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An analysis is made of the kinetics of weak turbulence in a nonlinear medium in which there are two 
types-high- and low-frequency-interacting waves. Steady-state Kolmogorov spectra, corresponding to 
constant fluxes (over the spectrum of the integrals of motion) of the energy and number of high-frequency 
quasiparticles are derived. Two cases are considered: the case of identical power exponents of the 
dispersion laws of high- and low-frequency waves and the case of "differential approximation," when each 
scattering event changes the energy of high-frequency waves by a small amount. The conditions of locality 
of the Kolmogorov spectra are found: The results are applied to the interaction of the Langmuir and ion- 
acoustic waves in a plasma. 

PACS numbers: 03.40.Kf, 52.35.M~ 

INTRODUCTION teract effectively. The proof of this property-the lo- 
cality of the spectrum-is given in 84. In 65 we shall Scale-invariant turbulence spectra, which can be 
consider the problem of the spectra of the Langmuir regarded a s  analogs of the Kolmogorov spectrum['] of a 
turbulence of a nonisothermal plasma. developed hydrodynamic turbulence, occupy an impor- 

tant place in the theory of weak turbulence. In many 
problems of weak turbulence the Kolmogorov s p e ~ t r a [ ~ - ~ '  
a r e  the exact solutions of kinetic equations. These sol- 
utions play a fundamental role as  the spectra with con- 
stant fluxes characterizing, for  example, the effective- 
ness of a particular plasma heating method. 

We shall consider the power spectra in the specific 
case of a weak turbulence which appears in a medium 
capable of supporting both high- and low-frequency 
waves. This situation occurs, for example, in a plas- 
ma in the course of interaction of high-frequency elec- 
tromagnetic (w >> w,) and Langmuir waves, in the stim- 
ulated Brillouin scattering, in the interaction of the 
Langmuir and ion-acoustic waves, etc. The last prob- . 
lem is particularly interesting because the interaction 
of the Langmuir (1) and ion-acoustic (s) waves i s  the 
main mechanism of energy transfer in a nonisothermal 
plasma (T, >> T,) in the range of moderately short wave- 
lengths [kr, > ~ ( ~ z / M ) ' ' ~ ] .  

The kinetics of the interaction of high- and low-fre- 
quency waves is largely determined by the structure of 
the kernel of the kinetic equations. We can distinguish 
two situations. The first  is characterized by the fact 
that the kernel is  a homogeneous function of the wave 
vectors k, and, consequently, the Kolmogorov spectra 
a r e  the exact solutions of the kinetic equations (62). In 
the other case (63) the kinetic equations have scale-in- 
variant solutions only in the diffusion approximation, 
when each step of energy transfer along the spectrum i s  
small. This approximation, used widely in studies of 
the stimulated scattering of waves in p l a ~ m a , ~ ~ * ' ~  des- 
cribes well the average characteristics of the spectrum; 
however, i t  does not describe its structure due to the 
fine properties of the nuclei. 

As in hydrodynamics, the Kolmogorov turbulence 
spectra a r e  meaningful only in the inactive interval 
when, on the one hand, one can ignore the decay and 
pumping and, on the other, waves of the same scale in- 

§ 1. BASIC EQUATIONS 

Let us assume that a medium supports high-frequency 
waves with the dispersion law w, and low-frequency 
waves with the dispersion law a,, and that a, and b, a re  
the respective amplitudes of these waves. Then, the 
Hamiltonian of the medium is of the form 

We can find the interaction Hamiltonian by turning to the 
equations of motion 

from which i t  follows that the high-frequency amplitude 
a, should occur in the Hamiltonian only in the combina- 
tion a*a. Assuming that Hi,, is  linear in respect to b, 
wefind-inthe f i rs t  order in respect of a*a-that:" 

For  moderately high amplitudes of high-frequency 
waves we can go over to a statistical description of the 
equations of motion (1). Introducing the quantities 

<ahah'> -N*br-r,, ( b ~ b r , ' )  = n k b - , ,  

we obtain 

We shall now make some assumptions about the quan- 
tities w,, a,, and V,,,,,. Firs t  of all, we shall assume 
that the medium is isotropic. Then, all these functions 
depend on the moduli of their arguments. Finally, we 
shall assume that w, and 51, can be described by the pow- 
e r  laws 

0 r = o o + ~ ~ k ~ ,  &=c2kD 

458 Sov. Phys. JETP 48(3), Sept. 1978 0038-5646/78/090458-05$02.40 O 1979 American Institute of Physics 458 



and that the quantity Vkklkz is a homogeneous function of 
the power exponents: 

