from above by the quantiza- 
tion condition for heavy holes (tiS2,z Th) and from above 
by the last  resonance condition [Rwo 2 AE(H)]. 

APPENDIX. CALCULATION OF MATRIX ELEMENTS 
OL Ie'o'I~') 

According to ~u t t inger ,~ ' ]  the wave functions transform- 
ing a t  the point k = O  in accordance with the r8 represen- 
tation a r e  

Ip)=N-"' exp{ i (kp ,y+kwz))  CA~Q),U,, (A.1) 
# .  

where U, is a Bloch function, a, a r e  the eigenfunctions 
of the harmonic oscillator, and the coefficients A,, a r e  
given by ~ e l ' m o n t , ~ ' ~ ~  and by Liuand  an. [lo] 

Using the orthogonality relationships for the Bloch 
functions, we can express the square of the matrix ele- 
ment in terms of the coefficients A,, and matrix ele- 
ments I,.. = (@,I eiar 1 a,,): 

1 e'qt1 P') 1 2-MBu'6(ki, kv-qv) 6 (k:, kZ-qz) ,  

The explicit form of the matrix elements I,,, is  given in 
the monograph of Zyryanov and  linger:^'^^ 

Here, iF=min{n,,n:} and G(x) i s  a Laguerre polynomial. 
The explicit forms of the matrix elements for transitions 
allowed for in the present paper a re  as follows: 

where 

r = z k , ,  z'=ak;', 1 ~ = a q ~ h ' 2 .  
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The damping of dislocations by conduction electrons in a strong magnetic field corresponding to the 
ultraquantum limit is investigated. A substantial increase of the "electron friction" with increasing 
magnetic field (a H ' I 2 )  is observed. The strongest slowing down is experienced by dislocations oriented at 
small angles 9 to the H direction. For these dislocations, the dependence of the damping force on the 
velocity and on the angle can have a nonmonotonic character. 

PACS numbers: 61.70.Ga, 72.10.Fk 

1. INTRODUCTION 

1. The plastic properties of metals at  low tempera- 
tures a r e  determined to  a considerable degree by the 
damping of the dislocations by the conduction electrons. 
The energy of a moving dislocation is consumed in 
excitation of the electrons, i. e . ,  in the raising of the 
electrons from states with lower energy to states 
with higher energy, and i s  then converted into heat 
when the electron system relaxes. This is how a f rac-  
tion of the energy of the external loads that cause the 
dislocation motion is dissipated. 

field, the electrons move a s  f ree  particles. It is 
precisely this drift motion which plays the decisive role 
in the absorption of the dislocation energy. Owing to 
the drift along H, the center of the electron orbit 
manages, during the cyclotron period, to cross  many 
t imes the fronts of the elastic wave generated by the 
dislocation. Therefore the absorption of such a dis- . 
location phonon has a collisionless character and does 
not depend on H. This result i s  valid if the magnetic 
field i s  not too strong, when the distance ti51 between 
the Landau levels (n= e ~ / n z c  i s  the cyclotron frequency 
and e is the absolute value of the electron charge) is 

We a r e  interested in the energy Q absorbed by the much l e s s  than the Fermi energy G,. 

electrons per unit time. It i s  determined by two fac- 
In very strong magnetic fields, in semimetals and 

tors. First, Q depends On the parameters of the semicon~uctors with low carrier density, the inverse 
of the dislocation strains;  second, the dissipated ener- limiting case 
gy i s  expressed in terms of characteristics of the 
electron system. An external magnetic field H a l ters  t i 8 / e p 8  I (1.1) 
the wave functions and the chemical potential of the 
electrons, i. e.,  the problem a r i ses  of determining the 
dependence of Q on H. The influence of a magnetic 
field on the dislocation damping force was investigated 
in Refs. 1-4 with a simple single-band model of elec- 
trons with a quadratic isotropic dispersion law a s  an 
example. In Refs. 1 and 3 they considered a special 
situation. where a linear dislocation was oriented 

may be realized, and i s  called "ultraquantum." Here 
the cyclotron period 2~//52 becomes s o  small  that during 
this time the electron moves in a field of practically 
homogeneous strains. Therefore in the case (1.1) one 
should expect a strong effect of the magnetic field on 
the damping force." An analysis of this question is the 
subject of the present paper. 

parallel to H. This problem was solved for an a r -  2. Just  a s  in Ref. 4, we confine ourselves to an 
bitrary geometry in Ref. 4. One of the principal r e -  electron gas with quadratic isotropic dispersion. The 
s ~ l t s  of the lat ter  reference i s  the conclusion in most state of the electrons in the external constant and ho- 
cases that the damping force depends little on the mag- mogeneous magnetic field i s  classified with the aid of 
netic field. The point i s  that the magnetic field a l ters  four quantum numbers. Three of them, namely, the 
the character of the electron motion only in a plane momentum projection pH on the direction of the mag- 
perpendicular to the vector H. Along the magnetic netic field, the principal quantum number i l ,  and the 
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