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The spectral intensity and total power are found for the spontaneous bremsstrahlung of an electron in 
scattering by ions in the field of an intense electromagnetic wave (of frequency oo)  A resonance structure 
of the radiation is 0bse~ed at frequencies close to noo, where n = 1,2,3, .... The width of the resonance 
curve, the locations of the peaks, the number of resonance peaks, and the values of spectral intensity at 
the peaks are determined. The maximum number of quanta of the intense field which can be absorbed in 
spontaneous bremsstrahlung is found. It is shown that the maximum energy of the spontaneously radiated 
photon is detennined by the energy of the oscillations of the electron in the field of the wave. The 
nonresonance part of the spectral radiation intensity, which falls off with increase of the pumping wave 
intensity Eo as EL', is detennined. 

PACS numbers: 41.70. + t 

1. INTRODUCTION those values of field strength E ,  at which the velocity 

In recent years  definite attention in the l i terature has  
of the electron's oscillations in the wave u, exceeds 

been devoted to the theoretical study of induced brem- 
the velocity of i t s  translational (or thermal)  motion L - :  

sstrahlung of electrons in scattering by ions in the 
presence of an  intense electromagnetic ~ a v e ~ - ~ ]  (see v ,=eE. lmop~u.  

- 
also the references cited in our ear l ie r  art icle "I ). The 
interest  in phenomena of this type i s  apparently due 
primarily t o  the development of the physics of laser  
plasmas. The theory of induced bremsstrahlung has  
treated both induced multiphoton radiation and ab- 
sorption at the frequency of the intense wave and in- 
duced bremsstrahlung a t  other frequencies w # w, which 
a r i s e s  on passage of a second, weak (probing) wave. 
I t  should be noted that the strong field of the pumping 
wave affects not only induced bremsstrahlung proces- 
s e s ,  but also the spontaneous bremsstrahlung of the 
electron, which may present  independent interest. 
Borisov and ~hukovskiT'~] discuss the effect of an ex- 
ternal  electromagnetic wave on the spontaneous brem- 
sstrahlung of ultrarelativistic electrons. With regard 
to  a l a se r  plasma, however, grea ter  interest  is pre- 
sented by the ca se  of nonrelativistic electrons, which 
is considered in the present work. 

P lasma states of this type are nonequilibrium and can 
exist  only for  a finite length of t ime less than the t ime 
of heating of the electrons t o  a temperature corre-  
sponding the velocity u,. The processes  of induced and 
spontaneous bremsstrahlung in this ca se  are multipho- 
ton processes  in the field of a strong pumping wave. 
F o r  example, in spontaneous radiation the electron can 
absorb or radiate n quanta Aw, and radiate one proton 
Aw, where n i s  an  arb i t ra ry  integer. In view of these 
circumstances there i s  no d i rec t  and known beforehand 
relation between the induced and spontaneous brem- 
sstrahlung processes such as exists  between the Ein- 
stein coefficients in the absence of a pumping wave. 
Therefore in spite  of the fact that the solution of the 
problem of induced bremsstrahlung at arb i t ra ry  f re-  
quencies w for  any values of E ,  is the study 
of spontaneous bremsstrahlung for  L', 2 v  i s  an  inde- 
pendent problem, to solution of which the present  art i -  

In discussing the pumping wave, we have in mind c le  is devoted. 
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We shall discuss the interaction of the electron with 
the Coulomb potential of the ion in the first Born ap- 
proximation, the usual criterion for applicability of 
which Ze2/ifv c . 1  in the asymptotic case of a strong 
field (1) obviously is replaced by the condition 

Ze3/RuE<i. (2) 

We shall assume that the energy of the pumping-wave 
quantum ifw, is  significantly less than the kinetic energy 
of translational motion of the electron, 

In regard to the frequency of the spontaneously radi- 
ated photon, in the asymptotic case of a strong field (1) 
the quantum energy tiw is not limited to a value p2/2m.  