VIh&~-e0Vkkth- 

Clearly, for this selection of w, the frequency wo does 
not occur in Eqs. (2) and (3) and, therefore, without loss 
of generality we can assume that wo = 0. We shall next 
introduce a quantity ~ , = o f l , + S 2 ~ , ,  which represents 
the "energy" density of the waves in the k space. Ac- 
cording to Eqs. (2) and (3), the evolution of this quantity 
is found from 

The conservation of energy and of the total number of 
waves follow directly from this equation and Eq. (2) s o  
that these equations have steady-state thermodynamic- 
equilibrium solutions N, = T/(u,  + p) ,  nk = T/SZ,, where T 
and 1 a r e  the temperature and chemical potential. We 
shall be interested in other steady-state solutions for 
which T = p  =O. In contrast to thermodynamic-equil- 
ibrium solutions the latter should be characterized by 
fluxes (over the spectrum) of the number of high-fre- 
quency waves P, and of the "energy" P,. 

92. KOLMOGOROV SPECTRA (EXACT SOLUTION) 

We shall f irst  consider the case LY = P .  This situation 
occurs in the interaction of electromagnetic and acoustic 
waves-for example, inthe stimulated Brillouin scatter- 
ing and also in a strongly magnetized plasma ( ~ I W T / H ~  
<< 1)-in the interaction of the Alfven and acoustic 
 wave^.^' In the case the kernel of the kinetic equations 

is a homogeneous function with the homogeneity index 
y = 2s - LY - d, where d is the dimensionality of space. 
Steady-state solutions of Eqs. (2)-(4) will be sought in 
the form 

Nh=AkZ, nA=BkX. (5) 

We shall f irst  consider the solutions of Eq. (2): 

We shall map the integration domain of the second inte- 
gral, governed by the decay conditions, into the integra- 
tion domain of the first. For this purpose i t  is conven- 
ient to introduce in an arbitrary plane occupied by an ex- 
ternal vector k a complex quantity w =k, +ik,, where k,  
and k, a re  the coordinates in that plane. The mapping is 
then performed a s  follows: 

. w W w 
w - w  7, w , = w - 7 ,  wz-W"- 

W w .  w' ' 

In this way the expression under the integral i s  factor- 
ized: 

j~ , , , , , [ i  -(k/kl)']dkldkr = 0, 

where y = y  +3d+2x. 

Equation (4) is transformed similarly: 

5 T~l~,[or-~r,(k/k,)'+"-Rb(k/kz)'+"]dkldk~-O. 
Transformations of the (6) type have been found by one 
of the present authors (Zakhar~v) [~ '  for the one-dimen- 
sional case and then generalized to the two- and three- 

dimensional cases by Kats and ~ o n t o r o v i c h . ~ ~ ~  It follows 
directly from these equations that, apart from thermo- 
dynamic-equilibrium solutions (T,,,,,, 1 O ) ,  there a re  
also nonequilibrium solutions for which y = 0 and y + LY 

= O  o r x , = - s - d + ( u / 2  andx2=-s -d .  One of theequa- 
tions i s  then identical with Eq. (3): 

which determines the relationship between the constants 
A and B in the distributions (5). Assuming that the dif- 
fusivity condition w, >>ak is satisfied and that the inte- 
gral  in Eq. (7) is convergent, we obtain the estimate 
A - ~ c , / c , .  Thus, the energy of the low-frequency waves 
is of the same order a s  the energy w,N,. 

We shall show that the f i rs t  solution corresponds to 
a constant flux of the number P, of the high-frequency 
waves and the second to a constant flux of the "energy" 
p,. 

Integrating Eqs. (2) and (4), we find the following ex- 
pressions fo r  the fluxes in the case of the power-law 
distributions: 

where 

f=2a for d=2 and f=4a for d=3. 

Going over to the limits y - 0 and y + a  -- 0 in the above 
equations and applying Eq. (7), we find that the first  
solution corresponds to the Kolmogorov spectra with a 
constant flux of the number of the high-frequency waves 
for which P, = O  and the second corresponds to a con- 
stant flux of the "energy" P, and to P, =IS (compare with 
the treatment of ~aras'['O' andKatsC1'l). Hence, it follows 
in particular t h a t d ,  B ~ P " ~ ,  which is in full agreement 
with the dimensional considerations. 

As the final task, we shall determine the directions 
of the fluxes. We note that n, can be found explicitly 
from Eq. (7). Substituting this distribution into Eq. (8) 
and symmetrizing the integrand, we find 

kk, 
X In- dk,dkzdk:, 

kxk* 

x ( o  In k+ol In k,-o, In kx-or In k,)dk,dk,dk,, 
where 

N,==IV~,, hl,=i\:,, etc. 

