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Parity nonconsemation effects due to mixing of Adoublet component mixing by weak interaction in 
diatomic molecules are considered. An experiment is proposed on Raman scattering by the 'II,,, state of 
the molecule; the experiment should result, at the Raman frequencies, either in circular polarization of 
the scattered light or in a dependence of the scattered-light intensity on the sign of the circular 
polarization of the incident light. The relative magnitude of these effects is for CuO, CuS, and 
CuSe molecules, provided that the bandwidth of the radiation source (laser) does not exceed 1 MHz. 

PACS numbers: 33.20.n 

1. INTRODUCTION 

Attempts to observe effects of electron-nuclear weak 
interaction of neutral currents in atomic experiments on 
bismuth vaporr1] have not led so  fa r  to an unequivocal 
confirmation of the theoretical predictions discussed in 
a large number of papers (see, e.g., the review of 
Moskalev et ~ 1 . [ ~ ] ) .  It follows therefore that al l  other 
possibilities of measuring o r  estimating the constants 
of the weak neutral currents a r e  presently of primary 
interest. In particular, i t  was suggestedrs1 touse for 
this purpose electronic transitions in diatomic mole- 
cules. Among the possibilities considered in Ref. 3 was 
also A doubling.'' In the present paper we propose a new 
type of experiment for the observation of effects of par- 
ity nonconservation-Raman scattering (or resonant 
fluorescence) by closely lying levels of opposite parity. 

the quantum number J appears and characterizes the 
total angular momentum of the molecule (Ja l5ll). In 
states of type (b) the situation is reversed, so  that the 
quantum number C i s  meaningless, but the number K, 
which characterizes the total orbital angular momentum 
of the molecule (K 3 IA I), becomes significant. In both 
cases, the quantum number S, which characterizes the 
electron spin, is important. Thus, in a state of type (a) 
we use wave functions with a se t  of quantum numbers 
Jl(nvACS2SJILl), where A4 is the projection of the total 
angular momentum on an arbitrary direction, z, is the 
vibrational quantum number, and n stands for all the 
other quantum numbers; in a state of type (b) we use the 
wave functions +(~vASKJM). In a state of type (a) the 
degeneracy mentioned above occurs in fact when the 
signs of A and C (and consequently also of 52) a r e  re- 
versed simultaneously. 

In contrast to the corresponding atomic experiments, 
We consider now symmetry operations that include 

we propose here to use allowed magnetic transitions, 
transformations of the nuclear coordinates. The Hamil- work with which i s  preferable from an experimental 
tonian of the entire molecule a s  a whole is invariant to 

point of view. 
the operator P of inversion of the coordinates of the 

Finally, it should be noted that the question of the electrons and nuclei. It follows therefore that al l  the 
mixing of the sublevels by a weak interaction i s  by it- states must be even (positive, in accord with the pres- 
self not a trivial one, and was not investigated to a suf- ent terminology) o r  odd (negative). Inversion of P re- 
ficient degree in Refs. 3 and 4; this question i s  dis- verses the signs of the quantum numbers A and (as pro- 
cussed in detail in the present paper. jections of the axial vectors on the axis, which itself 

Let us recall briefly, to simplify the exposition that 
follows, the origin of A doubling in molecular spec- 
tra.[5-7] In the present paper we confine to heteroatomic 
molecules. If we disregard the electron spin, then the 
only quantum number that characterizes the motion of 
the electrons when the nuclei a r e  immobile i s  the pro- 
jection A of the electron orbital momentum on the inter- 
nuclear axis. The electron Hamiltonian a t  fixed nuclei 
is invariant to reflection in a plane passing through the 
axis, and this reflection reverses the sign of A. This 
leads to double degeneracy of all  the levels with A + 0 
with respect to the sign of A. When spin i s  taken into 
account, a distinction must be made between the types 
of states in accord with Hund's rules. In states of type 
(a), the energy of the spin-axis interaction exceeds the 

reverses direction upon inversion), therefore the wave 
functions of the positive and negative states of type (a) 
will be the linear combinations 

$' (nuAC2QSJ.lf) =2-'h (g(nvA2QSJhf) +$(~;&-QSJM)), (1 
where A= -A etc. We can write down analogously the 
wave functions for the case (b). The i sign in the left- 
hand side, which designates the parity of the state, is 
not uniquely connected with the * sign in the right-hand 
side, since the inversion operation is accompanied also 
by multiplication of the wave function by In the 
case (a), the quantum number K does not have the 
meaning of angular momentum, but determines the par- 
ity of the state. The quantity K can be determined by 
going over in the limit to the case (b), since the parity 
of the state is not altered by such a transition. 