2. SPECTRAL DENSITY OF RADIATION 

On the basis of the nonrelativistic nature of the elec- 
tron motion: u ,  v,<<c, we shall use the dipole approx- 
imation and discuss an electron in the field of a wave 
with intensity E =Eocoswot. The problem formulated 
above consists of describing the spontaneous brem- 
sstrahlung of an electron in a field E in scattering by a 
potential V(r) =Ze2/r.  For solution of this problem, 
following Ref. 1,  we shall use as the zeroth approxi- 
mation the known wave functions of an electron in a 
field E, after which we shall take into account by means 
of perturbation theory both the potential V(Y) and the 
operator of interaction with a quantized field. It is also 
possible to use another standard semiclassical ap- 
proach to this problem.D1 Namely, we can use the 
known expressions for the probabilities of electron 
transitions in scattering by a potential V(r) in the field 
of two waves E and E' =E A coswt , one of which E is 
strong, and the other E' i s  weak ( ~ q .  (3) of Ref. 2). 
After this the transition to spontaneous radiation is ac- 
complished by means of the standard substitutionb1 

where dC2 is the element of solid angle in the direction 
of the spontaneously emitted photon. Both of these 
methods naturally lead to the same results and permit 
one to obtain the following expression for the energy 
emitted by an electron per unit time per unit solid 
angle and per unit frequency interval in radiation of a 
photon of frequency o with a polarization vector e: 

where n a r e  positive or negative integers (or zero), n, 
is the concentration of ions, and p and p' a re  the elec- 
tron momenta before and after scattering. 

We note that in terms of the approximations used in 
Eq. (4) and everywhere below, there are  no resonance ', 

singularities due to the possibility of the electron's 
Green's function reaching the mass ~ h e l l . @ ' ~ 1  This is 
explained by the fact that in the dipole approximation 
these resonance singularities cancel: Here the num- 
erator and resonance denominator in the transition 
probabilities simultaneously vanish under the condi- 
tions of the resonance, which leads everywhere to finite 
results. Generally speaking, use of the dipole approx- 
imation in the vicinity of resonances of this type and 
the role of such resonances in the presence of Coulomb 
collisions require independent investigation. In the 
present work, however, we shall not go into details of 
this question, assuming that the applicability of the 
dipole approximation is justified by the ordinary condi- 
tions u ,  u,<<c. We note also that we will observe be- 
low a resonance behavior of the spectral density of 
radiation in the asymptotic case of a strong field. 
These resonance singularities have nothing in common 
with resonances arising from arrival of the Green's 
function at the mass ~hrll.[~*'' Inparticular, incontrast 
to Refs. 6 and 7, in the case considered a resonance 
structure arises only in the asymptotic case of a strong 
field. 

Summation over the polarizations e and integration 
over the directions of propagation of the photon in Eq. 
(4) a re  carried out in a standard manner and permit 
conversion to the spectral density of the radiated en- 
ergy 

dg 8Z2e%, -=-z ,jpt-- 
dtdw 3nm2c3 mheoz 

In what follows we shall consider not only a directed 
motion of the electrons, but also a distribution of such 
motions isotropic in the translational motion (i.e., in 
the momentum p). Averaging over the directions of p 
decreases the number of free parameters on which the 
spectral density of radiated energy depends. In Eq. (5) 
in this case it is convenient to go over to integration 
over the momentum transfer q =p' - p, which permits 
the result of averaging to be represented in the form 

where q,, GI ql q,, , and 

Before turning to investigation of the asymptotic case 
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of a strong field E,, we point out that in the opposite 
limit on turning off the pumping wave (E, - 0) Eqs. a 

(4)- (61, of course, go over to the known expressions 
describing the spontaneous bremsstrahlung of a free 
nonrelativistic e le~tron. '~ '  For example, Eq. (5) in the 
limit E, -  0 takes the form 

ti8 i6Fe5zi p+p' 
- - - I n -  
&do 3mzvc' p-p' ' 

where in the present case p' = (P2 - 2nzi iw~/~ .  The total 
energy radiated by a free electron in the bremsstrah- 
lung process is determined by the well known expres- 
sion 

3. RESONANCE RADIATION 

We consider the asymptotic behavior of the spectral 
density of radiation dg/dtdw under the conditions de- 
termined by the inequality (1). The general method of 
calculation of integrals containing squared Bessel func- 
tions J2, with a large argument (-E,-m) has been des- 
cribed by us previously. The general formulas obtain- 
ed in that work can be considered as the basis of the 
following simpler method of calculation (which has been 
used previously in Refs. 1 and 3 and which leads to cor- 
rect results). For large E, [inequality (I)] the argument 
of the Bessel functions is large over a wide region of 
variation of the variables of integration. This permits 
use of the asymptotic representation of J,(u) for 1 u I 
3 (1, In1 ), further averaged over the fast oscillations, 

If, however, at  some point of the region of integration 
u =0, then in the immediate vicinity of this point the 
asymptotic representation (10) i s  inapplicable. How- 
ever, as follows from estimates and from the results 
of Ref. 2, this small region does not contribute sub- 
stantially to the integral. Therefore the asymptotic cal- 
culation of the integrals which contain J: (u) can be car- 
ried out by means of the representation (lo), and the 
condition (1~12 (1, lnl) must be discussed as an addition- 
al limitation of the region of integration. 

