
obtain the following criterion for the Langmuir turbul- 
ence: 

Ilr,lnT<krd (mlN) ". 

This criterion implies also the absence of the collapse 
of the whole Langmuir wave spectrum. 

')1f two or  more high-frequency oscillation branches with 
similar frequencies have to be allowed for, the following 
substitution is required: 

LA. 
~ ,44t7U,h  a k + . ~  w ~ - o ~ :  d k t - z  dkl. etc., 

where A is the index representing each branch. 
2"l%is example corresponds to a medium with a strong 

anisotropy, when the kernels of the kinetic equations a r e  
bihomogeneous functions of k, and k,, i. e. ,  they permit 
independent elongations along and across a magnetic field.C81 

3 ' ~ e r e ,  as  before, we a re  considering isotropic distributions. 
In particular, the averaging over the polarizations of the t 
waves is already carried out in this equation. 
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It is shown that the formation of a bound roton-ion state in supertluid helium is possible for arbitrarily 
weak attraction. An equation for the energy spectrum of the bound states and its solutions for a zero total 
momentum of the compound quasiparticle are obtained on the basis of the roton-ion interaction potential 
found previously. The momentum dependence of the binding energy near the end points of various 
branches of the spectrum is found. The problem of experimental observation of the phenomena is 
discussed. 

PACS numbers: 67.40.Db 

The problem of the bound states of elementary ex- 
citations in various systems evokes appreciable inter- 
est. It was shown earlierC1*21thatan arbitrarily weakat- 
traction is sufficient for the formation of bound states of 
two rotons in superfluid helium. The problem of the 
coupling of two elementary excitations in a crystal  near 
the special points of the Brillouin zone was investigated 
in a recent work of ~ i t a e v s k i ~ . ' ~ '  At these points, the 
bound states develop a t  any nonzero interaction constant. 
Further investigation of the properties of two- roton 
states was undertaken in a paper by ~ i t a e v s k i i  and Fo- 
rnin,l4' in which such states were classified according to 

liquid helium. The problem of the dynamics of similar 
systems is nontrivial: the impossibility of complete 
separation of the motion of the center of mass and the 
relative motion makes the problem practically unsolv- 
able in the general case. Here the smallness of the 
effective mass of the roton p ,  =0.16n1~ in comparison 
with the mass of the ion M -  501?1,, where I ? ? ,  is the mass 
of the ~e~ atom, does not mean that in the collision of 
the roton with the ion we can neglect the effect of the 
recoil of the latter (the characteristic momentum of the 
roton po i s  close to the thermal momentum of the ion 
- W T ) ' ' ~  at  T -  1 K). 

the value of the angular' momentum of the system, and 
1. It was shown in a previous paper of the authorLs1 

a dependence of the binding energy on the momentum that a t  distances that a r e  large in comparison with the 
was also found there. interatomic distances, forces of attraction of polariza- 

In the present paper, we solve the problem of the tion origin operate between the ion and the roton. We 
binding of rotons with Newtonian particles-ions-in write down the classical Hamiltonian of the ion-roton 
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system with account of the central interaction U: 

Here ri, pi and r, p a re  the radius vector and the mo- 
mentum of the ion and the roton, respectively, and A 
is the roton gap. Introducing the conserved vector 
q = p ,  + p-the total momentum of the system-and the 
relative coordinate p =ri - r ,  we can, with the help of 
Hamilton's equations, express pi and p in terms of these 
quantities (the dot indicates the time derivative): 

The two signs before the radical in Eq. (2) and else- 
where follow from the non-unique dependence of the mo- 
mentum of the roton on i ts  energy. 