energy of rotation of the molecule a s  a unit, so  that a 
meaningful quantum number is the projection C of the 2. LEVEL SPLITTING IN A DOUBLING 

spin on the axis, a s  well a s  the magnetic quantum num- A doubling in spectra of diatomic molecules takes 
ber  5l =A +C. When the rotation i s  taken into account, place when account i s  taken of the perturbations that lift 
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the degeneracy of the electronic state with respect to 
the signs of the projections of the angular momenta. We 
consider f i rs t  the A doubling for molecular states cor- 
responding to Hund's type (a). The A doubling appears 
for such states when account i s  taken of two perturba- 
tions: the spin-orbit interaction H,, and the interaction 
of the electron motion with the rotation Her .[5.61. The cor- 
responding effective operators a r e  of the form['] 

where L and S a r e  the electron orbital and spin angular 
momenta. The correct  linear wave-function combina- 
tions that diagonalize the effective perturbation operator 
a r e  precisely the functions (1). 

The energy-level splitting i s  determinedbyJhe matrix 
element that connects the states (AZO and ACO). Such 
a connection can be obtained only in perturbation theory 
of higher-order in the operators H, and He,. The oper- 
ator S,, is seen from (2), changes A and Z by unity and 
leaves S1 unchanged, while the operator H, either 
changes G o r  A by unity with C unchanged, o r  else 
changes Ct and Z with A unchanged, The spin-orbit in- 
teraction constant A in states of type (a) is larger than 
the rotational constant B, therefore in those cases when 
i t  is possible it is necessary to use primarily the oper- 
ator H,. However, the operator H, by itself can result 
in splitting only a t  O =0. The energy denominators for 
different intermediate states a r e  of different order of 
magnitude: if the value of )1\1 in the intermediate state 
coincides with the initial value, then the denominator i s  
determined by the multiplet splitting and i s  of the order 
of A-', while in the opposite case the denominator is 
determined by the distance between the different elec- 
tronic terms and is of the order of W-',  where o is the 
transition frequency. The matrix elements H,, do not 
depend on J, i.e., H, =A, and the dependence of the ma- 
trix elements He, on J is determined by the formulaC6] 

tAXQll H..IA'ZfQ-lI)=B[ (J+Q) ( ] + I - 9 )  1%. (4) 
Using the rules presented above, we can easily esti- 

mate the splitting of the A sublevels for any state. For 
example, for the states 'ny, and 2ny, we obtain the fol- 
lowing change of matrix elements2) 

Substituting here the estimate (4) for the matrix ele- 
ments Hel, we can separate the J-dependences in the 
expressions for AE. The final expressions for a num- 
ber of states a r e  given in Table I. These expressions 
contain also indeterminate factors of the order of unity, 
due to the matrix elements H ,  and He, a s  well a s  to the 
summation over the intermediate states. Some of these 
factors were calculated by Mulliken.C71 

AE(lI) = ( B Z / o )  K  (K+ l), 
AE(A) = B ( B / o ) ' ( K - l ) K ( K + l )  (K+2),  

TABLE I. 

State - Splitting 

For  sufficiently large values of J, such that the in- 
equality BJ(J + 1) > A  i s  satisfied, al l  the states go over 
into the type (b). In this case AE is independent of S and 
is obtained for each level with specified A from that ex- 
pression in Table I which corresponds to C = 0, by re- 
placing J with K, i.e., which coincides with expres- 
sions given in the book of Landau and ~ i f s h i t z ~ ' '  for the 
singlet I1 and A states. 

3. MIXING OF A SUBLEVELS BY A WEAK 
INTERACTION 

The effective neutral-current weak interaction oper- 
ator for electron-nuclear interactions takes in atomic 
units t i=e  = 1 the formC2] 

where i is the number of the electron, a i s  the number 
of the nucleus, oi a r e  the electron spins ( ~ a u l i  ma- 
trices), I ,  a r e  the spins of the nuclei, p, t -Vi[. . . ]+  de- 
notes a commutator o r  an anticommutator, G i s  the 
Fermi  weak-interaction constant and is equal to G 
= 10-5(m/m,)2, m p  is the proton mass, m is the electron 
mass, and N, i s  the number of electrons in the mole-, 
cule. The electron-nuclear interaction constants 
fsa(Z,,iVa) (s = l , 2 ;  Z, ,  N ,  a r e  the numbers of the protons 
and the neutrons in the nucleus) depend on the choice of 
the weak-interaction model. In the Weinberg-Salam 
model we have f,, - Z,, f,, - 1 (Ref. 2). 