Applying the method described to Eqs. (5) and (6) and 
carrying out the integrations, it is easy to see that 
the spectral density of radiation in both cases has the 
form of the sum of resonance and nonresonance terms 
(Fig. 1): 

The resonance part (&/dtd~)res as a function of fre- 
quency has sharp peaks at w=nw,, where n =1,2,.  . . , 
while the nonresonance term (d%'/dtdw)nonrer depends 
smoothly on the frequency. We emphasize that the ap- 
pearance of resonances is a specific feature of the 
asymptotic case of a strong field. It i s  well 
that a similar result occurs also in induced brem- 
sstrahlung at frequencies w =no,. Let us consider the 
form of the resonance term (@/dtdw),, in several 

FIG. 1. Spectral intensity of spontaneous bremsstrahlung 
in the field of an intense external wave (of frequency wo). 
The dashed curve shows the intensiw of radiation of a free 
electron (without a wave) in the first Born approximation. 

special cases. 

1. Electron momentum PerPendicular to the polariza- 
tion vector: p lEo .  Calculation of the resonance part 
of d%'/dtdw in the vicinity of the point w =nw, by the 
method described above gives 

where 6 =v/v,<<l. 

The width of the resonance is h w  = w,n6 = w,n(u/u,). 
Far  from the maximum (at I w - nw,l >>Aw, but o, 
>> I w - n wo) ) we have 

The value of the spectral intensity at the maximum, 
found from Eq. (12), is achieved at w =nw, and is de- 
termined by the quantity 

which with accuracy to a logarithmic factor and a nu- 
merical coefficient l/lm coincides with the spectral 
density of radiation of a free electron (8). With in- 
crease of n the height of the peaks falls off as l/n and 
the width of each maximum is significantly less than 
the distance between them, i.e., for n <  6-l. Conse- 
quently the parameter u,/v = 6-' >> 1 determines the 
number of resonance peaks. 

We note that the calculation method used permits the 
calculation to be carried out with logarithmic accuracy. 
This means, in particular, that the behavior (d $/ 
dtdw),, at the wings of the resonance is described by 
Eq. (13) with accuracy to small corrections not con- 
taining the large logarithm ln(ln - w/wo(/n6). At the 
same time the value of (diF/dtdw),., at  the maximum is 
determined by Eq. (14) only with accuracy to a coef- 
ficient of the order of unity, since it no longer contains 
the large logarithmic factor. Nevertheless the use of 
the resonance formula (12) is justified, since it is ap- 
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plicable over a wide range of frequencies 1 w - fiw,S A W  
and gives a readily interpreted picture of the depend- 
ence of the spectral density of radiation on frequency 
near resonance. 

An important feature of the case considered is the 
symmetric nature of the resonance peak (Fig. 2a): 
(dg/dtdw)rcr (12) depends only on I w - nw,l. This result 
i s  preserved over a wide range of angles between the 
vectors p and E,. In the general case  the formulas for 
(d@/dtdw),,, a r e  more complicated than the expression 
(12). We do not give them here,  especially since the 
results of the calculations a r e  qualitatively similar to 
those formulated above. Important differences, which 
a r e  discussed in the next section, appear only in the 
case when the directions of the vectors p and E, a r e  
very close together. 