It is  convenient to transform to the Lagrangian func- 
tion in accord with the standard formula 

Conservation of energy of the system in the variables 
p, i, has the form 

The transformation (2) actually brings about the 
transformation to the center-of-mass system, but it 
follows from the form of the Lagrangian function that 
the relative motion depends essentially on the total mo- 
mentum q and this dependence makes the relative mo- 
tion generally nonplanar. However, we can still point 
out one integral of the motion. Introducing a se t  of co- 
ordinates with the polar axis along q, we obtain the 
Lagrangian function in the form ( p l  lp(,.9 and cp a re  the 
angles) 

a % [~+pzb.+p%$z sinz B - 9 ( p  cos 6-p6 sin B) 
Po M 

In the latter expression, the coordinate cp is cyclical 
and this gives us still another conservation law: 

9 sin' 6-3 - ( l j  cos 6-p% sin 6 )  
M 

The conserved quantity illl represents the projection of 
the angular momentum on the direction of the total mo- 
mentum of the system. 

Unfortunately, the presence of two integrals of the 

motion, E and W, leaves the problem very complicated 
and it  i s  not possible to obtain a solution in the general 
case. However, i t  i s  easy to see that the value q =  0 i s  
unique, and the equations of motion a re  completely 
integrated in this case. At q =  0, the preferred direction 
associated with q disappears and the relative motion 
will be planar. Formally, we must set -9= n/2, q =  0 in 
(4)-(6), and we obtain 

It follows from the last formula that finite motion is pos- 
sible only at U(p) < 0 and the energy E < A +P;/~(M + JL,,) 

corresponds to it. With the aid of (7) and (8), we can 
obtain the equation of the trajectory 

We shall not concern ourselves with the specific form 
of the cp(p) dependence in the field U(p)-- p". In the 
only case having physical meaning n = 4  (see Ref. 5), 
integration in formula (9) can not be carried out to the 
end. We note only that we can explain all the singulari- 
ties of the finite and infinite motion of similar systems 
at q = 0 in terms of the exactly solvable models n = 1 and 
n =2. 

2. It is convenient to carry out the study of the spec- 
trum of the bound ion-roton states by using many-par- 
ticle methods (see, for example, Ref. 6). We shall f irst  
show that, just as  in the case of two-roton states, the 
binding of the roton with the ion takes place at any weak 
attraction, a t  least in the case of zero total momentum 
q = 0. At q =  0, the mass  operator i s  a loop containing 
one roton and one ion line, 

(10) 
has a square-root singularity a t  E = A +pi/22.1, and the 
corresponding divergence i s  capable of cancelling the 
possible smallness of A-the roton-ion coupling constant. 
At non-vanishing q, the singularity disappears, the 
bound state is  broken up until i t  vanishes completely at 
some q,,,. The point q,,, is the end point of the spec- 
trum of the bound state. 

We carry  out the further investigation in the spirit of 
Ref. 4. The spectrum of the bound states should be 
sought a s  the pole of the four-point vertex part  r, the 
diagram equation for  which has the form 

i.e., i t  corresponds to the dangerous loop mentioned 
above. The solid lines in Eq. (11) denote the Green's 
functions of the ion, and the dashed lines, those of 
the roton, Q = (9, E), P = (p, w )  and so on; The point 
designates the matrix element of the roton-ion inter- 
actions 
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In seeking the pole of r we can discard the f i rs t  term 
on the right hand side of Eq. (11). Moreover, the quan- 
tities P; and Pi =Q - P; actually enter only a s  parame- 
ters. Further simplification is possible if we note that, 
thanks to the gap character of the roton spectrum and 
the fact that the most important values in the integral 
over d" a re  w =  A and (p  ( =Po, we can assume the cor- 
responding arguments in r to be equal to these values. 
A similar conclusion can also be drawn for the relation 
V(I p, - p 1 )  = V(2po sin9/2), where 9 is  the angle between 
p and R. Thus, the desired vertex l?(P,Q-P;P;,Pi) 
essentially depends only on q s I q  1 ,  E, and the polar and 
azimuthal angles between q and p. W-ith account of this, 
we can complete the integration in (11) over w and 
p =  I p  1, substituting p2dp=pidp a s  usual in the integra- 
tion over the momentum of the roton. 