These expressions a r e  formally identical with the 
fluxes in the four-wave interaction and the "matrix" 
element R has a definite sign: this sign is opposite to 
sign (xa). Then, following the treatment of ~ a t s , ~ " ]  we 
obtain 
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sign P.~--sign ( z , + a ) ,  sign P.=-sign (9) 

In the case of the interaction between electromagnetic 
( t )  and acoustic (s)  waves (a! = l , s  =- i , d = 3 ) ,  we have 

Thus, in this ca se  the Kolmogorov solutions with a con- 
stant  flux of the number of the high-frequency waves 
may be realized in the long-wavelength range where PN 
is directed and the other solutions in the short-wave- 
length range where the "energy" i s  pumped. 

53. DIFFUSION APPROXIMATION 

The homogeneity of the kernels  of the kinetic equa- 
tions (3) and (4), considered in 52, and the consequent 
existence of the exact solution in the form of the Kolmo- 
gorov spectra a r e  related primarily to the coincidence 
of the indices a! and p. This condition is  not obeyed in 
the majority of the examples of practical importance. 
This comment applies particularly to the interaction of 
the high-frequency Langmuir waves with low-frequency 
ion-acoustic waves. A typical situation in turbulence 
of this kind i s  the one when the frequency obeys w, >>ak,  
the s tep  in the transfer  along the frequency axis  of the 
high-frequency waves i s  small. In this situation, the 
equations can b e  simplified. 

Expanding, in Eqs. (2)-(4), the 6 function of the fre-  
quencies a s  a s e r i e s  in S-2 and assuming that the wave 
distributions Nk and n, a r e  isotropic, we obtain 

where 

is the density of the high-frequency quasiparticle flux. 
These equations a r e  two independent sys tems (lo), (11) 
and ( l l ) ,  (12) whose identity can be  checked by direct  
calculation. Like the initial system (2)- (4),  Eqs. (10) 
- (12) have solutions in the form of the Rayleigh- Jeans 
distributions which cause the fluxes PN = O  and P, = O  to 
vanish (Tkkla2 = 0). 

We shall  consider solutions with the constant fluxes 
PN and P,. The constancy of these fluxes corresponds 
to the power-law solutions: 

Nk=Akr, nk=Bk'oJ%. (13) 

In the case  of the spec t ra  corresponding to PN =const, 
the power exponent x i s  found directly by calculating 
the power exponents in Eq. (11): 

I,=-s-d+a-BIZ. (14) 

In this ca se  we have A,  B E P ~ ' ~ .  

The  second solution corresponding to P, =const  i s  
found by carrying out in Eq. (12) a transformation anal- 
ogous to Eq. (6), which then gives 

z2--s-d- ( p - a ) / 2 ,  A ,  B~P;. (15) 

Fo r  both solutions the relationship between the con- 
stants  A and B is found, as before, f rom the steady- 
s ta te  equation (11) by showing a lso  that the other flux 
vanishes: P, = O  for  PN =const, and vice versa.  The 
signs of the fluxes a r e  given by the previous expressions 
which now no longer have the power exponent 8. This i s  
due to the fact  that the quantity n k a k  r a the r  than n, is ex- 
cluded from Eqs. (11) and (12) .in the (Y = 8 case. 

By way of example, we shall  consider the interaction 
of electromagnetic and Langmuir waves in the k,c >> up 
case.  In this ca se  we have (Y =1,  8 =0,  s = O  (Ref. 6). 
Therefore, x ,  =- 2 and x, =- 5. 

54. LOCALITY OF TURBULENCE 

Our solutions of the diffusion and exact equations a r e  
meaningful, f i rs t ly,  only in the inactive interval repre-  
senting an intermediate region of the k space where 
there is no decay o r  pumping and, secondly, when the 
interaction of waves in this region is local. Therefore, 
the local Kolmogorov spec t ra  a r e  independent of the 
growth and decay increments,  but a r e  governed only by 
the magnitudes of the fluxes. 

To  prove the locality of the spec t ra  i t  i s  sufficient 
to demonstrate the convergence of the integrals in the 
diffusion equations (10) - (12). This can be  done only if 
we know the asymptotes of the matrix elements Vkk,,,. 
We shall  assume that 

VU,,+Dks-'klE for k , B k .  