The off-diagonal matrix elements of the weak-inter- 
action operator between the states $ * i s  equal to 

+ 7 - ) = / \ ~ - X  v A -  (8) 
(we s a v e  out the r e ~ i n i n g  quantum numbers for brev- 
ity; A denotes then ACS1). Since the operator V is odd 
in P, and the projections of A, Z, and $2 reverse sign 
upon inversion, we get 

( l i ] v l T i , = - ( h J v I , \ ) ,  (9) 
(hlv~,~)=-(nlv~.T).  

($+I V I  $-)=(A1 V1.i)-<'\I VlX). 
(10) 
(11) 

The matrix element (A JvJA), however, turns out to be 
equal to zero. The reason i s  that the matrix elements 
of the operator V a r e  always pure imaginary (see, e.g., 
Ref, 2). But (A (VIA) is a diagonal matrix element of a 
Hermitian operator and must be real, for which it fol- 
lows3) that (A I V  \A) = 0. The last equality remains in 
force also when account i s  taken of different corrections 
to the wave functions in the brackets, for example when 
account is taken of the spin-orbit interaction. 
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Thus, 

and, a s  can be easily verified, 

<*-I I'l*+,=-<lp+I Vll$-). (13) 

The matrix element (A IvIK) is in general not equal to 
zero, but it vanishes in all  cases when A, C, 52 3 1, for 
in that case the oper2Ez does not connect the states 
ACS2 with the states ACn. Consequently, to obtain a 
nonzero effect, we must take into account the correc- 
tions to the wave functions, e.g., we must se t  up the 
same chain of operators a s  for  the splitting of the A 
sublevels, but one of the operators, H, o r  He,, must be 
replaced by the operator V. Naturally, the effect will 
be maximal when He, is replaced by V. Since He, 
changes the value of a, such a replacement can be at- 
tained only with the aid of those terms of the operator V 
which contain a dependence on the nuclear spin?) Thus, 
in the corresponding experiments we can determine only 
the constant f,. 

It should also be added that the chain of operators 
must be made up, if possible, in such a way that the 
matrix element V connects the C and ll states. More 
accurately speaking, the electron configurations for the 
states in the operator brackets of the matrix element V 
should be such that the latter reduce to a single-electron 
matrix element of the type (o(~, (a) ,  where V, is the sing- 
le-electron operator corresponding to V, while o and a 
a r e  the single-electron states. The single-electron 
wave functions for all states, with the exception of the 
o states, vanish on the axis of the molecule. Since the 
operator V, contains 6 functions of the type 5(3)(ri - R,), 
the only nonvanishing matrix elements Vl will be those 
between the u and n states, in analogy with the fact that 
in atoms only the V, matrix elements between the s and 
p states differ from zero. From this point of view fo r  
example, suitable states for mixing a r e  'II and '2, since 
the corresponding configurations contain one valence 
electron each in the states n and a. 

Let us examine in greater detail the matrix element 
(A1C'S2'IVI~~S1). In the operator (7) we take into ac- 
count only the terms that depend on the nuclear spins. 
Then veN can be written in the form 

To calculate the matrix element V it  i s  necessary to 
introduce, besides the wave function $(nvACQSJM), the 
spin wave functions of the nuclei q,, o r  I,, and add up 
the angular momenta. The matrix element will then de- 
pend on the values of Fa of the assembly angular mo- 
menta F, = J +Ia. The result, averaged over the pro- 
jections of the nuclear spins, is 

We can use next the expressions for the reduced ma- 
trix element of the electron vector, expressed in the 
laboratory frame with electron wave functions written 
in a coordinate system that rotates together with the 
nuclei (Ref. 6, formula 110.6). This yields 

We now apply the obtained formulas to the state 211,/,. 
In this case the matrix element of the effective operator 
w that mixes the states +* in  accordance with (5) and 
(12), takes the form 