As a result, we have 

where xr  and x, a re  the cosines of the angles formed by 
the vector q and the corresponding vectors p, pl, cpr and 
cp, are  the azimuthal angles in the system of coordin- 
ates with polar axis along q (the second axis can be 
drawn, for example, .in the plane of the vectors pi, p;). 
We can neglect p q 2 ~ ' 2 / ( ~ 2 )  in the denominator of the 
integrand of (12) in comparison with q2/21\f, and also 
everywhere we can write p = pO,  (IM ='\f". 

Expanding I+ in a series in the spherical functions 

r ( q ,  E ;  I,, q 1 ) =  x r l m ( q ,  E ) i \ r ? ~ ~ ( ~ i ) P ' l ,  (13) 
1.m 

where 

and applying the addition theorem for Legendre poly- 
nomials in the expansion 

we finally obtain the following homogeneous system for 
the determination of the unknown TI , :  

7 (v~.B,';+s~.) rI,-O. 
4 

(15) 
1 

Here 611, is  the Kronecker delta and the notation 

has been introduced. Summation in (15) i s  carried out 
over all 1-even and odd, in contrast with the two-roton 
bound state,c41 inwhich only the even 1 appear a s  a con- 

. sequence of the quantum-mechanical indistinguishability 
of the rotons, 

The spectrum of the bound roton-ion states is deter- 
mined from the secular equation-the vanishing of the 
determinant 

At q = O ,  we can easily find the quantities BIG- 6,,, and 
the roots of Eq. (17). The total number of different roots 
will be equal to the number of negative V, in the expan- 
sion (14) and, moreover, each root will be (21 + 1)-fold 
degenerate in m. 

We find the explicit expressions fo r  the coefficients 
V,, starting out from the energy of the ion-roton inter- 
action at distances that a r e  large in comparisonwith the 
interatomic: 

In the last formula, p, i s  the density of liquid helium, 
ff is the atomic polarizability of helium, c is the speed 
of first  sound in Hell, e is  the electron charge. The 
experimentalvalue of (a l n ~ / a  1np4),,x - 0 . 5 7 . ~ ~ ~  The inter- 
action (18) does not occur a t  small distances, and it i s  
necessary to introduce a cutoff radius-the size of the 
ion R. Since the parameter ~=p$/Fi- 10, the relative 
motion of the ion-roton system is always quasiclassical, 
because the angular momentum values 1 >X a re  real. 
As to the states with sufficiently large I (the total angu- 
l a r  momentum of the system), the regions of quasiclas- 
sical motion corresponding to i t  can exceed the charac- 
teristic dimensions of the problem; here the detailed 
path of the potential at small distances will be unimpor- 
tant and the cutoff radius will generally not enter into 
the answer. Thus the spectrum of weakly bound states 
can be found without bringing in any model considera- 
tions on the structure of the ion. 

We write down at once the formula for the 1-th term 
in the expansion (14); 

P 8 
v , = - z T j  $j s i n e f  j m p [ i + p  sin (?) rol w ] 

R 0 a 

8xhr dp ' 
xP ,  (cos O)sin 8 dft=- - sin ( z )  Pi - 2 )  d .  (19) 

Po R 0 

The second integral in Eq. (19) is computed exactly (see 
Ref. 8, p. 91 of Russ. translation, formula (I)), and a s  
a result we have 

J1+112(~) is  the Bessel function. It follows from (20) that 
all the V, turn out to be negative. 

I t  is  convenient to represent V, in the form 

where we have again used the value of 
.A 

[ [ I I + ~ , , ( X )  I ~ Z - ~ ~ Z  

0 

from Ref. 8 (p. 244, of Russ. translation formula (24)). 
We shall show that the second term in (21), containing 
the integral, falls off a t  large 1 no more slowly than 
z -~ ' ,  i.e., we can neglect it in comparison with the f i rs t  
term. For this, i t  suffices to calculate the integral by 
using the expansion J,+lIz(x) a t  small x (the actual value 
of the integral will be even smaller). We get 
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where e i s  the base of natural logarithms and use is  
made of Stirling's formula for the r function in finding 
the answer. I t  is seen that formula (22) begins to be 
applicable a t  1 2 lo = e 4 4 .  The corresponding estimates 
for the positive and neg:tive ions with account of the 
values R+% 5 A, R- = 15 A give lo+ % 7, and lo.= 20. Thus, 
at 1 > lo, the dependence of v ,  on R practically disap- 
pears, as was to be expected. 