Then, the convergence of the integrals f rom above i s  
ensured fo r  

from below fo r  

55. SPECTRA OF THE LANGMUIR TURBULENCE I N  
A NONISOTHERMAL PLASMA 

We shall find the isotropic spec t ra  of the Langmuir 
turbulence due to the decay of the Langmuir ( I )  waves 
into the Langmuir and ion-acoustic (s) waves in a non- 
isothermal plasma (T, >> Ti). To be  specific, we shall  
assume that the excitation of this turbulence occurs in a 
narrow range Ak near k = k ,  with a characterist ic  incre- 
ment y much greater  than the linear decay of waves 
which we shall  ingore. In this situation the steady-state 
spec t ra  should be  of the flux type. To determine them 
in the diffusion approximation i t  is sufficient to u se  the 
general expressions (13) - (15). True,  we have to know 
also the matrix element of the interaction and the dis- 
persion laws of waves. They a r e  of the form 

In the ca se  of the Langmuir oscillations the dispersion 
correction i s  smal l  and, therefore, the energy spec- 
trum of the Langmuir waves EL and the energy flux along 
the spectrum agree,  to within a factor  w,, with the num- 
be r  of waves and their flux, respectively. 

Following the results  of 83 we can say,  f i rs t ly,  that 
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the turbulence spectra corresponding to a constant flux 
of the number of high-frequency waves a r e  realized in 
the range k < ko, whereas the spectra corresponding to 
P, =const a r e  realized in the range k > ko; secondly, 
these fluxes a r e  directed in opposite ways: P, to the 
long-wavelength oscillations, where the Langmuir waves 
a re  dissipated by collapse, and P, to the range of short 
waves, where the dissipation of the ion-acoustic due to 
the Landau damping by electrons is important. Accord- 
ing to Eqs. (14) and (15), the spectra have the following 
form in these regions: 

~ r ' - ~ , A ; l k ' ,  ~ ~ ' = = ~ / d o ~ r / B ;  for Ii<kO, 
~l"OpA:,'k', eh8-'lzo,rc'B,/k for k>Ii,, 

where the constants A , ,  B ,  and A*, Bz a r e  deduced from 
the constancy of the fluxes PN and P, and from the con- 
dition of their matching with the growth region. The 
condition for PN can be written in the form 

P ~ - y A k k ~ ' h ' ~ ,  

and hence i t  follows from Eq. (11) 

where kdli=r;'(m/l~)t'2 i s  the characteristic step in the 
transfer of the Langmuir waves along the spectrum. 

The quantities A, and B,  a r e  determined from the con- 
tinuity of the energy flux of the ion-acoustic waves P, a t  
k=ko. We can easily see  why such a flux appears for 
k < ko. This i s  due to the fact that a s  a result of the 
transfer of the Langmuir waves to the region k = 0 and 
their dissipation in this region, sound is generated and 
accumulated. We recall  that for k < ko, where PN = 
const, 

PI=-a l ,~p(krd)2Ps ,  

and is directed toward higher values of k. For a similar 
reason in the region k > ko, where P, = const and PN = 0, 
the energy flux of the ion-acoustic waves is identical 
with P,. Hence, i t  follows from the condition of contin- 
uity of P, at  k =ko that 

It i s  clear from the above solutions that the intensity of 
the ion-acoustic waves is fairly high: 

e,Iel- (krd)'. 

The main proportion of the energy of the ion sound is 
concentrated in the short-wavelength range. This 
circumstance has a decisive influence on the dynamics 
of the collapse, resulting particularly in additional 
damping because of the conversion of the long-wave- 
length Langmuir oscillations interacting with the short- 
wavelength sound.c121 This aspect i s  outside the scope of 
the present paper; i t  will be  discussed elsewhere. 

We shall now estimate the influence of other weakly 
turbulent mechanisms on the kinetics of the Langmuir 
turbulence. The most important of these is  the conver- 
sion of the Langmuir waves interacting with sound into 
long-wavelength electromagnetic oscillations. We shall 
turn to the kinetic equation for the occupation numbers 

of the transverse (t) waves N::~' 

where 

- .  
We note that in the k; >> ( i ? ~ / ~ l l ) " ~  range the frequencies 
of the I and t waves participating in the conversion pro- 
cesses a r e  similar. Therefore, the wave vector of an 
electromagnetic wave i s  small  compared with the wave 
vector of a Langmuir wave (kt/kl -v,,/c). This, in its 
turn, means that electromagnetic waves have a smaller 
phase volume [by a factor ( v , , / c )~ ]  than the Langmuir 
waves. It is the smallness of this phase volume that 
allows us  to ignore the conversion processes. This can 
be demonstrated as follows. 