2. Electron momentum parallel to the polarization 
vector: p IIE,. The shape of the resonance peak in this 
case i s  not symmetric and is  not described by a single 
simple formula similar  to Eq. (12). The width of the 
resonance a s  before i s  Aw= w0n6. In the region w/w, 
- n s - n6 (1 +it  n6) ,  calculation of the resonance part of 
the spectral density of radiation gives 

F a r  from the maximum (on the left wing of the reso- 
nance curve, Fig. 2b) Eq. (15) goes over to the expres- 
sion 

In the frequency region - n6(1 +1/4 tfi6)c w/w, - n 
c nb(1- 1/4 5126) the result of calculation of (d%/dtdw),,, 
has the form 

FIG. 2. Structure of the radiation spectrum in the vicinity 
of a resonance peak (Aw = won6 is the width of the resonance, 
Aw << wo): a)-in motion of the electrons in the plane perpen- 
dicular to the polarization vector of the intense wave, b)- 
in motion along the polarization vector. 

X l n  I+- 
- o'oo ) 

( n6 

Finally, in the region w/w, - n 2 n6 (1 - 1/4 5n6) the 
form of the resonance curve i s  determined by the ex- 
pression 

The maximum of the resonance curve i s  reached at  
w/w, - n =nd( l -  1/4<n6). The behavior of the spectral 
density of radiation in the- immediate vicinity of the 
maximum is  described by Eqs. (17) and (18). The value 
of the function a t  the maximum is determined by the ex- 
pression 

Thus, in contrast to the preceding case, the resonance 
curve i s  asymmetric (Fig. 2b), the maximum i s  shifted 
to the right in frequency (relative to the value w =nw,) 
by an amount of the order of the width of the resonance 
Aw, and the value of the spectral  density of radiation at  
the maximum differs from the case p l E ,  [Eq. (14)] by a 
large logarithmic factor. 

Similar results a r e  obtained not only for parallel p 
and E, vectors but a lso  in a certain small  range of 
angles A 8 s 8, between them, 8, - (n 6 6)' 12. The observed 
singularities of (d%/dtdw),, can be investigated in scat- 
tering of beams of electrons with an angular divergence 
not exceeding 8,. In the opposite case, for he>> O,, and 
in particular for  an isotropic electron distribution, the 
region of directions of the momentum p close to the 
direction of the vector E, does not contribute substan- 
tially to the averaged values. Therefore, in particular 
for an isotropic distribution of electrons a s  will be dis- 
cussed below, the resonance maxima a r e  symmetric 
relative to values w =nw,. 

4. ISOTROPIC DISTRIBUTION OF ELECTRONS 

Integration over the momentum transfer q in Eq. 
(6) i s  carried out by means of the method described 
in Section 3,  and in the general case it i s  possible to 
represent (&/dtdw) in the form 

where 

qrni ,~  = mas { q,,., - " 1, v = m x ( i ,  1n11. 

The lower limit of the summation over n in Eq. (20), 
n,i,, i s  determined from the obvious condition that the 
electron energy after scattering is  positive: 
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where [ x ]  i s  the integral part of the number x .  

In regard to large values of n, the sum (20) i s  form- 
ally extended to *. However, an important contribution 
to this sum is actually made only by terms with a number n 
less  than a limiting value H,,. The value n,,, can be found 
from the ~ondi t ionq, , ,>?~~~ , which i s  the criterionof ap- 
plicability of the asymptotic case of a strong field to 
the limiting case of multiphoton processes. As can 
easily be seen 

Consequently, the maximum number of quanta of me 
strong field which can be absorbed in the spontaneous 
bremsstrahlung process i s  determined by the ratio of 
the oscillation energy of the electron to the quantum en- 
ergy of the pumping wave. In view of the conditions (1) 
and (3) we have n,,, >> 1. For n >n,, >> 1 the order of 
the Bessel functions in Eqs. (3) and (4) exceeds the val- 
ue of the argument. The contribution of these terms to 
the spectral density of radiation i s  very small and they 
can be neglected. From these considerations it also 
follows that the value of the bremsstrahlung spectral 
density itself is not small for the condition that Inmhl 
<<n,,, . This condition obviously is  satisfied in the re-  
gion of comparatively small frequencies w <p2/2mfi, 
which follows from the inequality (1). The requirement 
Inmh/ < n,, can be violated a t  large values of the fre- 
quency w. The condition Inrnk/ -?arn,, i s  actually deter- 
mined by the limiting frequency which can be radiated 
in the bremsstrahlung process in the field of a strong 
wave. It i s  equal to 

ollm - ~ ~ n ~ , - r n ~ ~ ~ / i i ,  (25) 

i.e., the energy of the corresponding quantum is equal 
to the energy of oscillations of the electron in the wave. 