<+ 1 w 1 ->=-<nu~QSJIH..In'v'A'Z'SZSJ) 
x o-L<n'u'A'Z'QSJI,IzFIFzI Vl ~ V ~ ~ S J I , I , F ~ F , ) ,  (1 6) 

w h e r e ~ = l , ~ ' = O , C = - $ , C ' = ~ , S 1 = ~ , ~ = ~ ,  i.e., the in- 
termediate states a r e  the 'C * states. We assume here 
that the matrix elements of the electron operator H, is 
diagonal in the quantum numbers v and J .  The energy 
denominator in this case is equal to o =E(2Ci) -E('II!/,). 
Substituting expressions (14) and (15) in (16), expand~ng 
the expressions for the 3j and 6j symbols, and using the 
explicit expressions for the vectors a,, and b,,, we get 

<n'u'A'Z'QSJI,12F,FII VInuA2QSJII I~FIF~)  

where Vil i s  a cyclic component of the vector V,. 

4. RESONANCE FLUORESCENCE 

We consider the process of scattering of light by a 
molecule in the ground state with A* 0 (examples of such 
molecules a r e  given in Sec. 5). We assume here that the 
frequency of the incident radiation is tuned to resonance 
with a certain electronic transition in the molecule. An 
approximate scheme of the levels of interest to us for 
such a molecule, with allowance for the A doubling, is 
shown in Fig. 1. The Feynman diagrams corresponding 
to the processes that a r e  possible in the case of scat- 
tering a r e  shown in Fig. 2, The frequency w of the in- 
cident radiation is assumed to be a t  resonance with the 
magnetic transition 1- - 2-. The electric transition 1' 

FIG. 1. Approximate arrangement of molecule levels. The 
numbers denote various electron levels; the + signs denote 
positive (negative) levels, w is the electron-transition 
frequency, and A E is the spl i t t i i  of the A sublevels. 
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FIG. 2. Feynman diagrams for the light scattering process. 
The symbols 1 * and 2- on the electron (solid) lines indicate 
the molecular states, and the symbols E l  and M1 on the 
photon lines indicate the character of the absorbed and 
emitted photons (electric or magnetic). 

-2-  is also excited, because of the large natural width 
r of the level 2. 

We now take into account the mixing of the A sublevels 
by a weak interaction. Instead of one diagram A of Fig, 
2, we must now consider the aggregate of diagrams 
shown in Fig. 3. The amplitude of this process can be 
written in the form 

where A,,, A,, a r e  the amplitudes for the absorption of 
the electric and magnetic photons, A$,,AJ, a r e  the cor- 
responding emission amplitudes, the symbols i and f 
pertain to the initial and final photons, AE = E + - E -, AEB 
is the resonance denominator. Under the condition 
r>> AE this denominator is the same for all  diagrams 
and is equal to I?. In the calculation of the probability 
of the process A of Fig. 2 (i.e., when taking the square 
of the modulus of the amplitude), interference terms 
appear: 

where w$[= (A$[,;f(2. We have used here the property (+ (w( 
-)* = -(+ IW I -), which must hold for the effective oper- 
ator w just a s  for V. 

Substituting the expressions for the amplitudes A,,, 
A,, and averaging over the projections of the angular 
momenta, in analogy with the procedure used for atoms, 
we can reduce (19) to the form 

FIG. 3. Feynrnan diagrams for scattering without change of 
frequency, with the weak interaction taken into account. The 
weak interaction is represented by the "fork" on the diagrams. 

where s and n a r e  the photon spin and propagation di- 
rection. 

Analogous operators for the processes B and C of 
Fig. 2 yield 

No account is taken here of the diagrams that contain 
the magnetic transition twice, such a s  diagram D of 
Fig. 2. The presence of sf .nf in the expression for the 
total probability of the scattering process means onset 
of circular polarization of the scattered radiation. The 
presence of s,. n, means that the scattering cross  sec- 
tion depends on the direction (sign) of the circular po- 
larization of the incident radiation, Both a r e  the result 
of parity nonconservation. 

