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An integral transformation is described, which relates the Clebsch-Gordan coefficients (CGC) and the 
Wigner d-function for the group SU(2). The kernel of the transformation exhibits the Regge symmetry, 
allowing one to establish a relation between the symmetry of the d-function and that of the CGC. It is 
pointed out that there is a relation between the form of the integral transformation and the finite 
difference form of the CGC. 

PACS numbers: 02.20.Rt 

1. INTRODUCTION 

Many reviews have been written about the theory of 
Clebsch-Gordan coefficients (CGC) and the Wigner d- 
functions, and tables of these have been published.'' 
There are,  however, some questions which have not 
found a simple exposition. In the present paper we 
consider one of these questions: the similarities be- 
tween the properties of the CGC and the d-functions. 
This relation was first  pointed out in the book.13' It 
was also discussed in Refs. 4 and 5. 

In the present paper we obtain a transformation 
relating the d-function and the CGC. The kernel of 
this transformation exhibits the Regge symmetry. The 
meaning of this transformation is very simple: it is a 
transformation between a fixed and moving coordinate 
system, and the relation between the symmetry of 
these two systems and the Regge symmetry justifies the 
publication of this paper. 

Since 
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This formula can be found in Ref. 1, p. 68. The above 
derivation seems to be the most natural one. 

One may rewrite the formula (2.7) in the form of a 
transformation from the CGC to the d-function 

2. THE TRANSFORMATION 
b,.. ( p )  = XU. h f l ~ , .  M, .  J ,  h f Z ) s m . - , ( a .  

We start  with the known formula for the d-functions 
(2.8) 

2J+i Y,-M, 

where the summation extends over all  values of J' 
appearing in the addition of the vectors J ,  and J,. Mul- 
tiplying both sides by (J, M I  J,,LM,, J, ,  M,) and summing 
over MI and iM, for MI+ M, = M (i-e., over M, - AM,), we 
obtain 

This yields a rather general formula for the d-func- 
tions : 

with 
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One can also write the inverse of the transformation 
(2.8). For  this we use the "three d-function" theorem: 

and substitute the particular values (2.4). As a result 
of this we obtain . 

( J t + J t + J + t ) !  (J f+J2-J)!  
(JMIJ,M,JzMz)-  - 

2 214-1 
1''' j a : Y - Y . ( a  

~f one assigns all possible values to  the d-functions in The right-hand side involves the same kernel (2.9)- 

the right-hand side, one obtains all possible expres- All operations take an extremely simple form in 
sions for the d-function in the left-hand side. symbolic writing. If one denotes the CGC by C, the 

We set "three d-function" theorem can be written in the form 
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Then (2.8) has the symbolic form 
d = ~ @ ~ @ d - l @ d - ~ ,  (2.13) 

and (2.12) becomes 
C=C-I@d@d@d.  (2.14) 

The "multiplication rules" a re  easily established. 

These equations demonstrate the relation between the 
d-functions and the CGC; each of them is the S-trans- 
form of the other. 

3. THE REGGE SYMMETRY 

The kernel S(B) exhibits a well-known symmetry, 
which goes under the name Regge symmetry. We re -  
mind the reader that the symmetry of the CGC is for- 
mulated in the simplest manner in terms of the table: 

- J + J 1 f  Jp J - - J I + J P  J ; J l - J p  
J  -+ J f  J 1  + hil  Jp + 1 C f p  . 
J  - .li J 1  - All J z  - hip I (3.1) 

The CGC are  invariant with respect to  a substitution 
equivalent to a permutation of two rows, two columns, 
o r  transposition of this table. The permutations of the 
columns of the second and third rows lead to the "tri- 
vial" symmetries, related to the permutations of the 
three sides of the triangle made up of the vectors J,, 
J,, and J. 

We a re  interested in the "nontrivial" operation of 
"transposition" (reflection in the main diagonal). It 
does not have a simple geometric analog, and the 
corresponding symmetry is proved by means of a spe- 
cial choice of representation of the CGC a s  a sum (as 
was done, e.g., in Ref. 5). 

It was pointed out that all the symmetry properties 
of the CGC follow from the properties of the Whipple 
 function^.^) But there seems to be no simple proof in 
the literature. 

We also note that the second "nontrivial" symmetry, 
corresponding to a permutation of the first  and third 
rows, reduces to triinspositions and permutations. 

In our representation the Regge symmetry follows 
directly from the symmetry of the kernel S@) with 
respect to transposition. Indeed, a transposition re -  
duces to the substitutions iV1, + M,* J, - J,, J, - M ,  
+J,+ M,, leaving J,+ J,, M ,  - M,, and J unchanged. 
This implies immediately that under a transposition 
the kernel S is only multiplied by 

(-1) -J,-wz+J,-x<= (-1) "'-". (3.2) 

But this is exactly the same factor as  appears if the 
indices 1M and ik" are  permuted in the left-hand side of 
(2.8). Thus the "nontrivial" symmetry of the CGC re -  
flects the "trivial" symmetry of the d-function with 
respect to the permutation of i ts  two lower indices (per- 
mutation of the two quantization axes). In the classical 
limit such a relation between the formulas has been in- 
dicated in the mentioned paper of ~ i n c e r . [ ~ ]  Thus, the 
"nontrivial" symmetry reflects the relation between the 
d-functions and the CGC. 

