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The relationship between the thermodynamic potential of a system of strongly interacting particles and the 
two-particle, three-particle, etc. scattering characteristics of the system is obtained in the framework of a 
scheme describing the evolution of a quantum system not with time, as is usually the case, but with 
change in the magnitude of the coupling constant. The method proposed does not require solution of the 
Faddeev equations and does not lead to singularities of the forward-scattering type. Some very simple 
applications to the theory of hot nucleon matter are considered. 

PACS numbers: 21.65. + f 

1. INTRODUCTION 

The thermodynamic characteristics of systems of 
strongly interacting particles1) serve a s  an important 
element in the description of many systems in physics 
and related sciences: the excited states of an atomic 
nucleus, the systems that arise in the collision of 
high-energy particles, matter at catastrophic stages 
of the evolution of s t a r s  o r  in the early stages of the 
development of the Universe, etc.  

A microscopic calculation of the thermodynamic 
parameters of hadronic matter on the basis of the 
modern theory of the strong interaction-quantum chro 
modynamics-is, as yet, possible only at extremely 
high pressures o r  temperatures, when the property 
of asymptotic freedom is manifested.['' Under less  
extreme conditions, and, in particular, in the non- 
relativistic (with respect to the hadrons) region con- 
sidered below, it i s  reasonable to use a semipheno- 
menological approach, relating the thermodynamics 
of the system to the particle-particle scattering para- 
meters (cf., e .g . ,  Ref. 2). 

This approach takes i t s  history from the work of 
Beth and ~ h l e n b e c k ~ ~ ~  (see also Ref. 4, Sec. 77), in 
which the following expression for the second virial 
coefficient of a nonideal gas was found: 

Here and below, = l / k T ,  En is the energy of a bound 
state, m* is the reduced mass, 6, is the phase shift 
for orbital angular momentum I, and k is the momen- 
tum in the c.  m. frame. 

One of the lines of development of the approach under 
consideration led to the construction of the thermo- 
dynamics of dilute many-particle systems in which the 
average distance between particles i s  large compared 
with the scattering length (the gas approximation; cf., 
e .  g., Refs. 5 and 6). The interaction process in such 
a system reduces to successive scatterings of particles 
by each other, such that in the interval between these 
events the wavefunction of a pair of particles has time 
to approach i t s  asymptotic form. It is not surprising, 
therefore, that the macroscopic parameters of a dilute 
system are  completely expressed in terms of the char- 

acteristics of the mutual scattering of a pair of parti- 
cles.  

To this class we can assign the Landau theory of the 
Fermi liquid, together with i t s  applications to the the- 
ory of the nucleus ( ~ i g d a l ' s  theoryc7]). Although the 
applicability of these theories is not restricted by the 
requirement that the system itself be dilute, they de- 
scribe only weakly excited states of matter, when the 
gas of elementary excitations (quasi-particles) can be 
assumed to be dilute. In this case the answer is ex- 
pressed in terms of the scattering parameters of the 
quasi-particles in the medium and not those of the 
the particles in vacuo. These parameters should be 
taken from other macroscopic characteristics of the 
system. 

Another line of development of the semiphenomeno- 
logical approach (see the paper by Dashen, Ma, and 
Bernstein, ['I and also the ear l ier  papers by ~ e r e z i n ~ ~ ] )  
led to an expression for the virial coefficients in terms 
of the complete scattering matrix S, which connects 
an arbitrary number of particles and contains comple'te 
information on the energy spectrum of the system: 

Here, E i s  the energy, A i s  the exchange operator 
(symmetrization o r  antisymmetrization of the wave- 
function), the superscript c indicates that only connect- 
ed scattering diagrams are  taken into account, and the 
trace is taken over states with N particles. 

Even for N =  3,  serious difficulties stand in the way 
of the practical utilization of formula (1.2); these a re  
connected with the fact that the scattering matrix is 
obtained in this case a s  the outcome of a cumbersome 
numerical integration of the Faddeev equations. More- 
over, for three and more particles, special purely , 

kinematic singularities corresponding to the vanishing 
of the energy denominator in the propagator appear in 
the corresponding "forward"-scattering amplitude that 
enters in the right-hand side of (1.2).[~] For example, 
even in the simplest diagram, in Fig. 1, in which a 
blob denotes the pair scattering amplitude, there ap- 
pears the denominator 

E (ti,) +E (I;,) - ~ ( k , ' )  -E (k,+k,-h,') ,  (1.3) 

which vanishes for forward scattering (k1,2 = kI,J.  Al- 
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FIG. 1. 

though this difficulty has a fictitious character and all 
such singularities should cancel each other in the sum, 
a simple and effective prescription for removing them 
has not yet been proposed (see Ref. lo) .  