We shall assume first  that the occupation numbers 
obey N:, <<N:,. Then, 

i.e., the electromagnetic waves grow. To find the level 
at which stabilization takes place, we shall Consider 
the opposite limiting case: N:, >>N:,. We can then ig- 
nore all the terms in Eq. (16), apart from the terms 
proportional to N$zk, (n, >> N:): 

Hence, we can see  that N: decays a t  the ra te  character- 
ized by the increment 

7'-o,TV,/nT. 

Therefore, in equilibrium we have N'-N: and the total 
energy of the electromagnetic waves 

is  small  compared with the energy of the Langmuir 
waves. Hence, an estimate of the characteristic time 
of the process follows directly: 

1 -- rv. t r r  
0,- - 

'r nl' ( k )'( ?)'. 
Thus, the influence of conversion can be ignored. 

We shall conclude with some comments on the locality 
of the Langmuir turbulence spectra and the range of 
validity of the weak turbulence approximation. The lo- 
cality can be determined directly from the results in 
$4. In the present case  we have 4 =0 and s =i. There- 
fore, the spectra a r e  local. The following require- 
ment i s  most important for the validity of the weak tur- 
bulence approximation. It is essential that the recipro- 
cal  of the randomization time of the wave phases, gov- 
erned by the linear effects, is high compared with the 
reciprocal time of the nonlinear process. The former 
quantity should be the frequency of the low-frequency 
waves and the latter the decay increment of a monochro- 
matic high-frequency wave. Hence, in particular, we 
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obtain the following criterion for the Langmuir turbul- 
ence: 

Ilr,lnT<krd (mlN) ". 

This criterion implies also the absence of the collapse 
of the whole Langmuir wave spectrum. 

')1f two or  more high-frequency oscillation branches with 
similar frequencies have to be allowed for, the following 
substitution is required: 

LA. 
~ ,44t7U,h  a k + . ~  w ~ - o ~ :  d k t - z  dkl. etc., 

where A is the index representing each branch. 
2"l%is example corresponds to a medium with a strong 

anisotropy, when the kernels of the kinetic equations a r e  
bihomogeneous functions of k, and k,, i. e. ,  they permit 
independent elongations along and across a magnetic field.C81 

3 ' ~ e r e ,  as  before, we a re  considering isotropic distributions. 
In particular, the averaging over the polarizations of the t 
waves is already carried out in this equation. 
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It is shown that the formation of a bound roton-ion state in supertluid helium is possible for arbitrarily 
weak attraction. An equation for the energy spectrum of the bound states and its solutions for a zero total 
momentum of the compound quasiparticle are obtained on the basis of the roton-ion interaction potential 
found previously. The momentum dependence of the binding energy near the end points of various 
branches of the spectrum is found. The problem of experimental observation of the phenomena is 
discussed. 

PACS numbers: 67.40.Db 

The problem of the bound states of elementary ex- 
citations in various systems evokes appreciable inter- 
est. It was shown earlierC1*21thatan arbitrarily weakat- 
traction is sufficient for the formation of bound states of 
two rotons in superfluid helium. The problem of the 
coupling of two elementary excitations in a crystal  near 
the special points of the Brillouin zone was investigated 
in a recent work of ~ i t a e v s k i ~ . ' ~ '  At these points, the 
bound states develop a t  any nonzero interaction constant. 
Further investigation of the properties of two- roton 
states was undertaken in a paper by ~ i t a e v s k i i  and Fo- 
rnin,l4' in which such states were classified according to 

liquid helium. The problem of the dynamics of similar 
systems is nontrivial: the impossibility of complete 
separation of the motion of the center of mass and the 
relative motion makes the problem practically unsolv- 
able in the general case. Here the smallness of the 
effective mass of the roton p ,  =0.16n1~ in comparison 
with the mass of the ion M -  501?1,, where I ? ? ,  is the mass 
of the ~e~ atom, does not mean that in the collision of 
the roton with the ion we can neglect the effect of the 
recoil of the latter (the characteristic momentum of the 
roton po i s  close to the thermal momentum of the ion 
- W T ) ' ' ~  at  T -  1 K). 

the value of the angular' momentum of the system, and 
1. It was shown in a previous paper of the authorLs1 

a dependence of the binding energy on the momentum that a t  distances that a r e  large in comparison with the 
was also found there. interatomic distances, forces of attraction of polariza- 

In the present paper, we solve the problem of the tion origin operate between the ion and the roton. We 
binding of rotons with Newtonian particles-ions-in write down the classical Hamiltonian of the ion-roton 
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