The general expression (20) contains both the res- 
onance and the nonresonance parts of the spectral den- 
sity of radiation. The resonance properties can appear 
in the vicinity of the frequencies w =noo, n = 1,2.  . . . - 
Here q,,,,<<q,,, and in the sum over n one term, a res- 
onance one, is  the principal one. 

The width of the resonance is determined by the con- 
dition q,,-nm6w~/eEo and a s  before i s  equal to A w  

= won6. Specific expressions for the spectral density of 
radiation in the wings of the resonance curve ((nw, 
- w[ 7 w0n6) and in the immediate vicinity of the maxi- 
mum (Inw, - wl< w0n6) a re  determined respectively by 
Eqs. (13) and (14). 

The nonresonance part  of the spectral density of radi- 
ation is determined by a large number of terms in the 
sum over n in Eq. (20). We consider f i rs t  the region of 
comparatively small frequencies w. In this case the re- 
gion of summation over n can be broken down into two 
intervals: from - Inminl to +1,,,1 and from +1,,,1 to n,,. 
The function 9, (21) in these subregions can be approx- 
imated by the respective expressions 

Going over from summation over n to integration, it 
is easy to see  that the nonresonance part of the spectral 
density of radiation can a s  a result be represented in 
the form 

16Z2esnio0 u. mtu'uE 
ln-ln- (Z 1 - 3 m c 3  u h2,.' . (2 7) 

In Eq. (27) we have correctly taken into account the 
squares and products of logarithms of the two large 
parameters u,/v andp2/2mfiwo. In a strictly asymptot- 
ic sense In(v,/u)>> ln(p2/2mEw0) a s  Eo-03 and it would 
appear that the product of the logarithms in Eq. (25) 
can be replaced by ln2(v,/v). However, in reality the 
ratio of the large parameters u,/v and Pz/em6wo can be 
different and the contribution of the corresponding log- 
arithms in (dg/dtdw)nonres can be comparable in mag- 
nitude. In Eq, (27) we have dropped linear logarithmic 
corrections and also all  logarithm-free corrections, 
which a r e  relatively small. 

We note that the nature of the principal dependences in 
Eq. (27) (without the logarithmic factors) can be found 
from expression (8) for the spectral density of spon- 
taneous radiation of a f ree  electron by means of the 
substitution u -v,. 

Equation (27) correctly describes the spectral den- 
sity of radiation in the region of frequencies w< wov,/ 
v ,  p2/2 mfi. Without dwelling in detail on analysis of all 
features associated with increase of w, let us consider 
the opposite limiting case of high frequencies (evE,/ 
;Ciwo)< w < oh. The sum over n in Eq. (20) receives im- 
portant contributions from the region where the asymp- 
totic case of a strong field works satisfactorily and 
where q,, >i,h >>nmEw;/eE,. This condition in the 
frequency range considered i s  satisfied for n -  w/w, 
>> w2/w;nm,, n<<n,,. The function @, in this case can 
be approximated by the latter of the expresgions (26). 
Summation over n in these limits gives 

Equation (28) describes the decrease of spectral in- 
tensity of the radiation a s  the frequency w approaches 
its limiting possible value wIim, Knowledge of the 
asymptotic behavior of (dg/dtd~)nonres a t  large w per- 
mits determination also of the total radiated power by 
integration of (28) over the frequency w from some 
comparatively small value (<< w ,) up to w,,, : 

The qualitative nature of the principal dependences in 
Eq. (29) follows from Eq. (9) if in the latter we replace 
the velocity u by the velocity u, of the oscillations. 
This result is quite natural, although it is not universal: 
Not all physical quantities in the asymptotic case of a 
strong field (1) can be obtained from the corresponding 
quantities in the absence of a field by means of the 
substitutionc2. 3 1  v -v,. We note that since, a s  the re-  
sult of integration of Eq. (24) over w, the large logari- 
thmic factors in Eq. (29) cancel, the accuracy of this 
formula is reduced in comparison with Eqs. (27) and 
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(28) for the spectral density of radiation. Equation (29) 
i s  actually determined with accuracy to a coefficient 
of the order of unity. 

In particular, the resonance part of the spectral den- 
sity of radiation can also make a contribution to the 
total radiation power comparable with Eq. (29). 