To overcome these difficulties we propose in this 
article to use a special quantum-mechanical approach, 
based on a description of the evolution of the system 
not with time, as is usually the case, but with change 
of the magnitude of the coupling constant (see Ref. 11). 
The essence of this approach is briefly described in 
Sec. 2, in which subsequently needed information per- 
taining to the two-nucleon problem is also given. In 
Sec. 3 the connection between the virial coefficients and 
the scattering characteristics is considered. Section 
4 contains an investigation of the singularity of the 
forward-scattering type. Finally, in Sec. 5 some very 
simple applications involving a hot many-nucleon sys- 
tem are  given. 

The advantages of the proposed method in applica- 
tion to the problem of constructing a semiphenomeno- 
logical thermodynamics are  as follows. Firs t  of all, 
in the framework of this method a virial coefficient i s  
expressed in the form of a rapidly convergent series,  
each term of which depends comparatively simply on 
the pair-scattering characteristics. In the end the 
virial coefficient can be expressed in the form of an 
explicit analytic function of the pair-scattering phase 
shift, the energy of the two-particle bound state, etc. 
Furthermore, the singular terms of the virial coeffi- 
cient can be summed in closed form, and, a s  will be 
shown, their sum is exactly equal to zero. Therefore, 
such terms can be disregarded from the outset. De- 
tails pertaining to applications of the method of evolu- 
tion in the coupling constant to the problem of three 
and more bodies can be found in a paper by the auth- 
o r ~ [ ' ~ ]  (see also Ref. 13). 

2. EVOLUTION IN THE COUPLING CONSTANT 

Referring the reader to previous papers by the auth- 
o r ~ ~ " . ' ~ ~  for the details, in this section we give the 
basic relations of the method proposed. The coupling 
constant g is introduced by the relation 

H=H,+gV, (2.1) 

where H and H ,  are the full and free Hamiltonians, and 
gV is the interaction Hamiltonian. The evolution equa- 
tions should connect the real state of the system with 
i ts  state when the interaction is switched off; the latter 
state corresponds to t - - 00 in the usual time-dependent 
technique, to P = 0 in the Matsubara technique in quan- 
tum statistics (see Refs. 5 and 6), and to g =  0 in the 
.scheme being proposed. The matter reduces to re- 
placing the usual evolution equations for the wavefunc- 
tion \k and an operator 0 

by equations describing the evolution with change of the 
quantity g: 

where r is the operator of translations in the coupling 
constant. The equations cited, together with (2.1), 
give 

i 

r ( t )  = J at f l v ( t* ) ,  
-- 

where the time dependence of the operator corresponds 
to the Heisenberg picture. 

From this, in the energy representation, there follow 
equations for the energy (the Hellmann-Feynman form- 
ula) 

for the wavefunction (the index + corresponds to an out- 
outgoing wave) 

and analogously for an incoming wave (index -), and, 
finally, for the operator: 

Using (2.3) we obtain an equation for the scattering 
matrix S,=,(n7 In),, which is nonzero only for Em= En: 

as,. - --2ni S,V..6(E.-Em). 
ag z 

In the case of elastic scattering of two particles (ele- 
mentary o r  composite), there follows from this an 
equation for the phase shift: 

a6 , (k )  m'k ---- VM,I. 
ag 2n 

Finally, substituting the operator V in place of 0 in 
(2.4), we obtain closed equations for the matrix ele- 
ments V,,,, that determine the evolution of all the phy- 
sical quantities: 

This equation plays a central role in the method des- 
cribed. 

We shall begin with an an application of the above 
equations to a two-body problem; specifically, we have 
in mind the neutron-proton system in the triplet state. 
In this case i t  i s  convenient to use the "separable" 
Yamaguchi potential, putting, for g =  0, 

In this expression, which is in the form of a product 
of two functions depending on k and k', respectively, 
the inverse range of the forces is y =  1.44F-l, andthe 
coupling constant is normalized in such a way that the 
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value g= 1 corresponds to the threshold for formation 
of the deuteron. The potential (2.8) acts only in the s 
state, and the index 1 is henceforth omitted. 