This brings up the question: what symmetry of the 
d-functions corresponds to  a trivial symmetry of the 

CGC, e.g., a symmetry with respect to  the permutation 

( I t ,  1111) = ( 1 2 ,  MJ. (3.3) 
A simple glance at Eq. (2.9) yields the answer: the 
symmetry reduces to 

d:,. (n-$) = (-f)J-"d:ne ($). (3.4) 
Not s o  simple is the situation with the symmetry of 

the CGC with respect to the substitution 

( J , M )  = ( J , ,  M I ) .  (3.5) 

There is no relation for the d-functions corresponding 
to this operation. This symmetry gets lost for the spe- 
cial choice of d-functions in (2.3). Thus, in distinction 
from the CGC, the d-functions do not have "nontrivial" 
symmetries. 

4. THE FINITE-DIFFERENCE FORMULA 

The formula for the S-transformation allows one to 
demonstrate more explicitly the relation between the 
finite-difference representation of the CGC and the 
expression of the d-function in terms of derivatives. 

Already Gel'fand et pointed out a curious analogy 
between the CGC and the d-function. Let us make use 
of the expression for the CGC given on p. 195 of Vilen- 
kin's book.c41 After simple manipulations one obtains 
from it the expression 

I"' 

This formula should be compared to the appropriate 
expression for the d-function in Ref. 1, p. 69 3': 

Eq. (4.1) involves the quasi-powers 

and the finite differences 

The analogy between the two formulas (4.1) and (4.2) is 
obtained at the value 

Cos p=,+r,ir,. 
The meaning of these formulas becomes clearer if we 
substitute them into the transformation equations (2.8). 
We see  that the S-transformation maps finite differences 
into derivatives, a fact that can be verified by direct 
but tedious calculations. We shall not investigate this 
problem in detail. 
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5. THE PHYSICAL MEANING OF THE 
TRANSFORMATIONS 

The analogy between the d-function and the CGC 
has a simple interpretation. 

In Eq. (2.3) the functions d$ and d%-,*(@) should 
be considered a s  two quantum unit vectors. Indeed, in 
a quantum system (intrinsically) one can define a direc- 
tion in space only by means of eigenstates of angular 
momentum vectors J, o r  Ji, corresponding to  the 
maximally possible value of the projection on the 
moving axis. (This signifies that the corresponding 
vector has been chosen a s  a moving axis.) In the second 
d-function this projection has to be taken with a minus 
sign, since J, - J, < J, and J,+ J, > J, which is inadmis- 
sible. 

Thus, the product of two d-functions determines a 
moving coordinate system which maximally approaches 
in its physical meaning such a system in the theory of 
the spinning top. 

The function d:,,,,(~) which does not depend on the 
projections M ,  and M, describes the states in a fixed 
coordinate system (the projection 1M). If one adopts such 
an interpretation, the CGC takes on the meaning of a 
transformation amplitude of the wave function between 
the two coordinate systems: a moving one and a fixed 
one. The Regge symmetry reflects the symmetry be- 
tween these two coordinate systems. Such a symmetry 
is explicitly visible for the d-function and is hidden for 
the CGC. One may add to this that the d-function itself 
can be considered a s  the amplitude describing the 
transformation between two fixed coordinate systems. 
In the classical limit, when the difference between the 
quantum and classical vectors disappears, the dis- 
tinction between the d-functions and the CGC also dis- 
appears (cf. Ref. 5). 

There also appears the question of finding the trans- 
formation amplitude between two moving coordinate 
systems. Such a coefficient must be completely in- 
dependent of the projections of J. It is nothing but the 
Racah coefficient o r  the 6j-symbol 

The 6j-symbol describes the transition from the plane 
spanned by the quantum vectors J,, J,, J,, to the plane 
spanned by J,, J,, J,, for given total angular momentum 

J. In the classical limit it turns into (24rV)-', where 
V is the volume of the tetrahedron with the edges the 
vectors entering into the 6j-symbol (or i t  is equal to 
zero for V<O, cf. Ref. 6, p. 423, o r  Ref. 1, p. 259). 
One can also show that the symmetry of the tetra- 
hedron yields all 72 Regge symmetries (including the 
nontrivial ones). 

The higher 3nj -symbols a r e  related to spaces of higher 
dimension. Thus, the 9j-symbol is a CGC of the group 
O(4) and can be given a physical interpretation. But 
this goes beyond the scope of this paper. We only note 
that i f  one considers the group O(n) for n > 3  there ap- 
pears a hierarchy of functions of the same type: the 
d-function, the CGC, the 6j-symbol, just a s  for SU(2), 
but now for "unphysical" values of the angular momen- 
ta.c81 

In conclusion, the author would like to express his 
profour)d gratitude t o  A. N. Moskalev, Ya. Revan, and 
V. D. Efros, for very useful discussions. 
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