5. ENERGY LOSSOF THE ELECTRON 

The rate of change of the electron energy in the field 
of a strong wave during the bremsstrahlung process 
in the general case can be determined -as 

However, the integral (30) over the frequency w di- 
verges a s  w-0. This divergence i s  a manifestation of 
the well known and well studied infrared ~ a t a s t r o p h e . ~ ]  
A feature of the process being studied i s  that, in con- 
trast  to ordinary bremsstrahlung, in our case the in- 
frared divergence appears not only in the total proba- 
bility (or cross  section) but also in the energy loss. 
Usually the l /w divergence in the energy loss is  com- 
pensated by the energy of the radiated photons Aw and the 
expression for the energy loss a s  w - 0 does not diverge. In 
the presence of an external electromagnetic field this is not 
the case. A change of the electronenergy in then photon 
process is  nAw, - Ew. This quantity remains finite a s  
w - 0, nz 0, and does not compensate the divergence in 
Eq. (30). As usual,c81 the region of integration over w 
can be broken down into two intervals: [ 0, w,,] (region 
A) and [w,,, m] (region B); w,, << w,. In the region of 
soft radiated photons in the integrand of Eq. (30) it is 
possible to separate a factor 

dur;;! = 
2e2 (p' - p) do - 

3nm2cstt o ' 

which has the meaning of the probability of radiation of 
one soft photon in a frequency interval d o  in an arbi- 
trary direction for a fixed value of electron moment- 

The expression (31) determines the probability 
of radiation of a photon in the f i rs t  order of perturba- 
tion theory. It i s  inapplicable in integration over a 
finite frequency Aw at sufficiently small  w. Going out- 
side the framework of perturbation theory, as  usual,B1 
permits determination of the probability of emission of 
an arbitrary number N of soft photons w") and sum- 
mation of these probabilities Z W ' ~ '  = lo This proced- 
ure leads to an obvious result: The rate of change of 
the electron energy in emission of an arbitrary number 
of soft photons (d~/dt)'*'is equal to the rate of change 
of its energy in the induced bremsstrahlung process 
(m/dt), (Ref. 11, 

Only the rate of change of the energy in this combined 
process has physical meaning. The probability and 

rate of change of energy by themselves in the induced 
bremsstrahlung process without emission of soft pho- 
tons a re  equal to zero. The relation of induced brem- 
sstrahlung and bremsstrahlung in the field of an in- 
tense wave is completely analogous to the relation be- 
tween elastic Coulomb scattering and ordinary brem- 
~ s t r a h l u n g . ~ ~ ]  

Thus, instead of the integral over the region A 
[0, w,,,] in Eq. (30), a s  the result of taking into ac- 
count processes of radiation of many soft photons we 
obtain the rate of change of the electron energy (dW/ 
dt), (32). In regard to the region B [ w m i , , ~ ] ,  in this 
case calculation by means of perturbation theory a re  
satisfactory and Eq. (30) correctly describes the con- 
tribution of this region to dW/dt. However, the quanti- 
ty ( d ~ / d t ) " '  depends logarithmically on the lower limit 
w,,, which i s  not completely defined. This dependence 
is unphysical and, a s  usual, must be compensated in 
inclusion of radiation corrections to the induced brem- 
sstrahlung process. The problem of calculation of 
radiation corrections to induced bremsstrahlung in the 
field of an intense wave, a s  f a r  as  we know, has not 
been discussed up to the present time. Its solution 
presents undoubted interest but is beyond the scope of 
the present article. We present here only an estimate 
of the contribution of spontaneous bremsstrahlung in the 
field of an intense wave to the electron energy loss. It 
i s  evident that with inclusion of radiation corrections 
and the contribution to dW/dt from region B we have 

where the evaluation has been carried out in the asymp- 
totic case of a strong field (1). It i s  evident from this 
that, in the presence of a strong external field satisfy- 
ing condition (1) and in terms of the nonrelativistic ap- 
proximation used above, the contribution of spontaneous 
bremsstrahlung to the electron energy balance is  small 
in comparison with the rate of change of the energy a s  
the result of induced bremsstrahlung (dW/dt),. Conse- 
quently, from the point of view of analysis of the elec- 
tron energy change, spontaneous bremsstrahlung can be 
neglected in this case. Nevertheless, the investigation 
carried out above (Sections 1-4) may have independent 
value, since it refers  to physical quantities which do 
not depend on dW/dt-the spectral density and energy 
of spontaneous bremsstrahlung in the field of an in- 
tense wave, 