The separated form (2.8) makes i t  possible to seek 
the solution of Eq. (2.7) in separated form too. This 
enables us to solve the problem completely in explicit 
analytic form. 2' We give the expressions for the 
deuteron energy: 

where the inverse scattering length X=  0.23 FA-, for 
the phase shift 

k k k 
8.p (k) -n-arctg - + arctg - -2arctg - 

2y+x "I 

and for  the interaction potential 

We turn now to the problem of three o r  more bodies, 
which is characterized by the presence of a larger 
number of particles than can be directly connected by a 
pair interaction. Here i t  is necessary, f irst  of all, to 
separate out the unconnected diagrams corresponding 
to free flight of one o r  more particles. With this pur- 
pose we put 

vm.=vmc+um., 
where VC is the connected part of the matrix element 
and U  is the unconnected part, which is a combination 
of a matrix element for less than N particles and the 
6 -functions of the momentum-conservation law for 
freely moving particles. Substitution of the latter 
equality into (2.7) gives an equation for the connected 
part (the part of interest to us in what follows) of the 
matrix element of the potential: 

Here, in the free term, we have omitted the uncon- 
nected part of the combination UU, which vanishes 
owing to the presence of the derivative B U / B ~  in the 
left -hand side. 

In the case of the three-body problem, 

where i labels the freely moving particle (and, simul- 
taneously, the interacting pair). Henceforth we use 
the abbreviated forms 

Of course, Eq. (2.12) cannot be solved exactly. How- 
ever, a series of successive iterations of i t ,  starting 
from the free term, is found to be rapidly convergent, 
and even the zeroth iteration is in fair agreement with 
experiment in the problem of neutron-deuteron scat- 
tering.c121 This isnot surprising, since, unlike in the 
usual Born series (and the series from successive 

iterations of the Faddeev equations), the conditions of 
unitarity and causality of the scattering matrix a re  ful -  
filled exactly a t  each stage of the successive approxi- 
mations. The unitarity condition is connected with the 
conservation of the property of hermiticity of the ma- 
tr ix V, ,  [cf. (2.511, o r ,  in another language, with the 
expansion of the phase shift rather than of the scatter-  
ing amplitude (cf. (2.6)); the causality condition stems 
from the rules for going round the pole in the energy 
denominator of (2.12). 

On the other hand, the usual considerations of "pol- 
ology" a r e  in force: the higher the order of iteration, 
the further into the complex energy plane a re  the sing- 
ularities of the matrix element V,, located, and the 
smaller a r e  the corresponding residues and discontin- 
uities across  the cuts. For the three-body problem 
the zeroth iteration is depicted in Fig. 2a (a blob de- 
notes the matrix element v ) ,  and the next iterations. 
a r e  depicted in Figs. 2b and 2c. 

3. THE THERMODYNAMIC POTENTIAL AND 
SCATTERING MATRIX 

The method expounded above makes i t  possible to 
find a simple connection between the thermodynamic 
potential'51 of the system and the scattering matrix. 
We shall start  from the familiar expression (see Ref. 
4,  Sec. 35) 

where N is the total number of particles, [=  8' is the 
activity, fi being the chemical potential, and 

is the partition function of a system of N particles. 
The latter quantity, when expressed in diagrammatic 
language, contains both connected and unconnected 
diagrams. We can get rid of the lattercae1 usingthe well 
known rule of ~ u b b a r d ; ~ ~ ]  which has the symbolic form 
a - exp(ac). As applied to (3.1), this givesc8' 

where 51, is the potential of an ideal gas (N = 1). We 
note that the expression (3.2) pertains to a system of 
particles of one kind (or  to a mixture whose compo- 
nents have the same values of N and p) ;  in the general 
case the quantity N is replaced by the set  N,, N,, . . . , 
and p N  by the sum C fi,N,. 

Since the potential 51 is related directly to the pres- 
sure,  the ser ies  in N in (3.2) has the meaning of the 
virial expansion for the pressure. Separating out the 

FIG. 2. 
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center-of-mass motion, which leads to the factor 

a,- (mJ2nB) ", 
where m, is the total mass of the system, we finally 
obtain 

where the virial coefficient3' 

and the trace is taken over the wavefunctions in the 
c.m. frame. 

It is important to emphasize that the analysis carried 
out does not take explicit account of exchange effects, 
which are ,  in fact, important at not very high temper- 
atures. These effects lead to the result that correla- 
tions of an arbitrarily large number of particles make 
a contribution to  the quantity 51,; correspondingly, the 
quantity b, becomes dependent on the correlation of 
more than N particles. In this article we shall not 
take exchange effects explicitly into account, but refer 
the reader to Refs. 8 and 9 and to the next publication 
by the authors. 