At q = 0, the roots of the determinant equation (17), 
with account of (21), and (22), a r e  given by the expres- 
sions 

Still one more limitation on 1 follows from this. Formu- 
la  (23) has real  meaning for those 1 which correspond to 
a depth less than s/m4 of the level of the bound state 
(the last term in (23)). Taking i t  into account that 
r /2~4,= 3.5 K, we find that this i s  achieved a t  Z >  17 
(correspondingly, r / 2 ~ 4 =  0.035 K and 1 > 36). 

At qP0 ,  the roots with different 1 a r e  no longer sep- 
arated, the degeneracy in 111 is removed, but n? remains 
a good quantum number (compare wi thm,  formula (6)). 
Expanding B~Y,,, with accuracy to q2,  we find, at small q, 

where 6,(O) = A  + p v 2 h l -  E,(O). The integrals in (24) 
a re  expressed in terms of the 3j symbol (see, for ex- 
ample, Ref. 9). Unfortunately, the presence of nondiag- 
onal terms in the matrix B& makes i t  difficult to find 
the explicit form of the dispersion law of the bound 
state. However, i t  can be seen that, since terms that 
a r e  linear in q a r e  contained only in the nondiagonal 
elements BIG, terms a q  will be absent in the expansion 
of the determinant, and the f i r s t  nonvanishing term in 
the dispersion law of the bound state will be c q 2 .  

As an illustration, we consider the case in which only 
two constants, V, and V,,,, a r e  different from zero and 
a re  given by the asymptote of formula (21) a t  large I .  
In this case,  the equation for finding the spectrum re- 
duces to the vanishing of a second order determinant, 
and we have for one of the roots, 

The coefficient a t  q2/2 represents the reciprocal effec- 
tive mass (M*)" of the bound quasiparticle. An interest- 
ing feature of formula (25) is the fact that the effective 
mass, being positive a t  not too large 1,  can change sign 

at definite 1 and nz. Numerical estimates show that, 
beginning with l x  20, the branches of the spectrum (25) 
with small  m will have negative effective mass, and 
LM* c: 0 will be the case for all branches a t  1 3 29. Evi- 
dently, such a situation is preserved qualitatively in a 
more rigorous solution of Eq. (17). 

We now investigate the problem of the end points of 
the spectrum of bound states. We rewrite formula (16) 
in the form 

(2Po)'"pol 
I 

B~!," - NI"N~," PIm (2) PI."(z) [6 (q) +poq (l-z)i'.U]-"dz, (26) 
4nh3 

-1 

where 6(q) 5 A - E +(Po - q)2/21\d represents the binding 
energy, as is easy to see-the energy separation of the 
level of the bound state from the boundary of the contin- 
uous spectrum. The end point of a certain branch cor- 
responds to that value q =q,, at which 6(q,,& =O. The 
expansions of B:; a t  small  6(q) > 0 will be different at 
m =  0 and m#O. In the f i rs t  case,  

in the second, 

where the notation q 2 = ~ ~ 6 ( q ) / ~ o q )  has been introduced. 

Now, expanding the determinant (17) in powers of 77, 
i t  i s  easy to s e e  that the values of q,,, a r e  given by the 
roots of the determinant (nl is  arbitrary) 

We now estimate the region of momenta in which bound 
states can exist, i.e., we find q,,, from (291, assuming 
that only a single coefficient V, differs from zero and 
it i s  given by the asymptote of Eq. (21): 

In this estimate, the inequality 

J' [ pIm(z) ]'(I-=) -m/sdzs j [plm (z) l2dr 
-1 - I  

has been taken into account. Thus, for 1 S 20, the re- 
gion of existence of the bound state is  g,,, 2Po. 