In this connection we note that in addition to spon- 
taneous bremsstrahlung, Compton scattering of photons 
in the pumping field can also make a definite contribu- 
tion to the energy radiated by the electron. In terms 
of the nonrelativistic approximation u, u,<< C, the field 
E can be assumed weak in comparison with Compton 
scattering, and this process itself can be discussed as  
Thomson scattering of light by a stationary electron. 
The total energy scattered by the electron per unit 
time has the form 

1 e6E,' (f) =--. 
3 mZc3 
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This quantity, generally speaking, is  not necessarily 
small in comparison with the bremsstrahlung power 
(9) and (29). However, bremsstrahlung and Thomas 
scattering differ greatly in their spectral properties. 
The spectral intensity of Thomson scattering dg/  
dtdw), i s  concentrated in the vicinity of the frequency 
w = w, and has a distribution width equal to the spectral 
width of the pumping, A w, i.e., in principle it can be 
made arbitrarily small. As was shown above, res- 
onance maxima of bremsstrahlung arise in the vicinity 
of many pumping harmonics and have a finite width de- 
termined by the magnitude of the field strength. The 
average value of the spectral intensity of bremsstrah- 
lung between resonances is  also different from zero 
(Fig. 1). 

The observation of spontaneous bremsstrahlung can 
be accomplished, for example, by study of the lum- 
inescence of a laser plasma. Another situation in 
which the effects discussed can in principle occur i s  the 
photoemission of electrons from a metal surface under 
the action of a strong external field. This phenomenon 
is usually accompanied by radiation of harmonics of the 
light wave. 

One of the possible mechanisms of generation of har- 

monics i s  the spontaneous bremsstrahlung discussed 
above. In traversing the near-surface region, the elec- 
trons interact both with the field of the intense wave 
and with the ions of the crystal lattice, which may be 
the cause of extremely intense bremsstrahlung having a 
resonance nature. 
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The atoms of Ar and Xe are used as examples in considering the various possibilities of obtaining 
polarized electrons by absorption of circularly polarized, linearly polarized, and unpolarized light by 
unpolarized atoms. The results are given of a calculation of the degree of electron polarization in the 
random phase approximation with exchange. 

PACS numbers: 32.80.Fb 

1. Improvements in the experimental techniques and 
the use of the coincidence method have made it possible 
to ensure continuing increase in the detailed informa- 
tion available on collisions of particles with atoms. 
However, the simplest case of atomic collisions-pho- 
toionization-has been considered theoretically so  far  
without allowance for the photoelectron spin orientation. 
A full quantum-mechanical description of the photo- 
ionization of an atom i s  a s  follows. Light of known 
polarization i s  incident on unpolarized atoms (we shall 
consider only this case). It i s  necessary to find that 
the probability of emission of photoelectrons along a 
given direction U, with spin directed along some vector 
s, where u and s a re  unit vectors. The polarization of 
photoelectrons generated by absorption of circularly 
polarized light in alkali atoms was f i rs t  considered by 
~ano.'l '  He showed that near a Cooper minimum the 
total photoelectron flux i s  polarized in the direction of 
the spin vector of the photons because of the spin-orbit 

interaction in the continuous spectral state. The 
angular distribution of photoelectrons with this spin 
orientation was considered by Heinzmann et al.C2' It 
was found that a s  a consequence of the influence of the 
spin-orbit interaction the asymmetry coefficient P of 
the angular distribution undergoes a sudden change 
near a Cooper minimum, whereas in the LS coupling 
approximation for the s subshells it is equal to 2, 
irrespective of the photon energy. Finally, the general 
formula for the angular distribution with an arbitrary 
spin orientation in the Fano effect was obtained by 
~ r e h m . ' ~ '  

The Fano effect also appears in the photoionization 
of the s2 subshells by circularly polarized light if the 
photoionization cross section has a Cooper minimum.[41 
This condition is satisfied, in particular, by the outer 
s2 subshells of alkaline-earth atoms and atoms of the 
inert gases, beginning from Ca and Ar, respectively~5' 

418 Sov. Phys. JETP 48(3), Sept. 1978 0038-5646/78/090418-04$02.40 O 1979 American Institute of Physics 41 8 