The subject of the following analysis will be the 
virial coefficients b,, which differ from zero only be- 
cause of the interaction between the particles. There- 
fore, at extremely high temperatures, when the non- 
relativistic system of particles is transformed into an 
ideal gas, the following condition holds, for @ = 0: 

bn-0 (3.5) 
[cf. (3.411. It is convenient to subject the contributions 
to the expression (3.4) from the discrete and continu- 
ous spectra to this condition separately. The former 
contribution, corresponding to N-particle bound states 
with energy En,, has the form 

b?" -z [erp( -BE*~) - i ] .  (3.6) 

As regards the continuous spectrum, i t  is conven- 
iently described using the method expounded in the pre- 
ceding section. Differentiating (3.4) with respect to 
g and using (2.2), we have 

Here, in the argument of the exponential, the quantity 
E ,  can be regarded a s  simply the sum of the kinetic 
energy and the binding energies of the composite com- 
plexes (the energy correction due to scattering is in- 
versely proportional to the normalization volume and 
tends to zero in the limit). Taking the condition (3.5) 
into account, we obtain 

Thus, to determine the virial coefficients i t  is nec- 
essary to know not only the energies of the bound states 
(these can be taken directly from experiment) but also 
the diagonal matrix elements VC,, of the connected part 

of the potential. The latter can be found from Eq. 
(2.12), using i ts  lowest iterations. Then the answer 
will be expressed in an explicit analytic form in terms 
of the phase shift in the scattering of a pair of particles 
[cf. (2.11)]. This is the first  advantage of the proposed 
approach. 

For the second virial coefficient the formula (2.6) 
gives directly 

which, when (3.6) is taken into account, returns us to 
the Beth-Uhlenbeck formula (1.1). It is necessary only 
to take into account Levinson's theorem 

where N, is the number of bound states with angular 
momentum 1. 

Despite the fact that the proposed method, unlike the 
method of Dashen, Ma, and Bernstein, makes it possi- 
ble to avoid introducing a many-particle scattering ma- 
trix, for the sake d completeness we give the analog of 
the formula (1.2), which differs from the latter by re- 
placement of the differentiation with respect to the en- 
ergy by differentiation with respect t o g .  With is pur- 
pose we use Eq. (2.5), rewritten in the form 

and assume the quantity Em to be free parameter. In  
the absence of bound states (e.g., for  sufficiently high 
temperatures), we obtain from (3.7) 

bN = 1 .-Ox Spd ( E )  . 
X 

(3.8) 
0 

where we have introduced the generalized phase shift 

(Ins)'' IS=- 
2i ' 

In the presence of bound states, when speaking of a 
system of N particles we must distinguish the different 
combinations of elementary and composite particles. 
We shall label each of them by the index a ,  denoting the 
corresponding energy by E,+ E,, where' E, is the kine- 
tic energy and E, is the binding energy of the composite 
particles. In  the end we obtain 

where S is the many-channel scattering matrix describ- 
ing all possible transitions cu - a'. The formula (3.9) 
expresses the virial coefficient not only in terms of the 
phase shifts but also in terms of the inelasticity coeffi- 
cients corresponding to transitions to other channels. 

4. SlNGULARlTlES OF THE FORWARD-SCATTERING 
TYPE 

The kinematic singularities in the scattering of three 
or  more particles lead to the result that, in iterations 
of Eq. (2.12), zero energy denominators, i.e., singu- 
larities of the type l / i b ,  appear in the expression for 
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VC,, . Below, for  the example of a three-particle prob- 
lem, we separate out the singular terms explicitly and 
show that their sum is exactly equal to zero. Owing to 
the reality of the quantity V&, the matter reduces to 
elucidating the question of whether the coefficient of the 
l/i6 singularity is real. 

Using formulas (2.12) and (2.13), we shall analyze 
the structure of the iterative ser ies  from the standpoint 
of interest to us. The zeroth iteration (Fig. 2a) gives 

For n? = n  the kinematics leads to the appearance of a 
singularity because of the equality E m  = E n  = E, .  However, 
the corresponding coefficient is real and the singularity 
does in fact disappear (cf. Fig. 1). 

However, starting from the next iteration it i s  found 
that the property of reality of the coefficient of l/i6 is 
lost and the singularities no longer disappear in the 
framework of an iteration of a given order. Thus, for 
the first  iteration, the diagrams of Fig. 2b in which 
Em=En=E, ,  and Fig. 2c in which E,= E,, a re  dangerous. 
They give the singular part of V:, in the form 

A straightforward analysis shows that the dangerous 
diagrams of higher order can be described by Fig. 3, 
in which rescattering of particles in the initial o r  final 
states has been added to the diagrams of Fig. 2. Then 
singularities do not appear in the term quadratic in 
V C  in (2.12). 