A possible experiment in which to observe parity non- 
conservation effects can be imagined a s  follows. Cir-  
cularly polarized radiation of a laser  is scattered by the 
molecule ground (or metastable) state in which there is 
A doubling. If the natural width of the level from which 
the scattering takes place is small  o r  zero  (it is for the 
lat ter  that the ground state i s  necessary), then the pic- 
ture shown in Fig. 4 is observed in the scattering. Ac- 
cording to theory ,la] the width of the scattering peaks is 
determined in this situation by the width y of the laser  
emission line, It i s  a lso  necessary to satisfy the in- 
equality y<< AE. Thus, we a r e  dealing with Raman scat- 
tering of light by a molecule in the presence of reso- 
nance, i.e., with resonance fluorescence. 

If the three lines a r e  not optically resolved, the effect 
is equal to zero, since the interference terms in the 
combined probability cancel each other, a s  follows 
from formulas (20)-(22). The parity-nonconservation, 
effects observed on the central line will be much smal- 
l e r  than on the side lines, for when the interference 
terms a r e  equal the principal background-producing 
term in the expression for the probability is much larg- 
e r  on the central line. Thus, the experiment can con- - 
s is t  either of measuring the degree of circular polari- 
zation of scattered radiation a t  frequency w +AE, o r  of 
observing the change in the intensity of the scattered 
radiation of the frequency w - AE with changing sign of 
the circular polarization of the incident radiation. 

Both experimental variants were in essence con- 
sidered already in the f i rs t  studies of Bouchiat and 
~ o u c h i a t [ ~ ]  a s  applied to atoms. The new element in the 
experiments proposed is the use of an allowed transi- 

FIG. 4. Schematic dependence of the scattering cross section 
on the frequency of the incident radiation. The heights of the 
central and side peaks are not to scale. The figure indicates 
also the pseudoscalars that characterize the parity noncon- 
servation effects when observed at various frequencies. 
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tion, the proximity of the levels, and the absence of a 
natural width (ground state). 

5. ESTIMATES OF THE MAGNITUDE 
OF THE EFFECTS 

The degree of parity nonconservation in the con- 
sidered processes is determined by the ratio of wm' to 
the probability w0 of the process without allowance for  
weak interaction. Inasmuch a s  for both side lines on 
Fig. 4 this quantity is equal to w0 =wB,w,,, we obtain for 
the degree parity nonconservation P 

According to (16) and (17), a s  well a s  Table I, for the 
state 'n,,, the ratio 2i (+ bl - ) /AE is equal to 

where B is the rotational constant for the molecule. It 
is seen that this ratio does not increase with increasing 
J. For the matrix element 

we use the atomic 

(in the atomic units E=e =I), where o! is the fine-struc- 
ture constant. 

For the value of the probability ratios we also use the 
atomic estimate (see the discussion in Ref. 3 )  

(w.,/ww1) H=i/aZ.~~, (25) 
where Zeff is the effective charge of the nucleus. We 
shall assume Zd - 1, inasmuch a s  an important role in 
the calculation of the matrix elements of the transitions 
is played by the regions of space that a r e  f a r  from the 
nuclei. Using (23)-(25), we obtain the following final 
estimate for P : 

Formula (26) presupposes that the hyperfine splitting is 
larger than the distance between the A sublevels AE, 
and we a r e  dealing with a definite hyperfine component 
of the A sublevel. 

The molecules that a r e  suitable for our purposes, 
their parameters, and the resultant values of AE and P 
a r e  listed in Table 11, The lowest rotational state J =  $ 
and the hyperfine-structure components F,, that make 

TABLE 11. 

cm cnce' 

CuO A*Z+ S XIII,,, 29.8 (0.  0 (I;,) 0 . 6 . I W f z  61W [L] 

CuS 1 .4sx+z xqcl, 1 2g.16 1 @la ( I )  0 (11~) / i::: 1 1 l.21L-*!s 1 1 [It] 

CuSe ArX+ ;t Xln,,, 29.34 I:. (1). I,', (u) 4 3.10- f, ["I 

the largest contribution to (26) a r e  considered through- 
out. 

6. ESTIMATES OF THE INTERFERENCE NOISE 

If the laser  line width y is not small  enough, then the 
wing of the strong central line on Fig, 4 can overlap the 
side lines, thereby effectively decreasing the value of 
P .  Assuming Lorentz line contours, we can write down 
the condition under which there is no such interference: 

From this we obtain condition on the width y : 

~<AE(wJr , /wE, ) ' " z  iO-'AE. (27) 

At AE -lo-' cm-' we get y s; em-'- 1 MHz, which is 
quite feasible with many l a se r  sources. 