The laws according to which the binding energy van- 
ishes at q - q,,, will be  different a t  rw = O  and rn # 0. In 
order to be convinced of this, i t  is  sufficient to write 
down Eq. (17) in the case of small q in the form 

(the explicit form of Do or D m  is unimportant). Now, 
expanding the first  term of Eq. (31) in terms of q - q,, 
near one of the end points of the spectrum, we find 
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The analysis that has been given enables us to obtain 
the energy spectrum of the bound states a s  undamped 
quasiparticles. It can be seen, however, that they will 
be unstable relative to radiation of an energetic phonon, 
which is allowed by the laws of conservation of energy 
and momentum: 

Here Q is the momentum of the emitted phonon, c i s  the 
velocity of f irst  sound; the case  is considered of the de- 
cay of the bound state with zero  total momentum and the 
deviation of the phonon spectrum from linear has been 
neglected ( IQ I r 0.5 A-'). Account of the virtual pro- 
cesses corresponding to Eq. (331, leads to the result 
that the matrix elements of the interaction will now con- 
tain an imaginary part V, - V,- ilVl and, corresponding- 
ly, the energies 6,(O) turn out to be complex: 

The calculation of LV, does not differ basically from 
that given in Ref. 4 and reduces to finding the imaginary 
part of the integral 

where f ,  is the matrix element corresponding to the con- 
version of the pair ion-roton with angular momentum I 
into an ion andaphonon. ~ a k i n ~ l ~ l f ,  -V,  i.e., assuming 
that the interaction of the ion with a short-wavelength 
phonon is approximately the same as that with a roton, 
we obtain 

which, for example, a t  1=20, gives ~ , , / ~ , , = 0 . 0 2 5 .  It 
is easy to obtain the result that the width of the level of 
the bound state a t  sufficiently large I turns out also to 
be  small  in comparison with the separation between 
levels [,(0)= 6,(O) - 61+,(0): 

Finally, we consider briefly the hydrodynamic inter- 
action, not taken into account here, that a r i se s  because 
the ion, being in a bound state with the roton, for ex- 
ample at  q =0,  will move with a velocity v,=pJitf, cre-  
ating a hydrodynamic current. This latter leads to ro- 
ton-ion interaction of the form 

U'(P) - - P [ ~ . ( P ) - V . ( P )  I, (38) 
where v,(p) and v,(p) a r e  respectively the superfluid and 
normal velocity fields, created by the moving ion. The 
problem of finding the bound states in this case appears 
to be much more complicated than that considered above, 
since it includes the self-consistent determination of the 
velocity of the ion. We shall show that in the calculations 
in which we a r e  interested, the interaction U' can be 
neglected in comparison with the polarization (18). Di- 
r ec t  comparison of the potentials U and U' i s  difficult 
since the lat ter  is of alternating sign. It is more con- 

venient to compare, for example, the contributions n, 
and n:, which each makes to the total number of local- 
ized rotons. In Ref. 10, the problem was solved of the 
localization of rotons near an ion, due to the appearance 
of an interaction of the form (38) at  ion drif t  velocities 
different from zero. Extrapolating the expression given 
in Ref. 10 for the total number of localized rotons (for- 
mulas (5), (611, we get, in theregion of small  v,, 

A poZ 
n,' = - 6 S,R3 - ( k ~ )  2 US:' 

where k i s  Boltzmann's constant, T is the temperature 
hT, i s  the equilibrium number of rotons per unit volume 
of helium, and A = 5 - 8.5. 