We can separate out the singular part  of V:, explicit- 
ly in the following way. We write V g n  in the form 

having subjected the quantity A =C,,,A" to the following 
equation: 

This equation describes the rescattering effects: itera- 
tion of it leads directly to the ser ies  corresponding to 
the diagrams of Fig. 3a. Owing to the separability of 
the quantity v,,, it is possible, using (2.7), to find the 
explicit solution of Eq. (4.2): 

The important point is that, for nz = n, the coefficient of 
1/95 in (4.3), equal to 

-u!.J dg v.:, 

FIG. 3. 

is real. This leads to the disappearance of the singu- 
larities for az = n in the expression in the brackets in 
(4.1). 

It remained to convince ourselves that the singular- 
ities corresponding to the diagrams of Fig. 3b a re  also 
absent; this corresponds to a finite W in (4.1). These 
diagrams correspond to the expression 

which ar ises  when (4.1) i s  substituted into (2.12). Using 
the explicit form of (4.3) it is easy to convince oneself 
that together these terms cancel the singularities ap- 
pearing in their structure. 

When considering terms of the iterative series for 
Eq. (2.12) one may also encounter expression contain- 
ing singularities of the type 

[ (Em-En) f+62] -1 ,  

which also lead to singularities of the 1/6 form, and 
such singularities give a zero result in the sum. 

To  summarize, in calculating the iterative series for 
Eq. (2.12) we can simply disregard the singular terms, 
discarding all the singularities proportional to 1/6 that 
arise, without fear that any finite remainder will be 
lost in this procedure. 

5. THE VlRlAL COEFFICIENTS OF A HOT NUCLEON 
GAS 

In this concluding section we shall carry out an ap- 
plication of the method described above to the calcula- 
tion of the f i rs t  few virial coefficients of a hot nucleon 
gas. The examples cited a re  principally of an illustra- 
tive character. They should show that there exists a 
comparatively simple way of describing the effects of 
the interaction of three and more particles in the ther- 
modynamics of a many-nucleon system. 

We shall confine ourselves below to treating the re- 
gion of temperatures for which 

pya/m>i, pzz/rn<i. (5.1) 

This means that the temperature is not so high that it 
would be necessary to take relativistic effects into ac- 
count. On the other hand, i t  is not so  low that exchange 
effects a re  appreciable. Numerically, this corresponds 
to a temperature of the order of tens of MeV. 

In  using the method described above we shall confine 
ourselves to taking the zeroth iteration of Eq. (2.12) in- 
to account. As shown in a previous paper by the au- 
thors, C12' this is sufficient a t  lowenergies (temperatures). 
It will be all the more adequate at high temperatures, 
since the effective expansion parameter i s  the quar.:ity 
Bv, which decreases with increase of temperature. We 
start  from the virial coefficient corresponding to neu- 
tron-proton scattering in the triplet state. Using (1.1) 
and (2.9), (2.10), we find 

b~,~p)='I2 .  (5.2) 
For  simplicity we assume that p, = p,. 
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FIG. 5. 

Next, we estimate the contribution of the three-par- 
ticle scattering (two neutrons and a proton, in the 
quartet state). According to (3.7) and Fig. 4,  

where 

643' ' as.,(p) a8.,(3k/z) 
Vnmp,mnp = - dg- 9 

3kp, ag 'ag / ( P Z - ~ ~ ) .  

Hence, 

where the numerical value of the constant is of order 
unity. 

Finally, we consider the contribution of the scatter- 
ing of neutrons by deuterons in the quartet state. Using 
Fig. 5, we have 

where (cf. Ref. 12) 

v"d,.,=--- - as., (3k12) :: z , ' k  ag 

Hence, 

The small value of this quantity a s  compared with (5.3) 
is explained by the dissociation of the deuterons with 
increase of temperature. 

We a re  grateful to B. L. Voronov, S. E. ~onsh te fn ,  
V. P. Pavlov, and A. A. ~ r u s h e v s k i f  for  stimulating 
discussions. 

  elo ow, the "strong interaction" has the same meaning as  in 
the theory of elementary particles, although many of the re- 
sults given below also apply to atomic-molecular systems 
with strong (in the literal sense of the word) interaction be- 
tween the particles. 

2 ' ~ h e  problem is solved even more simply by means of the 
Jost function.u21 

3 ' ~ h e  quantity o, is more often included in the expression for 
the virial coefficient, but we prefer the dimensionless quan- 
tity (3.4). 
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