We consider now interference produced by a random 
magnetic field. In a magnetic field, owing to the Zee- 
man splitting of the levels the probabilities of the trans- 
ition turned out to be different for left- and right-po- 
larized photons (looking along the magnetic field) and in 
the absence of weak interactions. The necessary condi- 
tion for  the absence of such interference is that this dif- 
ference be smaller than the difference due to the weak 
interactions. 

It is convenient to compare the total probabilities (we 
recall that w,, and my,, a s  well a s  expressions (19)- 
(22), pertain to the probabilities of decay per  unit time). 
The difference between the total probabilities, which is 
due to the weak interaction, will obviously be deter- 
mined by the same relative quantity as for  the probabil- 
ities per unit time, namely, the quantity P .  The total- 
probability difference due to the magnetic field of inten- 
sity 2, is written in the form 

W+A z 

bwx = 
do' 

W-A t 

0 + 3 / ? - f b o ~  
do' 

(O - o')? -f (y/2)2 ' 

where w is the resonant frequency, A i s  the radiation- 
receiver bandwidth, and 6wz is the width of the Zee- 
man splitting of the levels, for which there is a known 
relation[131 

It i s  natural to regard the quantity A a s  equal to the 
width of the source bandwidth, A = y o  Assuming that the 
field is weak enough, i.e,, 6wH<< A (this assumption 
holds true already a t  Jl'-0.1 G), calculation of the inte- 
gral yields 

From this we get the following limitation on the value 
of: 

%[G ]S1OLPy[cm-'1. (28) 
Assuming P - y - em-', we obtain the rather 
stringent condition 2s; lo-' G, satisfication of which is 
apparently one of the main difficulties in the experi- 
ments in question. 

Random electric fields also lead to the appearance of 

Sov. Phys. JETP 48(3), Sept. 1978 



interference. The main interference from an electric 
field (Ref. 14) consists of mixing of the states 1' and I-, 
as a result of which the expressions for the probabilities 
of the processes B and C (Fig. 2) acquire additional 
terms of the order of 6w2w&/AE2, where 6w6 is the 
Stark splitting of the levels. These terms make no con- 
tribution to the interference term, but they can lower 
the value of P.  To prevent this, i t  is necessary to sat- 
isfy the condition 

Using also the known relation for b u s  (Ref. 13) 

we obtain a condition for 6 : 

From (29) a t  AE -lo-' cm-' we obtain the upper bound 
g s 1 V/cm, which seems quite realistic. 

In conclusion let  us compare the possibilities of mo- 
lecular experiments with the analogous atomic experi- 
ments proposed ear l ier  for the cesium atoms.[0] The or- 
der of magnitude of the effect P in both cases is approx- 
imately the same (we recall that the value P - lom4 was 
obtained in Ref. 9 under the assumption that fl - Z in the 
operator (7), but this assumption has not yet been con- 
firmed by experiment). Molecular experiments provide 
better statistics, since the principal magnetic transi- 
tion i s  allowed and i t s  intensity i s  approximately lo4 
times larger than the intensity of the forbidden mag- 
netic transition in the C s  atom. The shortcoming of the 
molecular experiment is the need for resolving closely 
lying lines within an interval -10-2cm-1. This calls for 
eliminating the Doppler broadening of the lines and con- 
sequently for using molecular beams. To be sure,  the 
limitations on the perpendicular components of the vel- 
ocity in the situation considered by us a r e  not stringent 
(v, s lo4 cm/sec) and a r e  apparently attainable in standard 
experiments with molecular beams.[lB1 

The author is deeply grateful to V. G. Gorshkov and 
A. N. Moskalev for numerous useful discussions and 
remarks. 

" ~ h e  feasibility in principle of using A doubling for the 
investigation of parity-nonconservation effects was first 
considered by Onishchuk. 14' 

2)~n such chains one can encounter a state with A =  0, which 
always corresponds to a coupling of type b) and for which 
the quantum numbers Z and SZ have no meaning. This 
state, however, can be resolved into states with definite 
values of Z and a,  and when the chains are made up one 
can use the expansion terms with the required values of Z 
and SZ. 

3)This circumstance was not taken into account earlier in 
Ref. 3, so that the formulas and the estimates given there 
for effects connected with A doubling are incorrect. 

4)This can likewise not be accomplished with the aid of the 
operator V w  of weak electron-electron interaction; we 
therefore do not consider V" in this article. 
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