An estimate of the total number of rotons found in a 
bound roton-ion state, with account of the interaction 
U, gives (see Ref. 5) 

Writing down the ratio n:/n, in the case  of values of the 
velocity v, that a r e  characteristic for an ion in a bound 
state with a roton, vi =P,/JI, we get 

n,'/n,-dR4p04!13x~.1PkT. (41) 

when (n:/n,)+- 0.0125 for positive (,%I+ - 4 5 1 ~ ~ )  and (n;/n,), 
0.05 for negative (ill_- 200~11,) ions. Thus, the contri- 

bution of the interaction U' to the thermodynamic equil- 
ibrium number of bound rotons, at  least at  not too large 
values of the total momentum of the ion-roton system, 
turns out to be unimportant and we neglect it also in the 
quantum-mechanical calculation of the energy spectrum 
of the bound states. 

3. The results  of the foregoing sections refer to the 
case of the bound state of the ion with a single roton, and 
this actually assumed that the system i s  at  absolute 
zero  temperature. In fact, the presence of other elem- 
entary excitations can complicate the picture and bound 
states of the ion with more  than one roton can turn out 
to be important. However, i t  can be shown (this follows 
from Ref. 5) that in the range of temperatures impor- 
tant for rotons (T 2 0.8 K) the mean number of rotons 
localized near the ion, n, s 1. It  was noted earlierC51 that 
the presence of localized rotons creates an additional 
dissipation channel in the case of ionic motion and this 
leads to a lower mobility in comparison with the ba re  
ion. In recent experimentsc:] on the acceleration of ions 
.in He 11- in external fields, anincrease inmobility 
was observed in the case of an increase in the drift 
velocity of the ion (the corresponding experiments 
were carried out in a temperature region in which 
the mobility i s  limited by the rotons). A qualitative ex- 
planation of this fact can be given on the basis of the 
results obtained above. As has been noted, at T - 1 K, 
the principal contribution to the retardation of the ions 
i s  made by the localized rotons. In weak fields, i.e., 
in the case of small  drift velocities of the ion, the bind- 
ing energy of the roton localized in i t s  vicinity is large 
and therefore corresponding contribution to the dissipa- 
tion is  large also. With increase in the drift velocity 
(this corresponds to an increase in the translational mo- 
mentum q of the ion-roton system, s e e  above) the bind- 
ing energy of the localized roton decreases,  the ion be- 
comes f ree  and i t s  mobility increases (we note that the 
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phenomena described take place a t  drift velocities . 

v, s 10 m/sec and nonlinear effects associated with the 
dependence of the mobility of the "bare" ion on v o  a r e  
evidently still insignificant: v, << V,- 90 m/sec-the mean 
thermal velocity of the roton at T- 1 K. 

It must be noted that the described effect appears in 
experiments with negative ions at pressures of about 
25 bar. Under such conditions, the radius of the elec- 
tronic bubble decreases by almost one half in compari- 
son with its value at a pressure of saturated vapor and 
the stability of the bound state of the roton with the ion 
relative to thermal decay increases a t  high pressures. 
It should be expected that with decrease in the pressure 
(this corresponds to an increase in the size of the nega- 
tive ion) the bound roton-ion states become less effec- 
tive and the phenomenon of growth of the mobility with 
increase in the external field should disappear-the 
mobility of the electron "bubble" will approach the mo- 
bility of the bare ion. 

We note that the most direct experimental confirma- 
tion of the existence of bound roton-ion states would be 
the observation of resonance effects in light scattering 
by superfluid helium in the presence of ions. Here a 
peak should be observed in the spectrum of the scattered 
light, corresponding to a transfer of energy = A  (and not 
2A a s  in the case of two-roton bound state), and its in- 
tensity will be proportional to the total number of ions. 
In correspondence with the conservation law and with 
account of the smallness of the wave vector of light, the 
total momentum of the compound particle roton-ion will 
be practically equal to the original momentum of the 
bare ion. 

In conclusion, we show that the results obtained above 
can be applied to the description of bound states of ro- 
tons with impurity excitations in HeS- He4 solutions. 
However, the absence of any sor t  of reliable data on the 

character of roton-impurity interactions does not permit 
us to draw definite conclusions as  to the existence of 
such states. 

I thank I. A. Fromin for very attentive discussions 
and useful remarks. 
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